Character-Theoretic Tools for Studying Linear Codes over Rings and Modules

Jay A. Wood

Department of Mathematics Western Michigan University http://sites.google.com/a/wmich.edu/jaywood

Algebraic Methods in Coding Theory CIMPA School Ubatuba, Brazil July 6, 2017

4. Self-duality for linear codes over modules

- Classical examples
- Invariant polynomials
- Gleason's theorem
- "Self-dual codes and invariant theory" by Nebe, Rains and Sloane, 2006.
- Anti-isomorphisms
- Good duality from characters
- Alphabets with extra structure
- Generalization of Gleason's theorem

Classical setting

Let R = 𝔽_q and consider linear codes C ⊆ 𝔽ⁿ_q.
Equip 𝔽ⁿ_q with the standard dot product:

$$x \cdot y = \sum_{i=1}^n x_i y_i, \quad x, y \in \mathbb{F}_q^n.$$

- Could use an hermitian inner product instead.
- The dual code is $C^{\perp} = \{ y \in \mathbb{F}_q^n : C \cdot y = 0 \}.$

Self-dual codes

- A linear code is **self-orthogonal** if $C \subseteq C^{\perp}$.
- A linear code is **self-dual** if $C = C^{\perp}$.
- If dim C = k, then dim $C^{\perp} = n k$. (Analogous to " $|B| \cdot |(\widehat{A} : B)| = |A|$ ".)
- If $C \subseteq \mathbb{F}_q^n$ is self-dual, then n = 2k is even.

Binary case

- Let q = 2, the binary case.
- For $x \in \mathbb{F}_2^n$, if $x \cdot x = 0$, then wt(x) is even. (This is also true for q = 3, but not in general.)
- If C ⊆ 𝔽ⁿ₂ is self-orthogonal, then every codeword in C has even weight.
- Extra: a binary self-orthogonal code in which every codeword has weight divisible by 4 is **doubly-even** (singly-even otherwise).

A binary example

► The codes generated by *G*₂, *G*₈ are singly-even, self-dual:

$$G_2 = [1 \ 1], \quad G_8 = egin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

- hwe $_{G_2} = X^2 + Y^2$.
- hwe_{G₈} = $X^8 + 4X^6Y^2 + 6X^4Y^4 + 4X^2Y^6 + Y^8 = (X^2 + Y^2)^4$.

٠

Another binary example

• The code generated by E_8 is doubly-even, self-dual.

• hwe_{*E*₈} = $X^8 + 14X^4Y^4 + Y^8$.

And another

- Start with 1111100100101.
- Take successive shifts of this vector until there is a 1 in position 24:

And another, continued

- The code generated by G_{24} is doubly-even, self-dual.
- Called the extended Golay code.
- Dates from 1949.
- ► hwe_{*G*₂₄} = $X^{24} + 759X^{16}Y^8 + 2576X^{12}Y^{12} + 759X^8Y^{16} + Y^{24}$.
- What?! The previous line isn't red?

MacWilliams identities

• Recall that the MacWilliams identities over \mathbb{F}_q for the Hamming weight enumerator:

$$\mathsf{hwe}_{\mathcal{C}}(X,Y) = rac{1}{|\mathcal{C}^{\perp}|} \mathsf{hwe}_{\mathcal{C}^{\perp}}(X+(q-1)Y,X-Y).$$

• Over \mathbb{F}_2 :

$$\mathsf{hwe}_{\mathcal{C}}(X,Y) = \frac{1}{|\mathcal{C}^{\perp}|} \mathsf{hwe}_{\mathcal{C}^{\perp}}(X+Y,X-Y).$$

Binary self-dual case

When the code C is self-dual, C appears on both sides of the MacWilliams identities:

$$\mathsf{hwe}_{C}(X, Y) = \frac{1}{|C|} \mathsf{hwe}_{C}(X + Y, X - Y).$$

Length is n = 2k. hwe_C(X, Y) is a homogeneous polynomial of degree n, so

$$hwe_{\mathcal{C}}(X,Y) = hwe_{\mathcal{C}}\left(\frac{X+Y}{\sqrt{2}},\frac{X-Y}{\sqrt{2}}\right)$$

Invariance properties

► The group GL(2, C) acts on C[X, Y] by linear substitution:

$$f(X, Y) \begin{bmatrix} a & b \\ c & d \end{bmatrix} = f(aX + cY, bX + dY).$$

For binary self-dual C, hwe_C is invariant under

$$M = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

More invariance properties

• In addition, singly-even and doubly-even are invariant under, respectively $(i = \sqrt{-1})$:

$$W_s = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad W_d = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

- Define two subgroups of GL(2, ℂ): G_s = ⟨M, W_s⟩ and G_d = ⟨M, W_d⟩.
- For singly-even C, hwe_C $\in \mathbb{C}[X, Y]^{\mathcal{G}_s}$.
- For doubly-even *C*, hwe_{*C*} $\in \mathbb{C}[X, Y]^{\mathcal{G}_d}$.

Gleason's theorem (1970)

 The rings of invariant polynimials are generated by the Hamming weight enumerators of certain codes.

•
$$\mathbb{C}[X, Y]^{\mathcal{G}_s} = \mathbb{C}[\mathsf{hwe}_{G_2}, \mathsf{hwe}_{E_8}]$$

•
$$\mathbb{C}[X,Y]^{\mathcal{G}_d} = \mathbb{C}[\mathsf{hwe}_{E_8},\mathsf{hwe}_{G_{24}}]$$

- Corollary: doubly-even self-dual codes occur only in dimensions divisible by 8.
- There are versions when q = 3 or q = 4 (with hermitian inner product).

Setting for the rest of this lecture

- ▶ Finite ring *R*, alphabet *A*, a left *R*-module.
- A left linear code is a left *R*-submodule $C \subseteq A^n$.
- How to define self-dual codes in this context?
- We will explain the approach of "Self-dual codes and invariant theory" by Nebe, Rains and Sloane, 2006.

Anti-isomorphisms

- Let R be a finite ring with 1.
- An anti-isomorphism of R is a map ε : R → R that is an isomorphism of the additive group of R and satisfies ε(rs) = ε(s)ε(r) for all r, s ∈ R.

• An anti-isomorphism ε is an **involution** if $\varepsilon^2 = id_R$.

Examples

- Let S be a ring with anti-isomorphism ϵ .
- For any finite group G, the group ring R = S[G] has anti-isomorphism ε:

$$arepsilon(\sum_{g\in {\mathcal G}} c_g g) = \sum_{g\in {\mathcal G}} \epsilon(c_g) g^{-1}.$$

• Matrix ring $R = M_{k \times k}(S)$, using the transpose:

$$\varepsilon(P) = (\epsilon(P))^{\mathsf{T}}, P \in R.$$

Apply ϵ to each entry of P.

Swapping sides

- ► An anti-isomorphism ε on R allows one to regard left modules as right modules, and vice versa.
- If M is a left R-module, define ε(M) to be same abelian group as M, but equipped with right scalar multiplication defined by

$$xr = \varepsilon(r)x, \quad x \in M, r \in R,$$

where $\varepsilon(r)x$ is the left scalar multiplication of the module M.

Similar definition for right module to left.

Character-theoretic duality

- Recall from earlier: if C ⊆ Aⁿ is a left R-linear code, then (Âⁿ : C) ⊆ Âⁿ is a right R-linear code.
- Double annihilator: $(A^n : (\widehat{A}^n : C)) = C$.
- Size: $|C| \cdot |(\widehat{A}^n : C)| = |A^n|$.
- The MacWilliams identities hold (cwe and hwe).

Alphabets with $\widehat{A} \cong \varepsilon(A)$

- Starting with a left linear code C ⊆ Aⁿ, a good candidate for a dual code is the right linear code (Âⁿ : C) ⊆ Âⁿ.
- So, assume the existence of an isomorphism $\psi : \varepsilon(A) \to \widehat{A}$ of right *R*-modules.
- Define the **dual code** of a left linear code $C \subseteq A^n$ as

$$C^{\perp} = \psi^{-1}(\widehat{A}^n : C).$$

Can use the same definition for an additive code
 C ⊆ Aⁿ.

Interpret in terms of bi-additive form

- Use the additive form of characters:
 Â = Hom_ℤ(A, ℚ/ℤ).
- Define β : A × A → Q/Z by β(a, b) = ψ(b)(a), for a, b ∈ A. Extend additively to Aⁿ × Aⁿ. Then:
- β is bi-additive.
- $\beta(rx, y) = \beta(x, \varepsilon(r)y)$ for $x, y \in A^n$, $r \in R$.
- Impose one more property: there exists a unit e ∈ R such that β(x, y) = β(ey, x) for x, y ∈ Aⁿ.

Properties of C^{\perp}

• Recall
$$C^{\perp} = \psi^{-1}(\widehat{A}^n : C).$$

- In terms of β : $C^{\perp} = \{y \in A^n : \beta(C, y) = 0\}.$
- Even if $C \subseteq A^n$ is just an additive code, we have $|C| \cdot |C^{\perp}| = |A^n|$ and the MacWilliams identities.
- If C is a left linear code, then so is C^{\perp} .
- If C is a left linear code, then (C[⊥])[⊥] = C. This uses the β(x, y) = β(ey, x) condition.
- When C is a left linear code, we also have $C^{\perp} = \{x \in A^n : \beta(x, C) = 0\}.$

Ring alphabets

- Suppose R admits an anti-isomorphism ε .
- Let A = R. Then there exists isomorphism $\psi : \varepsilon(A) \to \widehat{A}$ if and only if R is Frobenius.
- When a Frobenius ring R has generating character *Q*, then

$$\beta(\mathbf{x},\mathbf{y}) = \sum_{i=1}^{n} \varrho\left(\varepsilon^{-1}(\mathbf{y}_i)\mathbf{x}_i\right),$$

for $x, y \in R^n$.

Example (a)

- Consider a simple finite ring *R*.
- ► A left linear code *C* of length 1 is a left ideal.
- Without using characters, one could consider

$$I(C) = \{x \in R : xC = 0\},\$$

$$r(C) = \{y \in R : Cy = 0\}.$$

If C = I(C) or C = r(C), C must be a two-sided ideal. Hence, C = 0 or C = R.

Example (b)

- Consider R = M_{k×k}(𝔽₂), a Frobenius ring with involution ε equaling the matrix transpose and generating character ρ(P) = Tr(P)/2, P ∈ R.
- Then $\beta(P,Q) = \varrho(\varepsilon^{-1}(Q)P) = \operatorname{Tr}(Q^{\mathsf{T}}P)/2.$
- Thus $\beta(P,Q) = (1/2) \sum_{i,j} Q_{ij} P_{ij} \in \mathbb{Q}/\mathbb{Z}$.

Example (c)

For k = 2, there are proper left ideals (a, b ∈ 𝔽₂):
C₁ = { [a 0 | b 0] }, C₂ = { [0 a | 0 b] }, C₃ = { [a a | b b] }.
Then C₁[⊥] = C₂, C₂[⊥] = C₁, and C₃[⊥] = C₃.

Gleason's theorem

- ► The Hamming weight enumerators of binary self-dual codes (or binary doubly-even self-dual codes) are invariant under the action of a finite subgroup of *GL*(2, C), because of weight restrictions on the codewords and the MacWilliams identities.
- Gleason (1970) proved that the Hamming weight enumerators of two specific codes generate the ring of all invariant polynomials under these subgroup actions.
- Nebe, Rains, and Sloane (2006) proved a vast generalization of Gleason's theorem, valid over any finite principal ideal ring.

Questions

- Which finite rings admit anti-isomorphisms? involutions?
- Which finite Frobenius rings do?
- For rings with ε, which left modules A admit an isomorphism ψ : ε(A) → Â?
- Can Gleason's theorem be generalized beyond principal ideal rings?