Character-Theoretic Tools for Studying Linear Codes over Rings and Modules

Jay A. Wood

Department of Mathematics
Western Michigan University
http://sites.google.com/a/wmich.edu/jaywood

Algebraic Methods in Coding Theory
CIMPA School
Ubatuba, Brazil
July 11, 2017

7. MacWilliams extension theorem for other weights

- Homogeneous and egalitarian weights
- Symmetrized weight compositions
- General weight: reducing to symmetrized weight compositions
- Weights with maximal symmetry
- Lee and Euclidean weights on $\mathbb{Z} / N \mathbb{Z}$

Notation

- Let R be a finite associative ring with 1 .
- Let A be a finite unital left R-module: the alphabet.
- Let $w: A \rightarrow \mathbb{Q}$ be a weight: $w(0)=0$. Extend to A^{n} by

$$
w\left(a_{1}, \ldots, a_{n}\right)=\sum_{i=1}^{n} w\left(a_{i}\right)
$$

Symmetry groups

- Recall the symmetry groups of w :

$$
\begin{aligned}
& G_{\mathrm{lt}}=\{u \in \mathcal{U}: w(u a)=w(a), a \in A\} \\
& G_{\mathrm{rt}}=\left\{\phi \in \mathrm{GL}_{R}(A): w(a \phi)=w(a), a \in A\right\} .
\end{aligned}
$$

- $\mathcal{U}=\mathcal{U}(R)$ is the group of units of R, and $\mathrm{GL}_{R}(A)$ is the group of invertible R-linear homomorphisms $A \rightarrow A$.
- Recall that I will usually write homomorphisms of left modules on the right side; $f: A \rightarrow A$, $(r a) f=r(a f)$.

Orbit spaces

- For an information module M, recall the orbit spaces:

$$
\begin{aligned}
\mathcal{O} & =G_{\mathrm{lt}} \backslash M \\
\mathcal{O}^{\sharp} & =\operatorname{Hom}_{R}(M, A) / G_{\mathrm{rt}}
\end{aligned}
$$

W-map

- F denotes "functions"; F_{0} : those that vanish at 0.
- The W-map is

$$
W: F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{Q}\right) \rightarrow F_{0}(\mathcal{O}, \mathbb{Q}) .
$$

- For $x \in M$,

$$
W(\eta)(x)=\sum_{[\lambda] \in \mathcal{O}^{\sharp}} w(x \lambda) \eta([\lambda]) .
$$

Using generating character to define a weight

- Suppose the alphabet A admits a generating character ρ : $\operatorname{Soc}(A)$ cyclic.
- Fix a subgroup $U \subseteq G L_{R}(A)$.
- Define a weight $w_{U}: A \rightarrow \mathbb{C}$:

$$
w_{U}(a)=1-\frac{1}{|U|} \sum_{\phi \in U} \rho(a \phi), \quad a \in A .
$$

Properties of w_{U}

- $w_{U}(0)=0$.
- $U \subseteq G_{\mathrm{rt}}\left(w_{U}\right)$.
- Indeed, suppose $\psi \in U$. Then

$$
w_{U}(a \psi)=1-\frac{1}{|U|} \sum_{\phi \in U} \rho(a \psi \phi), \quad a \in A .
$$

- Re-index the summation with $\phi^{\prime}=\psi \phi$ to see that $w_{U}(a \psi)=w_{U}(a)$ for all $a \in A$.

Egalitarian property

- For any nonzero left R-submodule $B \subseteq A$, and any $a_{0} \in A$,

$$
\sum_{b \in B} w_{U}\left(a_{0}+b\right)=|B| .
$$

$$
\begin{aligned}
\sum_{b \in B} w_{U}\left(a_{0}+b\right) & =\sum_{b \in B}\left(1-\frac{1}{|U|} \sum_{\phi \in U} \rho\left(\left(a_{0}+b\right) \phi\right)\right) \\
& =\sum_{b \in B}\left(1-\frac{1}{|U|} \sum_{\phi \in U} \rho\left(a_{0} \phi\right) \rho(b \phi)\right)
\end{aligned}
$$

Egalitarian property, continued

$$
\begin{aligned}
\sum_{b \in B} w_{U}\left(a_{0}+b\right) & =|B|-\frac{1}{|U|} \sum_{\phi \in U}\left(\rho\left(a_{0} \phi\right) \sum_{b \in B} \rho(b \phi)\right) \\
& =|B| .
\end{aligned}
$$

- $\sum_{b \in B} \rho(b \phi)=0$ because $B \phi \nsubseteq$ ker ρ, which in turn follows from ρ being a generating character.
- We say that w_{U} is egalitarian on cosets of B.
- $w_{L_{L_{R}}(A)}$ is called homogeneous: Constantinescu, Heise, Greferath, Schmidt, Honold, Nechaev.
w_{U} has EP, with U-monomial tranformations
- Suppose $w_{U}(x \Lambda)=w_{U}(x N)$ for all $x \in M$.
- Equation of characters: for all $x \in M$,

$$
\sum_{i=1}^{n} \sum_{\phi \in U} \rho\left(x \lambda_{i} \phi\right)=\sum_{j=1}^{n} \sum_{\psi \in U} \rho\left(x \nu_{j} \psi\right)
$$

- Use linear independence of characters: for $j=1$, $\psi=\mathrm{id}_{A}$, there exist $i=\sigma(1)$ and $\phi_{1} \in U$ with $\rho\left(x \lambda_{\sigma(1)} \phi_{1}\right)=\rho\left(x \nu_{1}\right)$ for all $x \in M$.
- ρ generating: $\nu_{1}=\lambda_{\sigma(1)} \phi_{1}$. Inner sums agree, reduce outer sum, and continue by induction.

More about posets

- Let S be a finite poset with \preceq.
- Define the Möbius function $\mu: S \times S \rightarrow \mathbb{Z}$ as follows.
- $\mu(s, s)=1$ for all $s \in S$.
- $\mu(s, t)=0$ when $s \npreceq t$.
- Recursive: for $s \prec t$ (i.e., $s \preceq t$ but $s \neq t$),

$$
\sum_{x: s \preceq x \preceq t} \mu(s, x)=0 .
$$

- Can solve for $\mu(s, t)$ in terms of "lower" $\mu(s, x)$.

Example

- Let $\mathcal{L}\left(\mathbb{F}_{q}^{n}\right)$ be the poset of linear subspaces of \mathbb{F}_{q}^{n} under set inclusion.
- When $V \subseteq W$, let $c=\operatorname{dim} W-\operatorname{dim} V$ be the codimension. Then

$$
\mu(V, W)= \begin{cases}0, & V \nsubseteq W \\ (-1)^{c} q^{\binom{c}{2}}, & V \subseteq W\end{cases}
$$

- Verification involves the Cauchy Binomial Theorem.

More about the homogeneous weight

- Greferath, Nechaev, Wisbauer, 2004.
- Let A be a finite left R-module.
- Let $S=\{$ Ra $: a \in A\}$ be the poset of all cyclic left R-submodules of A under set inclusion.
- For $a \in A$, define

$$
w(a)=1-\frac{\mu(0, R a)}{|\mathcal{U}(R) a|}
$$

Properties of homogeneous weight

- If $R a=R b$ (iff $\mathcal{U} a=\mathcal{U} b)$, then $w(a)=w(b)$.
- w is egalitarian on nonzero cyclic left submodules B :

$$
\sum_{b \in B} w(b)=|B|
$$

- w is egalitarian on all nonzero left submodules if and only if $\operatorname{Soc}(A)$ is cyclic.

Relation to orbit sums

- Suppose $\operatorname{Soc}(A)$ is cyclic, so that A admits a generating character ρ.
- Summing the generating character over the \mathcal{U}-orbit of $a \in A$ yields $\mu(0, R a)$:

$$
\sum_{x \in \mathcal{U}_{a}} \rho(x)=\mu(0, R a)
$$

Corollary (Honold)

$$
w(a)=1-\frac{1}{|\mathcal{Z} a|} \sum_{x \in \mathcal{U} a} \rho(x) .
$$

Proof

- Set $f(a)=\sum_{x \in \mathcal{U}_{a}} \rho(x)$.
- Note that $f(0)=1$.
- For $a \neq 0$, the left submodule $R a$ is the disjoint union of the left \mathcal{U}-orbits inside $R a$:

$$
\sum_{x \in R a} \rho(x)=\sum_{\mathcal{U} b \subseteq R a} \sum_{x \in \mathcal{U} b} \rho(x)=\sum_{R b \subseteq R a} f(b) .
$$

- But $\sum_{x \in R_{a}} \rho(x)=0$, because ρ is a generating character and $R a \neq 0$.
- Thus $f(a)$ satisfies the properties defining $\mu(0, R a)$.

Symmetrized weight composition

- This time, no weight. Just ring R, alphabet A, and a subgroup $G \subseteq \mathrm{GL}_{R}(A)$.
- Define an equivalence relation from the right action of G on A : for $a, b \in A, a \sim b$ if $b=a \phi$ for some $\phi \in G$. Denote equivalence class of a by [a].
- For $a \in A$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in A^{n}$, define the symmetrized weight composition (swc) by

$$
\operatorname{swc}_{[a]}(x)=\left|\left\{i: x_{i} \in[a]\right\}\right| .
$$

- Example: $R=A=\mathbb{Z} / 4 \mathbb{Z}, G=\{ \pm 1\}$.

swc has EP with G-monomial transformations

- Assume A has generating character ρ (cyclic socle).
- Suppose $C_{1}, C_{2} \subseteq A^{n}$ are two left R-linear codes.
- Suppose $f: C_{1} \rightarrow C_{2}$ is a linear isomorphism of R-modules that preserves swc:

$$
\operatorname{swc}_{[a]}(x f)=\operatorname{swc}_{[a]}(x), \quad a \in A, x \in C_{1} .
$$

- Then f extends to a G-monomial transformation.

Proof (a)

- Result dates from 1997, but we will use the local-global idea of Barra, Gluesing-Luerssen (2014). This is joint work with N. El Garem and N. Megahed (2015).
- As before, view preservation of swc in terms of $\Lambda, N: M \rightarrow A^{n}:$

$$
\operatorname{swc}_{[a]}(x \Lambda)=\operatorname{swc}_{[a]}(x N), \quad a \in A, x \in M .
$$

- Local: for each $x \in M$, there exist a permutation σ_{x} and elements $\phi_{1, x}, \ldots, \phi_{n, x} \in G$ with $x \nu_{i}=x \lambda_{\sigma_{\times}(i)} \phi_{i, x}$.

Proof (b)

- Local to global: apply $\phi \in G$ and ρ, then sum over ϕ and i. For every $x \in M$:

$$
\sum_{i=1}^{n} \sum_{\phi \in G} \rho\left(x \nu_{i} \phi\right)=\sum_{i=1}^{n} \sum_{\phi \in G} \rho\left(x \lambda_{\sigma_{x}(i)} \phi_{i, x} \phi\right)
$$

- Dependence on x disappears! For all $x \in M$:

$$
\sum_{i=1}^{n} \sum_{\phi \in G} \rho\left(x \nu_{i} \phi\right)=\sum_{i=1}^{n} \sum_{\phi \in G} \rho\left(x \lambda_{i} \phi\right)
$$

- Proceed as before to get G-monomial transformation.

General weight: reducing to swc

- Now include a weight w. Suppose alphabet A has cyclic socle. Form swc using $G=G_{\mathrm{rt}}(w)$.
- For any $b=\left(b_{1}, \ldots, b_{n}\right) \in A^{n}$,

$$
w(b)=\sum_{i=i}^{n} w\left(b_{i}\right)=\sum_{[a] \in A / G_{\mathrm{rt}}} w(a) \operatorname{swc}_{[a]}(b)
$$

- For a scalar multiple $r b \in A^{n}, r \in R$:

$$
w(r b)=\sum_{[a] \in A / G_{\mathrm{rt}}} w(r a) \operatorname{swc}_{[a]}(b) .
$$

- $w(r b)$ depends only on class $[r] \in G_{l t} \backslash R$.

Sufficient condition for EP for w

- Form matrix \mathcal{A} with rows indexed by nonzero $[r] \in G_{t} \backslash R$ and columns indexed by nonzero $[a] \in A / G_{\mathrm{rt}}:$

$$
\mathcal{A}_{[r],[a]}=w(r a)
$$

Theorem (1999)
If matrix \mathcal{A} has a trivial right nullspace, then alphabet A has $E P$ for w.

- When $A=R$ is commutative, \mathcal{A} is square.

Condition is $\operatorname{det} \mathcal{A} \neq 0$.

Proof (a)

- Suppose $f: C_{1} \rightarrow C_{2}$ is an isomorphism of R-modules and that f is a linear isometry with respect to w. Codes are given by $\Lambda: M \rightarrow A^{n}$ and $N: M \rightarrow A^{n}$, as usual.
- Isometry: $w(x \Lambda)=w(x N)$, for all $x \in M$.
- For every $x \in M, r \in R$:

$$
\begin{aligned}
0 & =w(r x \Lambda)-w(r x N) \\
& =\sum_{[a] \in A / G_{r t}} w(r a)\left\{\operatorname{swc}_{[a]}(x \Lambda)-\operatorname{swc}_{[a]}(x N)\right\}
\end{aligned}
$$

Proof (b)

- The condition on matrix \mathcal{A} implies $\operatorname{swc}_{[\text {[] }}(x \Lambda)=\operatorname{swc}_{[a]}(x N)$ for every $a \in A$ and $x \in M$.
- This means that $f: C_{1} \rightarrow C_{2}$ preserves swc.
- Apply EP for swc to conclude that f extends to a $G_{r t}$-monomial transformation.

Cases of maximal symmetry

- Progress on finding more explicit conditions over ring alphabets $(A=R)$ when the weight w has maximal symmetry: $G_{\mathrm{lt}}=G_{\mathrm{rt}}=\mathcal{U}(R)$.
- When R is a product of chain rings: Greferath, Mc Fadden, Zumbrägel, 2013.
- When R is a principal ideal ring: Greferath, Honold, Mc Fadden, Wood, Zumbrägel, 2014. Here $\operatorname{det} \mathcal{A}$ is factored into terms $\sum_{0<d R \leq a R} w(d) \mu(0, d R)$, for $a \in R$, where μ is the Möbius function for the poset of principal right ideals of R.
- Maximal symmetry case for $A=\widehat{R}$ in lecture 9 .

Examples over $\mathbb{Z} / N \mathbb{Z}$

- In addition to the Hamming weight, there are three additional weights that are easy to define on $\mathbb{Z} / N Z$.
- Lee weight: viewing $\mathbb{Z} / N Z=\{0,1, \ldots, N-1\}$, Lee weight is $w_{L}(a)=\min \{a, N-a\}$.
- Euclidean weight: $w_{E}(a)=w_{L}(a)^{2}$.
- Complex Euclidean weight:
$|\exp (2 \pi i a / N)-1|^{2}=2-2 \cos (2 \pi a / N)$ (square of complex length).

Facts about EP over $\mathbb{Z} / N \mathbb{Z}$

- Only the complex Euclidean weight is easy: it is the egalitarian weight using $U=\{ \pm 1\}$.
- EP for Lee weight and Euclidean weight has been numerically verified (\mathcal{A} invertible) for $N \leq 2048$.
- EP for Lee weight and Euclidean weight holds for $N=p^{k}, p$ prime. Work of Barra, Dyshko, Langevin, Wood.
- EP for Lee weight holds for any N : Dyshko. Dyshko's approach will be discussed in Lecture 10.

