Character-Theoretic Tools for Studying Linear Codes over Rings and Modules

Jay A. Wood

Department of Mathematics Western Michigan University http://sites.google.com/a/wmich.edu/jaywood

Algebraic Methods in Coding Theory CIMPA School Ubatuba, Brazil July 10, 2017

6. MacWilliams extension theorem and converse

- Extension property (EP)
- EP for Hamming weight over Frobenius bimodules via linear independence of characters
- Generalization for module alphabets
- Axiomatic viewpoint
- Parametrized codes and multiplicity functions
- Failure of EP for landscape matrix modules
- Converse of extension theorem: EP implies Frobenius

Notation

- Let *R* be a finite associative ring with 1.
- Let A be a finite unital left R-module: the alphabet.
- Let w : A → Q be a weight: w(0) = 0. Extend to Aⁿ by

$$w(a_1,\ldots,a_n)=\sum_{i=1}^n w(a_i).$$

Symmetry groups

• Define the **symmetry groups** of *w*:

$$G_{\mathsf{lt}} = \{ u \in \mathcal{U}(R) : w(ua) = w(a), a \in A \},$$

$$G_{\mathsf{rt}} = \{ \phi \in \mathsf{GL}_R(A) : w(a\phi) = w(a), a \in A \}.$$

- U(R) is the group of units of R, and GL_R(A) is the group of invertible R-linear homomorphisms A → A.
- I will usually write homomorphisms of left modules on the right side; $f : A \rightarrow A$, (ra)f = r(af).

Monomial transformations

For a subgroup G ⊆ GL_R(A), a G-monomial transformation of Aⁿ is an invertible R-linear homomorphism T : Aⁿ → Aⁿ of the form

$$(a_1, a_2, \ldots, a_n)T = (a_{\sigma(1)}\phi_1, a_{\sigma(2)}\phi_2, \ldots, a_{\sigma(n)}\phi_n),$$

for
$$(a_1, a_2, \ldots, a_n) \in A^n$$
.

• Here, σ is a permutation of $\{1, 2, \dots, n\}$ and $\phi_i \in G$ for $i = 1, 2, \dots, n$.

Isometries

- Let C₁, C₂ ⊆ Aⁿ be two linear codes. An R-linear isomorphism f : C₁ → C₂ is a linear isometry with respect to w if w(xf) = w(x) for all x ∈ C₁.
- Every G_{rt}-monomial transformation is an isometry from Aⁿ to itself.

Extension property (EP)

- Given ring R, alphabet A, and weight w on A.
- The alphabet A has the **extension property** (EP) with respect to w if the following holds: For any left linear codes $C_1, C_2 \subseteq A^n$, if $f : C_1 \to C_2$ is a linear isometry, then f extends to a G_{rt} -monomial transformation $A^n \to A^n$.
- That is, there exists a G_{rt} -monomial transformation $T: A^n \to A^n$ such that xT = xf for all $x \in C_1$.

Slightly different point of view

- Linear codes are often presented by generator matrices. A generator matrix serves as a linear encoder from an information space to a message space.
- If f : C₁ → C₂ is a linear isometry, then C₁ and C₂ are isomorphic as R-modules. Let M be a left R-module isomorphic to C₁ and C₂. Call M the information module.
- Then C₁ and C₂ are the images of R-linear homomorphisms Λ : M → Aⁿ and N : M → Aⁿ, respectively. Then, N = Λf: inputs on left!

Coordinate functionals

- C₁ was given by Λ : M → Aⁿ. Write the individual components as Λ = (λ₁,..., λ_n), with λ_i ∈ Hom_R(M, A). Call the λ_i coordinate functionals.
- Similarly, $N = (\nu_1, \ldots, \nu_n)$, $\nu_i \in \operatorname{Hom}_R(M, A)$.
- The isometry *f* extends to a *G*_{rt}-monomial transformation if there exists a permutation *σ* and φ_i ∈ *G*_{rt} such that ν_i = λ_{σ(i)}φ_i for all *i* = 1,..., *n*.

Case of \widehat{R}

- Our first result will show that, for any finite ring R, $A = \hat{R}$ has EP with respect to the Hamming weight.
- It follows that A = R itself has EP with respect to the Hamming weight when R is Frobenius.
- ▶ The Frobenius ring case came first (1999).
- The more general $A = \hat{R}$ case is due to Greferath, Nechaev, and Wisbauer (2004).

Techniques

 For any alphabet A, the summation formulas for characters imply that the Hamming weight wt satisfies

$$\operatorname{wt}(a) = 1 - rac{1}{|\mathcal{A}|} \sum_{\pi \in \widehat{\mathcal{A}}} \pi(a), \quad a \in \mathcal{A}.$$

- ► Characters are linearly independent over C.
- Recursive argument using maximal elements in a finite poset.

Symmetry groups for the Hamming weight

- ► Consider the Hamming weight wt on A = Â, which is an (R, R)-bimodule.
- Both symmetry groups G_{lt} and G_{rt} equal U(R).

Posets

- Given a set S, a (non-strict) partial order ≤ on S is reflexive, antisymmetric, and transitive. The pair (S, ≤) is a partially ordered set or poset.
- Example. Let X be a nonempty set. Then S = P(X), the set of all subsets of X, with set inclusion, i.e., U ≤ V when U ⊆ V, is a poset.
- ► Example. Let B be a finite right R-module. Then S = {bR : b ∈ B} is the poset of all cyclic right R-submodules of B under set inclusion.
- Fact: $b_1R = b_2R$ if and only if $b_1 = b_2u$, where $u \in U(R)$.

Proof (a)

- $R, A = \widehat{R}$, with Hamming weight. $C_1, C_2 \subseteq \widehat{R}^n$, with $f : C_1 \to C_2$ linear isometry.
- \widehat{R} has a generating character: $\rho : \widehat{R} \to \mathbb{C}$, $\rho(\pi) = \pi(1)$ for $\pi \in \widehat{R}$. (Evaluate at $1 \in R$.) Every $\pi \in \widehat{R}$ has the form $\pi = {}^{r}\rho$ for some unique $r \in R$.
- C_1 is image of $\Lambda : M \to \widehat{R}^n$; C_2 is image of $N : M \to \widehat{R}^n$. $N = \Lambda f$.
- ▶ Isometry: $wt(x\Lambda) = wt(xN)$, for all $x \in M$.

Proof (b)

Hamming weight as character sum:

$$\sum_{i=1}^n \sum_{r \in R} {}^r \rho(x\lambda_i) = \sum_{j=1}^n \sum_{s \in R} {}^s \rho(x\nu_j), \quad x \in M.$$

That is,

$$\sum_{i=1}^n \sum_{r \in R} \rho(x\lambda_i r) = \sum_{j=1}^n \sum_{s \in R} \rho(x\nu_j s), \quad x \in M.$$

▶ This is an equation of characters on *M*.

Proof (c)

- Let $B = \operatorname{Hom}_R(M, \widehat{R})$, a right R-module. Poset $S = \{\lambda R : \lambda \in \operatorname{Hom}_R(M, \widehat{R})\}$ under \subseteq .
- Among the $\lambda_i R$, $\nu_j R$, choose one that is maximal for \subseteq . Say, $\nu_1 R$.
- ▶ Let j = 1 and s = 1 on the right side of the character equation.
- By linear independence of characters, there exists i and r ∈ R so that ρ(xλ_ir) = ρ(xν₁) for all x ∈ M.

• Thus
$$\rho(x(\nu_1 - \lambda_i r)) = 1$$
 for all $x \in M$. I.e., $M(\nu_1 - \lambda_i r) \subseteq \ker \rho$.

Proof (d)

- By ρ a generating character, ν₁ = λ_ir. Thus, ν₁R ⊆ λ_iR.
- By maximality of $\nu_1 R$, $\nu_1 R = \lambda_i R$. Thus, $\nu_1 = \lambda_i u_1$, for some $u_1 \in \mathcal{U}(R)$.
- ► Then inner sums agree: $\sum_{r \in R} \rho(x\lambda_i r) = \sum_{s \in R} \rho(x\nu_1 s), x \in M.$ Set $\sigma(1)$ is Subtract inner sums to reduce
- Set σ(1) = i. Subtract inner sums to reduce the size of the outer sums by 1. Proceed by induction.

Generalize to module alphabets

- For ring R, alphabet A, and Hamming weight wt, EP holds if A: (1) is pseudo-injective and (2) has a cyclic socle (embeds into R).
- Pseudo-injective means injective with respect to submodules. That is, if B is a submodule of A and h : B → A is any injective module homomorphism, then h extends to h̃ : A → A.
- Main idea: use R
 -case to get GL_R(R
)-monomial extension. Use pseudo-injectivity to show existence of GL_R(A)-monomial extension.

Axiomatic viewpoint

- Assmus and Mattson, "Error-correcting codes: an axiomatic approach," 1963.
- Consider linear codes up to monomial equivalence. What matters?
- Actually, I want to consider parametrized codes up to monomial equivalence.
- ▶ Usual set-up: ring *R*, alphabet *A*, weight *w* on *A*.
- A parametrized code is a finite left *R*-module *M* and an *R*-linear homomorphism Λ : *M* → Aⁿ.

Scale classes

- The right symmetry group G_{rt} acts on Hom_R(M, A) on the right: λ → λφ.
- Call the orbit space O[♯] = Hom_R(M, A)/G_{rt}. Denote orbit/ "scale class" of λ by [λ].
- Up to G_{rt}-monomial equivalence, a parametrized code Λ : M → Aⁿ is completely determined by the number of coordinate functionals λ_i belonging to the various classes [λ] ∈ O[♯].

Multiplicity functions

- Let *F*(*O*[♯], ℕ) denote the set of functions
 η : *O*[♯] → ℕ. Call these multiplicity functions.
- Given a parametrized code $\Lambda : M \to A^n$, define its multiplicity function η_{Λ} by

$$\eta_{\Lambda}([\lambda]) = |\{i : \lambda_i \in [\lambda]\}|.$$

- Other authors: multisets, value function (Chen, et al.), projective systems, etc.
- No zero columns: $F_0(\mathcal{O}^{\sharp}, \mathbb{N}) = \{\eta : \eta([0]) = 0\}.$

Weights of elements

- Given $\Lambda : M \to A^n$, consider the weights $w(x\Lambda)$ for $x \in M$.
- The weights w(xΛ), x ∈ M, depend only on η_Λ, not Λ itself: G_{rt}-monomial transformations are isometries. In fact:

$$w(x\Lambda) = \sum_{[\lambda] \in \mathcal{O}^{\sharp}} w(x\lambda) \eta_{\Lambda}([\lambda]), \quad x \in M.$$

Invariance under $G_{\rm lt}$

- If $u \in G_{lt}$, then $w((ux)\Lambda) = w(u(x\Lambda)) = w(x\Lambda)$, for all $x \in M$.
- G_{lt} acts on M on the left: $x \mapsto ux$, $x \in M$. Denote orbit space by $\mathcal{O} = G_{lt} \setminus M$.

•
$$w(0\Lambda) = w(0) = 0$$
.

• Denote $F_0(\mathcal{O}, \mathbb{Q}) = \{f : \mathcal{O} \to \mathbb{Q}, f(0) = 0\}.$

Well-defined W map

We get a well-defined map

$$W: F_0(\mathcal{O}^{\sharp}, \mathbb{N}) \to F_0(\mathcal{O}, \mathbb{Q}),$$

with

$$W(\eta)(x) = \sum_{[\lambda] \in \mathcal{O}^{\sharp}} w(x\lambda)\eta([\lambda]),$$

for $x \in \mathcal{O}$, $\eta \in F_0(\mathcal{O}^{\sharp}, \mathbb{N})$.

Completion over \mathbb{Q}

- *F*₀(*O*[♯], ℕ) is an additive semi-group, and *F*₀(*O*, ℚ) is a ℚ-vector space. The map *W* is additive.
- ► The addition in F₀(O[#], N) corresponds to concatenation of generator matrices.
- By tensoring over Q, we get a Q-linear transformation of Q-vector spaces:

$$W: F_0(\mathcal{O}^{\sharp}, \mathbb{Q}) \to F_0(\mathcal{O}, \mathbb{Q}).$$

Re-interpretation of EP

 An alphabet A has EP with respect to a Q-valued weight w if and only if the linear map

$$W: F_0(\mathcal{O}^{\sharp}, \mathbb{Q}) \to F_0(\mathcal{O}, \mathbb{Q})$$

is injective for all information modules M.

- Bogart, et al., 1978.
- Greferath, 2002.

Matrix modules and Hamming weight

- What does W look like for matrix module alphabets?
- Let R = M_{k×k}(𝔽_q), A = M_{k×ℓ}(𝔽_q), with Hamming weight wt.
- Symmetry groups: $G_{\text{lt}} = \mathcal{U}(R) = \text{GL}(k, \mathbb{F}_q);$ $G_{\text{rt}} = \text{GL}_R(A) = \text{GL}(\ell, \mathbb{F}_q).$

Orbit spaces

- For $M = M_{k \times m}(\mathbb{F}_q)$, $\operatorname{Hom}_R(M, A) = M_{m \times \ell}(\mathbb{F}_q)$.
- ► Then *O* = *G*_{lt}*M* = GL(*k*, 𝔽_q)*M*_{k×m}(𝔽_q), which is represented by the set of row reduced echelon (RRE) matrices of size *k* × *m*.
- And

 $\mathcal{O}^{\sharp} = \operatorname{Hom}_{R}(M, A)/G_{rt} = M_{m \times \ell}(\mathbb{F}_{q})/\operatorname{GL}(\ell, \mathbb{F}_{q}),$ which is represented by the set of column reduced echelon (CRE) matrices of size $m \times \ell$.

Dimension counting

- First note that dim_Q F₀(O, Q) = |O| − 1 and dim_Q F₀(O[♯], Q) = |O[♯]| − 1.
- So, dim_Q F₀(O, Q) is the number of nonzero RRE matrices of size k × m.
- And dim_Q F₀(O[♯], Q) is the number of nonzero CRE matrices of size m × ℓ.
- If k < ℓ and k < m, there are more of the CRE matrices than the RRE matrices; i.e.,</p>

 $\dim_{\mathbb{Q}}F_0(\mathcal{O}^{\sharp},\mathbb{Q})>\dim_{\mathbb{Q}}F_0(\mathcal{O},\mathbb{Q}).$

► This says that EP fails when k < ℓ. ("Landscape")</p>

Converse of EP for Hamming weight

- We claim: if an alphabet A has EP for the Hamming weight, then A (1) is pseudo-injective and (2) has a cyclic socle.
- Likewise: if a ring R has EP for the Hamming weight, then R is Frobenius (which means Soc(R) is cyclic).
- We follow a strategy of Dinh and López-Permouth, 2004.

Proof

- If Soc(A) is not cyclic (same idea for R), then Soc(A) contains a matrix module of the form A' = M_{k×ℓ}(F_q) with k < ℓ.
- There exist counter-examples to EP over A'.
- Regard these codes as codes over A:
 A' ⊆ Soc(A) ⊆ A.
- They are also counter-examples over A.
- Pseudo-injectivity is equivalent to the length 1 case of EP (Dinh, López-Permouth).

Other uses of W map

- ▶ We will see the *W* map again.
- Other weight functions.
- Isometries of additive codes.