Character－Theoretic Tools for Studying Linear Codes over Rings and Modules

Jay A．Wood

Department of Mathematics
Western Michigan University
http：／／sites．google．com／a／wmich．edu／jaywood

Algebraic Methods in Coding Theory
CIMPA School
Ubatuba，Brazil
July 5， 2017

3. Duality for linear codes

- Linear codes
- Character modules
- Generating characters
- Frobenius rings
- Making identifications

Summary from last time

- For an additive code $C \subseteq A^{n}$, the annihilator
($\widehat{A}^{n}: C$) satisfied some good duality properties.
- $\left(\widehat{A}^{n}: C\right) \subseteq \widehat{A}^{n}$ is an additive code over \widehat{A}.
- Double annihilator: $\left(A^{n}:\left(\widehat{A}^{n}: C\right)\right)=C$.
- Size: $|C| \cdot\left|\left(\widehat{A^{n}}: C\right)\right|=\left|A^{n}\right|$.
- The MacWilliams identities.

Character modules

- Let R be a finite ring with 1 and A be a finite unital left R-module. (Unital: $1 a=a$, all $a \in A$.)
- All of yesterday's discussion of characters, etc., applies to the additive group of A.
- Extra information: the left R-module structure on A induces a right R-module structure on \widehat{A}.
- For $r \in R$ and $\varpi \in \widehat{A}$, define $\varpi r \in \widehat{A}$ by

$$
(\varpi r)(a)=\varpi(r a), a \in A ;\left(\pi^{r}\right)(a)=\pi(r a) .
$$

- If A is a right module, then \widehat{A} is a left module: $(r \varpi)(a)=\varpi(a r) ;\left({ }^{r} \pi\right)(a)=\pi(a r)$.

Annihilators are submodules

- Suppose $B \subseteq A$ is a left R-submodule.
- Then the annihilator $(\widehat{A}: B) \subseteq \widehat{A}$ is a right R-submodule.
- If $\varrho \in(\widehat{A}: B)$ and $r \in R$, then

$$
(\varrho r)(B)=\varrho(r B) \subseteq \varrho(B)=0
$$

because B is a left submodule.

Linear codes over modules

- A left linear code of length n over A is a left R-submodule $C \subseteq A^{n}$.
- Similarly, right linear codes are right submodules of a right module alphabet.
- For a left linear code $C \subseteq A^{n}$, then $\left(\widehat{A}^{n}: C\right)$ is a right linear code over \widehat{A}.
- The duality properties and the MacWilliams identities have exactly the same form.

Good duality properties

- For a left linear code $C \subseteq A^{n}$:
- $\left(\widehat{A}^{n}: C\right) \subseteq \widehat{A}^{n}$ is a right linear code.
- Double annihilator: $\left(A^{n}:\left(\widehat{A}^{n}: C\right)\right)=C$.
- Size: $|C| \cdot\left|\left(\widehat{A}^{n}: C\right)\right|=\left|A^{n}\right|$.
- The MacWilliams identities.

How does this relate to classical dual codes?

- In classical coding theory, the dual code is the annihilator with respect to a dot product.
- Can we do that here?
- For the rest of today, we will (mostly) work in the ring alphabet case. That is, let $A=R$.
- A different approach will be discussed tomorrow.

Making identifications

- As above, a left linear code $C \subseteq R^{n}$ has annihilator $\left(\widehat{R}^{n}: C\right) \subseteq \widehat{R}^{n}$.
- We will aim to identify R and \widehat{R} as modules.
- It will be enough to have $\widehat{R} \cong R$ as one-sided R-modules.

Generating characters

- When is $\widehat{R} \cong R$ as one-sided modules?
- Suppose $\psi: R \rightarrow \widehat{R}$ is an isomorphism of right R-modules.
- Then $\varrho=\psi(1)$ generates \widehat{R} as a right R-module.
- Indeed, any $\varpi \in \widehat{R}$ has the form $\varpi=\psi(r)=\psi(1 r)=\psi(1) r=\varrho r$.
- Call any generator ϱ a right generating character of R.

Characterizing generating characters

Theorem
A character $\varrho \in \widehat{R}$ is a right generating character if and only if ker ϱ contains no nonzero right ideal of R.

- Define $\psi: R \rightarrow \widehat{R}$ by $\psi(r)=\varrho r$. When is ψ an isomorphism? (Injective is enough, as $|R|=|\widehat{R}|$.)
- $\psi(r)=0$ iff $(\varrho r)(R)=0$ iff $\varrho(r R)=0$ iff $r R \subseteq \operatorname{ker} \varrho$.
- Similar result for left generating characters.

Left/right symmetry

Theorem
A character $\varrho \in \widehat{R}$ is a left generating character if and only if ϱ is a right generating character.

- Left implies right: Suppose $r R \subseteq$ ker ϱ. Then $\varrho(r s)=0$ for all $s \in R$.
- Then $(s \varrho)(r)=0$ for all $s \in R$. I.e., $\varpi(r)=0$ for all $\varpi \in \widehat{R}$, as ϱ left generates.
- Thus $r=0$. (Uses " $|B| \cdot|(\widehat{A}: B)|=|\widehat{A}|$ ", $B=\mathbb{Z} r$.)

A generalization for modules

- R finite ring with 1 ; A finite unital left R-module.
- An R-module is cyclic if it is generated by one element. Say M is generated by $m \in M$. Then $R \rightarrow M, r \mapsto r m$, is onto.

Theorem
The following are equivalent:

1. \widehat{A} is a cyclic right R-module.
2. A injects into $\widehat{R}: A \hookrightarrow \widehat{R}$.
3. There exists $\varrho \in \widehat{A}$ such that ker ϱ contains no nonzero left R-submodule.

Proof

- $1 \leftrightarrow 2$. Contravariant exact functor: $0 \rightarrow A \rightarrow \widehat{R}$ dualizes to $R \rightarrow \widehat{A} \rightarrow 0$, and vice versa.
- Fix $\varrho \in \widehat{A}$. Define $A \rightarrow \widehat{R}$ by $a \mapsto(r \mapsto \varrho(r a))$.
- $2 \leftrightarrow 3: a \in A$ is in the kernel of the map above iff $\varrho(R a)=0$ iff $R a \subseteq \operatorname{ker} \varrho$.
- Call such a ϱ a generating character for A.

Other structures in modules

- We want to connect the existence of generating characters to other structures in modules.
- A nonzero left R-module S is simple if S has no nonzero proper R-submodules.
- The socle $\operatorname{Soc}(A)$ of a left R-module A is the submodule generated by (i.e., the sum of) all the simple submodules of A.

Jacobson radical

- R finite ring with 1 .
- The Jacobson radical $\operatorname{Rad}(R)$ is the intersection of all maximal left ideals of R.
- $\operatorname{Rad}(R)$ is a two-sided ideal.
- $R / \operatorname{Rad}(R)$ is a semi-simple ring, and

$$
R / \operatorname{Rad}(R) \cong \bigoplus_{i=1}^{t} M_{k_{i} \times k_{i}}\left(\mathbb{F}_{q_{i}}\right)
$$

- Artin-Wedderburn decomposition.

More on simple modules

- If S is simple, and $0 \neq s \in S$, then $S=R s$.
- The annihilator ann $(s)=\{r \in R: r s=0\}$ is a maximal left ideal of R; $S \cong R /$ ann (s).
- $\operatorname{Rad}(R)$ annihilates simple modules: $\operatorname{Rad}(R) S=0$.
- Every simple module is a module over $R / \operatorname{Rad}(R)$.
- $\operatorname{Soc}(A)$ is a module over $R / \operatorname{Rad}(R)$.
- Same idea for right modules; reverse sides.

Top-bottom duality

- R finite ring with $1 ; A$ finite left R-module.
- $A / \operatorname{Rad}(R) A$ is the "top quotient" of A; it is a sum of simple modules.
- $\operatorname{Soc}(\widehat{A})=(\widehat{A}: \operatorname{Rad}(R) A) \cong(A / \operatorname{Rad}(R) A)^{\widehat{ } \text {. }}$
- $\supseteq:(A / \operatorname{Rad}(R) A)$ is a sum of simple modules.
- \subseteq : because $\operatorname{Soc}(\widehat{A}) \operatorname{Rad}(R)=0$.

Additional characterization for rings

Theorem
For a finite ring R, the following are equivalent.

1. $\widehat{R} \cong R$ as left R-modules.
2. $\widehat{R} \cong R$ as right R-modules.
3. $\operatorname{Soc}(R) \cong R / \operatorname{Rad}(R)$ as left and as right R-modules. ($\operatorname{Soc}(R)$ is cyclic.)

- Such a ring R is called a Frobenius ring.

Sketch of proof

- We already know $1 \leftrightarrow 2$.
- Fact: if $R=M_{k \times k}\left(\mathbb{F}_{q}\right)$, then $\widehat{R} \cong R$.
- Then general $(R / \operatorname{Rad}(R))^{\wedge} \cong R / \operatorname{Rad}(R)$.
- So $\operatorname{Soc}(\widehat{R}) \cong(R / \operatorname{Rad}(R))^{\bumpeq} \cong R / \operatorname{Rad}(R)$.
- $1,2 \Rightarrow 3$: If $\widehat{R} \cong R$, then
$\operatorname{Soc}(R) \cong \operatorname{Soc}(\widehat{R}) \cong R / \operatorname{Rad}(R)$.

Construction

- $M_{k \times k}\left(\mathbb{F}_{q}\right)$ has a generating character:
$\varrho(P)=\vartheta_{q}(\operatorname{Tr} P), P \in M_{k \times k}\left(\mathbb{F}_{q}\right)$.
- $\operatorname{Tr} P$ is the matrix trace of P.
- If $q=p^{e}$ and $x \in \mathbb{F}_{q}$, then

$$
\vartheta_{q}(x)=\left(x+x^{p}+\cdots x^{p^{e-1}}\right) / p \in \mathbb{Q} / \mathbb{Z}
$$

- ϑ_{q} is a generating character of \mathbb{F}_{q}.

Construction, continued

- The sum of the ϱ 's is a generating character of general $R / \operatorname{Rad}(R)$.
- $3 \Rightarrow 1,2$: $\operatorname{Soc}(R) \cong R / \operatorname{Rad}(R)$ has a generating character (still call it ϱ).
- $\widehat{R} \rightarrow \operatorname{Soc}(R)^{\widehat{ }} \rightarrow 0$ is onto.
- Any lift of ϱ is a generating character of R.

Why does ϱ generate?

- Suppose $B \subseteq \operatorname{ker} \varrho$ is a left ideal of R.
- Then $\operatorname{Soc}(B)=B \cap \operatorname{Soc}(R) \subseteq \operatorname{ker} \varrho \cap \operatorname{Soc}(R)$.
- But ϱ is a generating character of $\operatorname{Soc}(R)$, so $\operatorname{Soc}(B)=0$.
- Thus $B=0 ; \varrho$ is a left generating character of R.

Similar characterization for modules

Theorem
The following are equivalent:

1. \widehat{A} is a cyclic right R-module.
2. A injects into $\widehat{R}: A \hookrightarrow \widehat{R}$.
3. There exists $\varrho \in \widehat{A}$ such that ker ϱ contains no nonzero left R-submodule.
4. $\operatorname{Soc}(A) \subseteq A$ is a cyclic R-submodule.

More identifications

- R finite Frobenius ring with generating character ϱ.
- Dot product on $R^{n}: y \cdot x=\sum_{i=1}^{n} y_{i} x_{i}$.
- Define $\psi: R^{n} \rightarrow \widehat{R}^{n}, x \mapsto \psi_{x}$:

$$
\psi_{x}(y)=\varrho(y \cdot x), \quad y \in R^{n} .
$$

- Then ψ is an isomorphism of left R-modules.
- $\psi_{r x}(y)=\varrho(y \cdot r x)=\varrho(y r \cdot x)=\psi_{x}(y r)=\left(r \psi_{x}\right)(y)$.

Character annihilator vs. dot product

- Recall: $\psi_{x}(y)=\varrho(y \cdot x), \quad y \in R^{n}$.
- Additive subgroup $C \subseteq R^{n}$. Under $\psi,\left(\widehat{R}^{n}: C\right)$ corresponds to $r_{\varrho}(C)=\left\{x \in R^{n}: \varrho(C \cdot x)=0\right\}$.
- Set $r(C)=\left\{x \in R^{n}: C \cdot x=0\right\}$.
- $r(C) \subseteq r_{\varrho}(C)$ in general
- $r(C)=r(R C)=r_{\varrho}(R C) \subseteq r_{\varrho}(C)$ in general.
- $r(C)=r_{\varrho}(C)$ when C is a left submodule, as $C \cdot x$ is a left ideal in $\operatorname{ker} \varrho$.

MacWilliams identities: complete weight enumerator

For a left linear code $C \subseteq R^{n}, R$ Frobenius:

$$
\begin{aligned}
\operatorname{cwe}_{C}(Z) & =\frac{1}{|r(C)|} \operatorname{cwe}_{r(C)}\left(\sum_{b \in A} \psi_{a}(b) Z_{b}\right) \\
& =\frac{1}{|r(C)|} \operatorname{cwe}_{r(C)}\left(\sum_{b \in A} \rho(b a) Z_{b}\right)
\end{aligned}
$$

(Need multiplicative form ρ of ϱ.)

MacWilliams identities: Hamming weight enumerator

For a left linear code $C \subseteq R^{n}, R$ Frobenius:
hwe $_{C}(X, Y)=\frac{1}{|r(C)|}$ hwe $_{r(C)}(X+(|R|-1) Y, X-Y)$.

