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Self-duality for linear codes over modules

4. Self-duality for linear codes over
modules

I Classical examples

I Invariant polynomials

I Gleason’s theorem

I “Self-dual codes and invariant theory” by Nebe,
Rains and Sloane, 2006.

I Anti-isomorphisms

I Good duality from characters

I Alphabets with extra structure

I Generalization of Gleason’s theorem
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Self-duality for linear codes over modules

Classical setting

I Let R = Fq and consider linear codes C ⊆ Fn
q.

I Equip Fn
q with the standard dot product:

x · y =
n∑

i=1

xiyi , x , y ∈ Fn
q.

I Could use an hermitian inner product instead.

I The dual code is C⊥ = {y ∈ Fn
q : C · y = 0}.
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Self-dual codes

I A linear code is self-orthogonal if C ⊆ C⊥.

I A linear code is self-dual if C = C⊥.

I If dimC = k , then dimC⊥ = n − k . (Analogous to

“|B | · |(Â : B)| = |A|”.)

I If C ⊆ Fn
q is self-dual, then n = 2k is even.
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Binary case

I Let q = 2, the binary case.

I For x ∈ Fn
2, if x · x = 0, then wt(x) is even. (This is

also true for q = 3, but not in general.)

I If C ⊆ Fn
2 is self-orthogonal, then every codeword in

C has even weight.

I Extra: a binary self-orthogonal code in which every
codeword has weight divisible by 4 is doubly-even
(singly-even otherwise).
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A binary example

I The codes generated by G2, G8 are singly-even,
self-dual:

G2 = [1 1], G8 =


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

 .
I hweG2

= X 2 + Y 2.

I hweG8
= X 8 + 4X 6Y 2 + 6X 4Y 4 + 4X 2Y 6 + Y 8 =

(X 2 + Y 2)4.
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Another binary example

I The code generated by E8 is doubly-even, self-dual.

E8 =


1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0


I hweE8

= X 8 + 14X 4Y 4 + Y 8.
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And another

I Start with 1111100100101.

I Take successive shifts of this vector until there is a 1
in position 24:

G24 =


111110010010100000000000
011111001001010000000000
001111100100101000000000

...
000000000001111100100101


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And another, continued

I The code generated by G24 is doubly-even, self-dual.

I Called the extended Golay code.

I Dates from 1949.

I hweG24
=

X 24 + 759X 16Y 8 + 2576X 12Y 12 + 759X 8Y 16 + Y 24.

I What?! The previous line isn’t red?
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MacWilliams identities

I Recall that the MacWilliams identities over Fq for
the Hamming weight enumerator:

hweC (X ,Y ) =
1

|C⊥|
hweC⊥(X + (q − 1)Y ,X − Y ).

I Over F2:

hweC (X ,Y ) =
1

|C⊥|
hweC⊥(X + Y ,X − Y ).
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Binary self-dual case

I When the code C is self-dual, C appears on both
sides of the MacWilliams identities:

hweC (X ,Y ) =
1

|C |
hweC (X + Y ,X − Y ).

I Length is n = 2k . hweC (X ,Y ) is a homogeneous
polynomial of degree n, so

hweC (X ,Y ) = hweC

(
X + Y√

2
,
X − Y√

2

)
.
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Invariance properties

I The group GL(2,C) acts on C[X ,Y ] by linear
substitution:

f (X ,Y )

[
a b
c d

]
= f (aX + cY , bX + dY ).

I For binary self-dual C , hweC is invariant under

M =
1√
2

[
1 1
1 −1

]
.
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More invariance properties

I In addition, singly-even and doubly-even are
invariant under, respectively (i =

√
−1):

Ws =

[
1 0
0 −1

]
, Wd =

[
1 0
0 i

]
.

I Define two subgroups of GL(2,C): Gs = 〈M ,Ws〉
and Gd = 〈M ,Wd〉.

I For singly-even C , hweC ∈ C[X ,Y ]Gs .

I For doubly-even C , hweC ∈ C[X ,Y ]Gd .
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Gleason’s theorem (1970)

I The rings of invariant polynimials are generated by
the Hamming weight enumerators of certain codes.

I C[X ,Y ]Gs = C[hweG2
, hweE8

]

I C[X ,Y ]Gd = C[hweE8
, hweG24

]

I Corollary: doubly-even self-dual codes occur only in
dimensions divisible by 8.

I There are versions when q = 3 or q = 4 (with
hermitian inner product).
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Setting for the rest of this lecture

I Finite ring R , alphabet A, a left R-module.

I A left linear code is a left R-submodule C ⊆ An.

I How to define self-dual codes in this context?

I We will explain the approach of “Self-dual codes and
invariant theory” by Nebe, Rains and Sloane, 2006.
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Anti-isomorphisms

I Let R be a finite ring with 1.

I An anti-isomorphism of R is a map ε : R → R
that is an isomorphism of the additive group of R
and satisfies ε(rs) = ε(s)ε(r) for all r , s ∈ R .

I An anti-isomorphism ε is an involution if ε2 = idR .
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Examples

I Let S be a ring with anti-isomorphism ε.

I For any finite group G , the group ring R = S [G ]
has anti-isomorphism ε:

ε(
∑
g∈G

cgg) =
∑
g∈G

ε(cg)g−1.

I Matrix ring R = Mk×k(S), using the transpose:

ε(P) = (ε(P))T, P ∈ R .

Apply ε to each entry of P .
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Swapping sides

I An anti-isomorphism ε on R allows one to regard
left modules as right modules, and vice versa.

I If M is a left R-module, define ε(M) to be same
abelian group as M , but equipped with right scalar
multiplication defined by

xr = ε(r)x , x ∈ M , r ∈ R ,

where ε(r)x is the left scalar multiplication of the
module M .

I Similar definition for right module to left.
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Character-theoretic duality

I Recall from earlier: if C ⊆ An is a left R-linear code,
then (Ân : C ) ⊆ Ân is a right R-linear code.

I Double annihilator: (An : (Ân : C )) = C .

I Size: |C | · |(Ân : C )| = |An|.
I The MacWilliams identities hold (cwe and hwe).
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Alphabets with Â ∼= ε(A)

I Starting with a left linear code C ⊆ An, a good
candidate for a dual code is the right linear code
(Ân : C ) ⊆ Ân.

I So, assume the existence of an isomorphism
ψ : ε(A)→ Â of right R-modules.

I Define the dual code of a left linear code C ⊆ An

as
C⊥ = ψ−1(Ân : C ).

I Can use the same definition for an additive code
C ⊆ An.
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Interpret in terms of bi-additive form

I Use the additive form of characters:
Â = HomZ(A,Q/Z).

I Define β : A× A→ Q/Z by β(a, b) = ψ(b)(a), for
a, b ∈ A. Extend additively to An × An. Then:

I β is bi-additive.

I β(rx , y) = β(x , ε(r)y) for x , y ∈ An, r ∈ R .

I Impose one more property: there exists a unit e ∈ R
such that β(x , y) = β(ey , x) for x , y ∈ An.

Tools July 6, 2017 21 / 28



Self-duality for linear codes over modules

Properties of C⊥

I Recall C⊥ = ψ−1(Ân : C ).

I In terms of β: C⊥ = {y ∈ An : β(C , y) = 0}.
I Even if C ⊆ An is just an additive code, we have
|C | · |C⊥| = |An| and the MacWilliams identities.

I If C is a left linear code, then so is C⊥.

I If C is a left linear code, then (C⊥)⊥ = C . This
uses the β(x , y) = β(ey , x) condition.

I When C is a left linear code, we also have
C⊥ = {x ∈ An : β(x ,C ) = 0}.
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Ring alphabets

I Suppose R admits an anti-isomorphism ε.

I Let A = R . Then there exists isomorphism
ψ : ε(A)→ Â if and only if R is Frobenius.

I When a Frobenius ring R has generating character
%, then

β(x , y) =
n∑

i=1

%
(
ε−1(yi)xi

)
,

for x , y ∈ Rn.
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Example (a)

I Consider a simple finite ring R .

I A left linear code C of length 1 is a left ideal.

I Without using characters, one could consider

l(C ) = {x ∈ R : xC = 0},
r(C ) = {y ∈ R : Cy = 0}.

I If C = l(C ) or C = r(C ), C must be a two-sided
ideal. Hence, C = 0 or C = R .
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Example (b)

I Consider R = Mk×k(F2), a Frobenius ring with
involution ε equaling the matrix transpose and
generating character %(P) = Tr(P)/2, P ∈ R .

I Then β(P ,Q) = %(ε−1(Q)P) = Tr(QTP)/2.

I Thus β(P ,Q) = (1/2)
∑

i ,j QijPij ∈ Q/Z.
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Example (c)

I For k = 2, there are proper left ideals (a, b ∈ F2):

C1 =

{[
a 0
b 0

]}
,C2 =

{[
0 a
0 b

]}
,C3 =

{[
a a
b b

]}
.

I Then C⊥1 = C2, C⊥2 = C1, and C⊥3 = C3.
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Gleason’s theorem
I The Hamming weight enumerators of binary

self-dual codes (or binary doubly-even self-dual
codes) are invariant under the action of a finite
subgroup of GL(2,C), because of weight restrictions
on the codewords and the MacWilliams identities.

I Gleason (1970) proved that the Hamming weight
enumerators of two specific codes generate the ring
of all invariant polynomials under these subgroup
actions.

I Nebe, Rains, and Sloane (2006) proved a vast
generalization of Gleason’s theorem, valid over any
finite principal ideal ring.
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Questions

I Which finite rings admit anti-isomorphisms?
involutions?

I Which finite Frobenius rings do?

I For rings with ε, which left modules A admit an
isomorphism ψ : ε(A)→ Â?

I Can Gleason’s theorem be generalized beyond
principal ideal rings?
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