Character－Theoretic Tools for Studying Linear Codes over Rings and Modules

Jay A．Wood

Department of Mathematics
Western Michigan University
http：／／sites．google．com／a／wmich．edu／jaywood

Algebraic Methods in Coding Theory
CIMPA School
Ubatuba，Brazil
July 7， 2017

5. Exercise Session

- Exercise: every character of $\mathbb{Z} / k \mathbb{Z}$ has the form $\rho_{b}(a)=\exp (2 \pi i a b / k), a \in \mathbb{Z} / k \mathbb{Z}$, for some $b \in \mathbb{Z} / k \mathbb{Z}$. [What is $\rho(1)$?]
- Thus, $(\mathbb{Z} / k \mathbb{Z})^{\wedge} \cong \mathbb{Z} / k \mathbb{Z}$, via $\rho_{b} \longleftrightarrow b$.

Duality functor

- Pontryagin duality: $A \mapsto \widehat{A}$
- Exact contravariant functor:

$$
0 \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow 0
$$

induces

$$
0 \rightarrow \widehat{A}_{3} \rightarrow \widehat{A}_{2} \rightarrow \widehat{A}_{1} \rightarrow 0
$$

- $\widehat{A} \cong A$, but not naturally. (*Uses fundamental theorem of finitely generated abelian groups.*)
- $\widehat{\widehat{A}} \cong A$, naturally: $a \mapsto(\pi \mapsto \pi(a))$.
- $(A \times B)^{\wedge} \cong \widehat{A} \times \widehat{B}$.

Annihilators

- Let $B \subseteq A$ be any subgroup.
- Define the annihilator $(\widehat{A}: B)$:
$(\widehat{A}: B)=\{\rho \in \widehat{A}: \rho(B)=1\}=\{\varrho \in \widehat{A}: \varrho(B)=0\}$.
- $(\widehat{A}: B) \cong(A / B)^{\widehat{ }}$.
- $|B| \cdot|(\widehat{A}: B)|=|A|$.
- Double annihilator: $(A:(\widehat{A}: B))=B$.

Summation formulas

- Need multiplicative form of characters.
- For $\pi \in \widehat{A}$,

$$
\sum_{a \in A} \pi(a)= \begin{cases}|A|, & \pi=1 \\ 0, & \pi \neq 1\end{cases}
$$

- For $a \in A$,

$$
\sum_{\pi \in \widehat{A}} \pi(a)= \begin{cases}|A|, & a=0 \\ 0, & a \neq 0\end{cases}
$$

Fourier transform

- Given a function $f: A \rightarrow V, V$ a complex vector space. Define its Fourier transform $\hat{f}: \widehat{A} \rightarrow V$ by

$$
\begin{gathered}
\hat{f}(\pi)=\sum_{a \in A} \pi(a) f(a), \quad \pi \in \widehat{A} . \\
\hat{\imath}: F(A, V) \rightarrow F(\widehat{A}, V) .
\end{gathered}
$$

- Invert:

$$
f(a)=\frac{1}{|A|} \sum_{\pi \in \widehat{A}} \pi(-a) \hat{f}(\pi), \quad a \in A
$$

Poisson summation formula

Let B be any subgroup of A, and let $f: A \rightarrow V$. Then for any $a \in A$,

$$
\sum_{b \in B} f(a+b)=\frac{1}{|(\widehat{A}: B)|} \sum_{\pi \in(\hat{A}: B)} \pi(-a) \hat{f}(\pi)
$$

If $a=0$, then

$$
\sum_{b \in B} f(b)=\frac{1}{|(\widehat{A}: B)|} \sum_{\pi \in(\widehat{A}: B)} \hat{f}(\pi)
$$

A Fourier transform example

- Suppose V is a complex algebra.
- Suppose $f: A^{n} \rightarrow V$ has the form

$$
f\left(a_{1}, \ldots, a_{n}\right)=\prod_{i=1}^{n} f_{i}\left(a_{i}\right),
$$

where $f_{i}: A \rightarrow V$.

- Then

$$
\hat{f}\left(\pi_{1}, \ldots, \pi_{n}\right)=\prod_{i=1}^{n} \hat{f}_{i}\left(\pi_{i}\right) .
$$

Character modules

- Extra information: the left R-module structure on A induces a right R-module structure on \widehat{A}.
- For $r \in R$ and $\varpi \in \widehat{A}$, define $\varpi r \in \widehat{A}$ by $(\varpi r)(a)=\varpi(r a), a \in A ;\left(\pi^{r}\right)(a)=\pi(r a)$.
- If A is a right module, then \widehat{A} is a left module:
$(r \varpi)(a)=\varpi(a r) ;\left({ }^{r} \pi\right)(a)=\pi(a r)$.

Annihilators are submodules

- Suppose $B \subseteq A$ is a left R-submodule.
- Then the annihilator $(\widehat{A}: B) \subseteq \widehat{A}$ is a right R-submodule.
- If $\varrho \in(\widehat{A}: B)$ and $r \in R$, then

$$
(\varrho r)(B)=\varrho(r B) \subseteq \varrho(B)=0
$$

because B is a left submodule.

Characterizing generating characters

Theorem
A character $\varrho \in \widehat{R}$ is a right generating character if and only if ker ϱ contains no nonzero right ideal of R.

- Define $\psi: R \rightarrow \widehat{R}$ by $\psi(r)=\varrho r$. When is ψ an isomorphism? (Injective is enough, as $|R|=|\widehat{R}|$.)
- $\psi(r)=0$ iff $(\varrho r)(R)=0$ iff $\varrho(r R)=0$ iff $r R \subseteq \operatorname{ker} \varrho$.
- Similar result for left generating characters.

Left/right symmetry

Theorem
A character $\varrho \in \widehat{R}$ is a left generating character if and only if ϱ is a right generating character.

- Left implies right: Suppose $r R \subseteq$ ker ϱ. Then $\varrho(r s)=0$ for all $s \in R$.
- Then $(s \varrho)(r)=0$ for all $s \in R$. I.e., $\varpi(r)=0$ for all $\varpi \in \widehat{R}$, as ϱ left generates.
- Thus $r=0$. (Uses " $|B| \cdot|(\widehat{A}: B)|=|\widehat{A}|$ ", $B=\mathbb{Z} r$.)

A generalization for modules

- R finite ring with 1 ; A finite unital left R-module.
- An R-module is cyclic if it is generated by one element. Say M is generated by $m \in M$. Then $R \rightarrow M, r \mapsto r m$, is onto.

Theorem
The following are equivalent:

1. \widehat{A} is a cyclic right R-module.
2. A injects into $\widehat{R}: A \hookrightarrow \widehat{R}$.
3. There exists $\varrho \in \widehat{A}$ such that ker ϱ contains no nonzero left R-submodule.

Proof

- $1 \leftrightarrow 2$. Contravariant exact functor: $0 \rightarrow A \rightarrow \widehat{R}$ dualizes to $R \rightarrow \widehat{A} \rightarrow 0$, and vice versa.
- Fix $\varrho \in \widehat{A}$. Define $A \rightarrow \widehat{R}$ by $a \mapsto(r \mapsto \varrho(r a))$.
- $2 \leftrightarrow 3: a \in A$ is in the kernel of the map above iff $\varrho(R a)=0$ iff $R a \subseteq$ ker ϱ.
- Call such a ϱ a generating character for A.

More on simple modules

- If S is simple, and $0 \neq s \in S$, then $S=R s$.
- The annihilator ann $(s)=\{r \in R: r s=0\}$ is a maximal left ideal of R; $S \cong R /$ ann (s).
- $\operatorname{Rad}(R)$ annihilates simple modules: $\operatorname{Rad}(R) S=0$.
- Every simple module is a module over $R / \operatorname{Rad}(R)$.
- $\operatorname{Soc}(A)$ is a module over $R / \operatorname{Rad}(R)$.
- Same idea for right modules; reverse sides.

Top-bottom duality

- R finite ring with 1 ; A finite left R-module.
- $A / \operatorname{Rad}(R) A$ is the "top quotient" of A; it is a sum of simple modules.
- $\operatorname{Soc}(\widehat{A})=(\widehat{A}: \operatorname{Rad}(R) A) \cong(A / \operatorname{Rad}(R) A)^{\widehat{ } \text {. }}$
- $\supseteq:(A / \operatorname{Rad}(R) A)$ is a sum of simple modules.
- \subseteq : because $\operatorname{Soc}(\widehat{A}) \operatorname{Rad}(R)=0$.

Sketch of proof

- We already know $1 \leftrightarrow 2$.
- Fact: if $R=M_{k \times k}\left(\mathbb{F}_{q}\right)$, then $\widehat{R} \cong R$.
- Then general $(R / \operatorname{Rad}(R))^{\wedge} \cong R / \operatorname{Rad}(R)$.
- So $\operatorname{Soc}(\widehat{R}) \cong(R / \operatorname{Rad}(R))^{\wedge} \cong R / \operatorname{Rad}(R)$.
- $1,2 \Rightarrow 3$: If $\widehat{R} \cong R$, then $\operatorname{Soc}(R) \cong \operatorname{Soc}(\widehat{R}) \cong R / \operatorname{Rad}(R)$.

Construction

- $M_{k \times k}\left(\mathbb{F}_{q}\right)$ has a generating character:
$\varrho(P)=\vartheta_{q}(\operatorname{Tr} P), P \in M_{k \times k}\left(\mathbb{F}_{q}\right)$.
- $\operatorname{Tr} P$ is the matrix trace of P.
- If $q=p^{e}$ and $x \in \mathbb{F}_{q}$, then

$$
\vartheta_{q}(x)=\left(x+x^{p}+\cdots x^{p^{e-1}}\right) / p \in \mathbb{Q} / \mathbb{Z}
$$

- ϑ_{q} is a generating character of \mathbb{F}_{q}.

Why does ϱ generate?

- Suppose $B \subseteq \operatorname{ker} \varrho$ is a left ideal of R.
- Then $\operatorname{Soc}(B)=B \cap \operatorname{Soc}(R) \subseteq \operatorname{ker} \varrho \cap \operatorname{Soc}(R)$.
- But ϱ is a generating character of $\operatorname{Soc}(R)$, so $\operatorname{Soc}(B)=0$.
- Thus $B=0 ; \varrho$ is a left generating character of R.

Similar characterization for modules

Theorem
The following are equivalent:

1. \widehat{A} is a cyclic right R-module.
2. A injects into $\widehat{R}: A \hookrightarrow \widehat{R}$.
3. There exists $\varrho \in \hat{A}$ such that ker ϱ contains no nonzero left R-submodule.
4. $\operatorname{Soc}(A) \subseteq A$ is a cyclic R-submodule.

More identifications

- R finite Frobenius ring with generating character ϱ.
- Dot product on $R^{n}: y \cdot x=\sum_{i=1}^{n} y_{i} x_{i}$.
- Define $\psi: R^{n} \rightarrow \widehat{R}^{n}, x \mapsto \psi_{x}$:

$$
\psi_{x}(y)=\varrho(y \cdot x), \quad y \in R^{n} .
$$

- Then ψ is an isomorphism of left R-modules.
- $\psi_{r x}(y)=\varrho(y \cdot r x)=\varrho(y r \cdot x)=\psi_{x}(y r)=\left(r \psi_{x}\right)(y)$.

Character annihilator vs. dot product

- Recall: $\psi_{x}(y)=\varrho(y \cdot x), \quad y \in R^{n}$.
- Additive subgroup $C \subseteq R^{n}$. Under $\psi,\left(\widehat{R}^{n}: C\right)$ corresponds to $r_{\varrho}(C)=\left\{x \in R^{n}: \varrho(C \cdot x)=0\right\}$.
- Set $r(C)=\left\{x \in R^{n}: C \cdot x=0\right\}$.
- $r(C) \subseteq r_{\varrho}(C)$ in general
- $r(C)=r(R C)=r_{\varrho}(R C) \subseteq r_{\varrho}(C)$ in general.
- $r(C)=r_{\varrho}(C)$ when C is a left submodule, as $C \cdot x$ is a left ideal in $\operatorname{ker} \varrho$.

Binary case

- Let $q=2$, the binary case.
- For $x \in \mathbb{F}_{2}^{n}$, if $x \cdot x=0$, then $\operatorname{wt}(x)$ is even. (This is also true for $q=3$, but not in general.)
- If $C \subseteq \mathbb{F}_{2}^{n}$ is self-orthogonal, then every codeword in C has even weight.
- Extra: a binary self-orthogonal code in which every codeword has weight divisible by 4 is doubly-even (singly-even otherwise).

A binary example

- The codes generated by G_{2}, G_{8} are singly-even, self-dual:

$$
G_{2}=\left[\begin{array}{ll}
1 & 1
\end{array}\right], \quad G_{8}=\left[\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] .
$$

- hwe $_{G_{2}}=X^{2}+Y^{2}$.
- hwe $G_{8}=X^{8}+4 X^{6} Y^{2}+6 X^{4} Y^{4}+4 X^{2} Y^{6}+Y^{8}=$ $\left(X^{2}+Y^{2}\right)^{4}$.

Another binary example

- The code generated by E_{8} is doubly-even, self-dual.

$$
E_{8}=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

- hwe $E_{E_{8}}=X^{8}+14 X^{4} Y^{4}+Y^{8}$.

Binary self-dual case

- When the code C is self-dual, C appears on both sides of the MacWilliams identities:

$$
\operatorname{hwe}_{C}(X, Y)=\frac{1}{|C|} \text { hwe }_{C}(X+Y, X-Y)
$$

- Length is $n=2 k$. $\operatorname{hwe}_{C}(X, Y)$ is a homogeneous polynomial of degree n, so

$$
\operatorname{hwe}_{C}(X, Y)=\operatorname{hwe}_{C}\left(\frac{X+Y}{\sqrt{2}}, \frac{X-Y}{\sqrt{2}}\right)
$$

Invariance properties

- The group $\mathrm{GL}(2, \mathbb{C})$ acts on $\mathbb{C}[X, Y]$ by linear substitution:

$$
f(X, Y)\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=f(a X+c Y, b X+d Y)
$$

- For binary self-dual C, hwe $_{C}$ is invariant under

$$
M=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

More invariance properties

- In addition, singly-even and doubly-even are invariant under, respectively $(i=\sqrt{-1})$:

$$
W_{s}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], \quad W_{d}=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right] .
$$

- Define two subgroups of $\mathrm{GL}(2, \mathbb{C}): \mathcal{G}_{s}=\left\langle M, W_{s}\right\rangle$ and $\mathcal{G}_{d}=\left\langle M, W_{d}\right\rangle$.
- For singly-even C, hwe ${ }_{C} \in \mathbb{C}[X, Y]^{\mathcal{G}_{s}}$.
- For doubly-even C, hwe ${ }_{C} \in \mathbb{C}[X, Y]^{\mathcal{G}_{d}}$.

Examples

- Let S be a ring with anti-isomorphism ϵ.
- For any finite group G, the group ring $R=S[G]$ has anti-isomorphism ε :

$$
\varepsilon\left(\sum_{g \in G} c_{g} g\right)=\sum_{g \in G} \epsilon\left(c_{g}\right) g^{-1}
$$

- Matrix ring $R=M_{k \times k}(S)$, using the transpose:

$$
\varepsilon(P)=(\epsilon(P))^{T}, \quad P \in R
$$

Apply ϵ to each entry of P.

Swapping sides

- An anti-isomorphism ε on R allows one to regard left modules as right modules, and vice versa.
- If M is a left R-module, define $\varepsilon(M)$ to be same abelian group as M, but equipped with right scalar multiplication defined by

$$
x r=\varepsilon(r) x, \quad x \in M, r \in R,
$$

where $\varepsilon(r) x$ is the left scalar multiplication of the module M.

- Similar definition for right module to left.

Interpret in terms of bi-additive form

- Use the additive form of characters:
$\widehat{A}=\operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Q} / \mathbb{Z})$.
- Define $\beta: A \times A \rightarrow \mathbb{Q} / \mathbb{Z}$ by $\beta(a, b)=\psi(b)(a)$, for $a, b \in A$. Extend additively to $A^{n} \times A^{n}$. Then:
- β is bi-additive.
- $\beta(r x, y)=\beta(x, \varepsilon(r) y)$ for $x, y \in A^{n}, r \in R$.
- Impose one more property: there exists a unit $e \in R$ such that $\beta(x, y)=\beta(e y, x)$ for $x, y \in A^{n}$.

Properties of C^{\perp}

- Recall $C^{\perp}=\psi^{-1}\left(\widehat{A}^{n}: C\right)$.
- In terms of $\beta: C^{\perp}=\left\{y \in A^{n}: \beta(C, y)=0\right\}$.
- Even if $C \subseteq A^{n}$ is just an additive code, we have $|C| \cdot\left|C^{\perp}\right|=\left|A^{n}\right|$ and the MacWilliams identities.
- If C is a left linear code, then so is C^{\perp}.
- If C is a left linear code, then $\left(C^{\perp}\right)^{\perp}=C$. This uses the $\beta(x, y)=\beta(e y, x)$ condition.
- When C is a left linear code, we also have $C^{\perp}=\left\{x \in A^{n}: \beta(x, C)=0\right\}$.

Example (c)

- For $k=2$, there are proper left ideals $\left(a, b \in \mathbb{F}_{2}\right)$:

$$
C_{1}=\left\{\left[\begin{array}{ll}
a & 0 \\
b & 0
\end{array}\right]\right\}, C_{2}=\left\{\left[\begin{array}{ll}
0 & a \\
0 & b
\end{array}\right]\right\}, C_{3}=\left\{\left[\begin{array}{ll}
a & a \\
b & b
\end{array}\right]\right\} .
$$

- Then $C_{1}^{\perp}=C_{2}, C_{2}^{\perp}=C_{1}$, and $C_{3}^{\perp}=C_{3}$.

