Character-Theoretic Tools for Studying Linear Codes over Rings and Modules

Jay A. Wood

Department of Mathematics Western Michigan University http://sites.google.com/a/wmich.edu/jaywood

Algebraic Methods in Coding Theory CIMPA School Ubatuba, Brazil July 5, 2017

3. Duality for linear codes

- Linear codes
- Character modules
- Generating characters
- Frobenius rings
- Making identifications

Summary from last time

- For an additive code C ⊆ Aⁿ, the annihilator (Âⁿ : C) satisfied some good duality properties.
 (Âⁿ : C) ⊆ Âⁿ is an additive code over Â.
- Double annihilator: $(A^n : (\widehat{A}^n : C)) = C$.
- Size: $|C| \cdot |(\widehat{A}^n : C)| = |A^n|$.
- The MacWilliams identities.

Character modules

- Let R be a finite ring with 1 and A be a finite unital left R-module. (Unital: 1a = a, all a ∈ A.)
- All of yesterday's discussion of characters, etc., applies to the additive group of A.
- Extra information: the left *R*-module structure on *A* induces a right *R*-module structure on Â.
- For $r \in R$ and $\varpi \in \widehat{A}$, define $\varpi r \in \widehat{A}$ by $(\varpi r)(a) = \varpi(ra), a \in A; (\pi^r)(a) = \pi(ra).$
- If A is a right module, then \widehat{A} is a left module: $(r\varpi)(a) = \varpi(ar); (r\pi)(a) = \pi(ar).$

Annihilators are submodules

- Suppose $B \subseteq A$ is a left *R*-submodule.
- Then the annihilator (Â : B) ⊆ Â is a right R-submodule.
- If $\varrho \in (\widehat{A} : B)$ and $r \in R$, then

$$(\varrho r)(B) = \varrho(rB) \subseteq \varrho(B) = 0,$$

because B is a left submodule.

Linear codes over modules

- A left **linear code** of length *n* over *A* is a left *R*-submodule $C \subseteq A^n$.
- Similarly, right linear codes are right submodules of a right module alphabet.
- ▶ For a left linear code $C \subseteq A^n$, then $(\widehat{A}^n : C)$ is a right linear code over \widehat{A} .
- The duality properties and the MacWilliams identities have exactly the same form.

Good duality properties

- For a left linear code $C \subseteq A^n$:
- $(\widehat{A}^n : C) \subseteq \widehat{A}^n$ is a right linear code.
- Double annihilator: $(A^n : (\widehat{A}^n : C)) = C$.
- Size: $|C| \cdot |(\widehat{A}^n : C)| = |A^n|$.
- The MacWilliams identities.

How does this relate to classical dual codes?

- In classical coding theory, the dual code is the annihilator with respect to a dot product.
- Can we do that here?
- ▶ For the rest of today, we will (mostly) work in the ring alphabet case. That is, let A = R.
- A different approach will be discussed tomorrow.

Making identifications

- As above, a left linear code $C \subseteq R^n$ has annihilator $(\widehat{R}^n : C) \subseteq \widehat{R}^n$.
- We will aim to identify R and \widehat{R} as modules.
- It will be enough to have $\widehat{R} \cong R$ as one-sided *R*-modules.

Generating characters

- When is $\widehat{R} \cong R$ as one-sided modules?
- Suppose ψ : R → R is an isomorphism of right R-modules.
- Then $\varrho = \psi(1)$ generates \widehat{R} as a right *R*-module.
- Indeed, any $\varpi \in \widehat{R}$ has the form $\varpi = \psi(r) = \psi(1r) = \psi(1)r = \varrho r$.
- Call any generator *Q* a right generating character of *R*.

Characterizing generating characters

Theorem

A character $\varrho \in \widehat{R}$ is a right generating character if and only if ker ϱ contains no nonzero right ideal of R.

- Define $\psi : R \to \widehat{R}$ by $\psi(r) = \varrho r$. When is ψ an isomorphism? (Injective is enough, as $|R| = |\widehat{R}|$.)
- ► $\psi(r) = 0$ iff $(\varrho r)(R) = 0$ iff $\varrho(rR) = 0$ iff $rR \subseteq \ker \varrho$.
- Similar result for left generating characters.

Left/right symmetry

Theorem

A character $\varrho \in \widehat{R}$ is a left generating character if and only if ϱ is a right generating character.

- Left implies right: Suppose $rR \subseteq \ker \varrho$. Then $\varrho(rs) = 0$ for all $s \in R$.
- Then $(s\varrho)(r) = 0$ for all $s \in R$. I.e., $\varpi(r) = 0$ for all $\varpi \in \widehat{R}$, as ϱ left generates.

• Thus r = 0. (Uses " $|B| \cdot |(\widehat{A} : B)| = |\widehat{A}|$ ", $B = \mathbb{Z}r$.)

A generalization for modules

- ► *R* finite ring with 1; *A* finite unital left *R*-module.
- An *R*-module is cyclic if it is generated by one element. Say *M* is generated by *m* ∈ *M*. Then *R* → *M*, *r* → *rm*, is onto.

Theorem

The following are equivalent:

- 1. \widehat{A} is a cyclic right R-module.
- 2. A injects into \widehat{R} : $A \hookrightarrow \widehat{R}$.
- 3. There exists $\varrho \in \widehat{A}$ such that ker ϱ contains no nonzero left *R*-submodule.

Proof

- ▶ 1 ↔ 2. Contravariant exact functor: $0 \to A \to \widehat{R}$ dualizes to $R \to \widehat{A} \to 0$, and vice versa.
- Fix $\rho \in \widehat{A}$. Define $A \to \widehat{R}$ by $a \mapsto (r \mapsto \rho(ra))$.
- 2 ↔ 3: a ∈ A is in the kernel of the map above iff *ρ*(*Ra*) = 0 iff *Ra* ⊆ ker *ρ*.
- ► Call such a *Q* a **generating character** for *A*.

Other structures in modules

- We want to connect the existence of generating characters to other structures in modules.
- A nonzero left *R*-module *S* is simple if *S* has no nonzero proper *R*-submodules.
- The socle Soc(A) of a left R-module A is the submodule generated by (i.e., the sum of) all the simple submodules of A.

Jacobson radical

- ► *R* finite ring with 1.
- The Jacobson radical Rad(R) is the intersection of all maximal left ideals of R.
- $\operatorname{Rad}(R)$ is a two-sided ideal.
- $R/\operatorname{Rad}(R)$ is a semi-simple ring, and

$$R/\operatorname{\mathsf{Rad}}(R)\cong igoplus_{i=1}^t M_{k_i imes k_i}(\mathbb{F}_{q_i}).$$

Artin-Wedderburn decomposition.

More on simple modules

- If S is simple, and $0 \neq s \in S$, then S = Rs.
- The annihilator ann(s) = {r ∈ R : rs = 0} is a maximal left ideal of R; S ≅ R/ann(s).
- $\operatorname{Rad}(R)$ annihilates simple modules: $\operatorname{Rad}(R)S = 0$.
- Every simple module is a module over R/Rad(R).
- Soc(A) is a module over $R/\operatorname{Rad}(R)$.
- Same idea for right modules; reverse sides.

Top-bottom duality

- ► *R* finite ring with 1; *A* finite left *R*-module.
- A/Rad(R)A is the "top quotient" of A; it is a sum of simple modules.
- $\operatorname{Soc}(\widehat{A}) = (\widehat{A} : \operatorname{Rad}(R)A) \cong (A/\operatorname{Rad}(R)A)^{\widehat{}}.$
- ▶ \supseteq : $(A/\operatorname{Rad}(R)A)^{\frown}$ is a sum of simple modules.
- \subseteq : because $Soc(\widehat{A}) Rad(R) = 0$.

Additional characterization for rings

Theorem

For a finite ring R, the following are equivalent.

- 1. $\widehat{R} \cong R$ as left *R*-modules.
- 2. $\widehat{R} \cong R$ as right *R*-modules.
- 3. $Soc(R) \cong R / Rad(R)$ as left and as right *R*-modules. (Soc(*R*) is cyclic.)
 - Such a ring *R* is called a **Frobenius** ring.

Sketch of proof

- We already know $1 \leftrightarrow 2$.
- Fact: if $R = M_{k \times k}(\mathbb{F}_q)$, then $\widehat{R} \cong R$.
- Then general $(R/\operatorname{Rad}(R))^{\widehat{}} \cong R/\operatorname{Rad}(R)$.
- So $\operatorname{Soc}(\widehat{R}) \cong (R/\operatorname{Rad}(R))^{\widehat{}} \cong R/\operatorname{Rad}(R).$
- ▶ 1,2 ⇒ 3: If $\widehat{R} \cong R$, then Soc(R) \cong Soc(\widehat{R}) \cong R/Rad(R).

Construction

- $M_{k \times k}(\mathbb{F}_q)$ has a generating character: $\varrho(P) = \vartheta_q(\operatorname{Tr} P), P \in M_{k \times k}(\mathbb{F}_q).$
- ▶ Tr P is the matrix trace of P.
- If $q = p^e$ and $x \in \mathbb{F}_q$, then

$$\vartheta_q(x) = (x + x^p + \cdots x^{p^{e-1}})/p \in \mathbb{Q}/\mathbb{Z}.$$

• ϑ_q is a generating character of \mathbb{F}_q .

Construction, continued

- ► The sum of the *ρ*'s is a generating character of general *R*/Rad(*R*).
- 3 ⇒ 1,2: Soc(R) ≅ R/Rad(R) has a generating character (still call it ρ).

•
$$\widehat{R} \to \operatorname{Soc}(R)^{\widehat{}} \to 0$$
 is onto.

• Any lift of ρ is a generating character of R.

Why does ϱ generate?

- Suppose $B \subseteq \ker \varrho$ is a left ideal of R.
- Then $Soc(B) = B \cap Soc(R) \subseteq \ker \varrho \cap Soc(R)$.
- But *ρ* is a generating character of Soc(*R*), so Soc(*B*) = 0.
- Thus B = 0; ϱ is a left generating character of R.

Similar characterization for modules

Theorem

The following are equivalent:

- 1. \widehat{A} is a cyclic right R-module.
- 2. A injects into \widehat{R} : $A \hookrightarrow \widehat{R}$.
- 3. There exists $\varrho \in \widehat{A}$ such that ker ϱ contains no nonzero left *R*-submodule.
- 4. Soc(A) \subseteq A is a cyclic R-submodule.

More identifications

- R finite Frobenius ring with generating character ρ .
- Dot product on R^n : $y \cdot x = \sum_{i=1}^n y_i x_i$.
- Define $\psi: \mathbb{R}^n \to \widehat{\mathbb{R}}^n$, $x \mapsto \psi_x$:

$$\psi_x(y) = \varrho(y \cdot x), \quad y \in R^n.$$

• Then ψ is an isomorphism of left *R*-modules.

•
$$\psi_{rx}(y) = \varrho(y \cdot rx) = \varrho(yr \cdot x) = \psi_x(yr) = (r\psi_x)(y).$$

Character annihilator vs. dot product

• Recall:
$$\psi_x(y) = \varrho(y \cdot x), \quad y \in R^n.$$

- Additive subgroup $C \subseteq R^n$. Under ψ , $(\widehat{R}^n : C)$ corresponds to $r_{\varrho}(C) = \{x \in R^n : \varrho(C \cdot x) = 0\}$.
- Set $r(C) = \{x \in R^n : C \cdot x = 0\}.$
- $r(C) \subseteq r_{\varrho}(C)$ in general
- $r(C) = r(RC) = r_{\varrho}(RC) \subseteq r_{\varrho}(C)$ in general.
- r(C) = r_ℓ(C) when C is a left submodule, as C · x is a left ideal in ker ℓ.

MacWilliams identities: complete weight enumerator

For a left linear code $C \subseteq R^n$, R Frobenius:

$$\operatorname{cwe}_{C}(Z) = \frac{1}{|r(C)|} \operatorname{cwe}_{r(C)}(\sum_{b \in A} \psi_{a}(b)Z_{b})$$
$$= \frac{1}{|r(C)|} \operatorname{cwe}_{r(C)}(\sum_{b \in A} \rho(ba)Z_{b}).$$

(Need multiplicative form ρ of ρ .)

MacWilliams identities: Hamming weight enumerator

For a left linear code $C \subseteq R^n$, R Frobenius:

hwe_C(X, Y) =
$$\frac{1}{|r(C)|}$$
 hwe_{r(C)}(X + (|R| - 1)Y, X - Y).