Character－Theoretic Tools for Studying Linear Codes over Rings and Modules

Jay A．Wood

Department of Mathematics
Western Michigan University
http：／／sites．google．com／a／wmich．edu／jaywood

Algebraic Methods in Coding Theory
CIMPA School
Ubatuba，Brazil
July 4， 2017

2. Additive Codes and Characters

- Definitions
- Properties
- Fourier transform
- MacWilliams identities
- Exercises throughout

Additive codes

- Let A be a finite abelian group (additive notation); A will be a module later.
- An additive code of length n over A is an additive subgroup $C \subseteq A^{n}$.
- The Hamming weight on A, wt : $A \rightarrow \mathbb{C}$, is

$$
w t(a)= \begin{cases}0, & a=0 \\ 1, & a \neq 0\end{cases}
$$

- Extend to A^{n} by $w t\left(a_{1}, \ldots, a_{n}\right)=\sum w t\left(a_{i}\right)$.

Hamming weight enumerator

- For an additive code $C \subseteq A^{n}$, define the Hamming weight enumerator of C by

$$
\operatorname{hwe}_{C}(X, Y)=\sum_{x \in C} X^{n-w t(x)} Y^{\mathrm{wt}(x)}
$$

- $\operatorname{hwe}_{C}(X, Y)=\sum_{i=0}^{n} A_{i} X^{n-i} Y^{i}$, where A_{i} is the number of codewords in C of Hamming weight i.

How to form a dual code?

- We would like to form a dual code, but there is no dot product immediately available.
- Form a dual code abstractly!

Characters

- A character of A is a group homomorphism

$$
\pi: A \rightarrow \mathbb{C}^{\times}
$$

where \mathbb{C}^{\times}is the multiplicative group of nonzero complex numbers: $\pi(a+b)=\pi(a) \pi(b), a, b \in A$.

- *Representation theory: π is the character of a 1-dimensional complex representation of A. Because A is abelian, every irreducible complex representation of A is 1 -dimensional.*

Character group

- The set \widehat{A} of all characters of A is a multiplicative abelian group under pointwise multiplication.

$$
(\pi \psi)(a)=\pi(a) \psi(a), \quad a \in A, \quad \pi, \psi \in \widehat{A} .
$$

- Exercise: every character of $\mathbb{Z} / k \mathbb{Z}$ has the form $\rho_{b}(a)=\exp (2 \pi i a b / k), a \in \mathbb{Z} / k \mathbb{Z}$, for some $b \in \mathbb{Z} / k \mathbb{Z}$. [What is $\rho(1)$?]
- Thus, $(\mathbb{Z} / k \mathbb{Z})^{\wedge} \cong \mathbb{Z} / k \mathbb{Z}$, via $\rho_{b} \longleftrightarrow b$.

Additive form of character group

- Original, multiplicative form: $\widehat{A}=\operatorname{Hom}_{\mathbb{Z}}\left(A, \mathbb{C}^{\times}\right)$.
- Additive version: $\widehat{A} \cong \operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Q} / \mathbb{Z})$.
- $\varrho \in \operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Q} / \mathbb{Z})$ corresponds to
$\rho \in \operatorname{Hom}_{\mathbb{Z}}\left(A, \mathbb{C}^{\times}\right)$by $\rho(a)=\exp (2 \pi i \varrho(a))$.
- $\rho(a+b)=\rho(a) \rho(b)$, while $\varrho(a+b)=\varrho(a)+\varrho(b)$.

Duality functor

- Pontryagin duality: $A \mapsto \widehat{A}$
- Exact contravariant functor:

$$
0 \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow 0
$$

induces

$$
0 \rightarrow \widehat{A}_{3} \rightarrow \widehat{A}_{2} \rightarrow \widehat{A}_{1} \rightarrow 0
$$

- $\widehat{A} \cong A$, but not naturally. (*Uses fundamental theorem of finitely generated abelian groups.*)
- $\widehat{\widehat{A}} \cong A$, naturally: $a \mapsto(\pi \mapsto \pi(a))$.
- $(A \times B)^{\wedge} \cong \widehat{A} \times \widehat{B}$.

Annihilators

- Let $B \subseteq A$ be any subgroup.
- Define the annihilator $(\widehat{A}: B)$:
$(\widehat{A}: B)=\{\rho \in \widehat{A}: \rho(B)=1\}=\{\varrho \in \widehat{A}: \varrho(B)=0\}$.
- $(\widehat{A}: B) \cong(A / B)$.
- $|B| \cdot|(\widehat{A}: B)|=|A|$.
- Double annihilator: $(A:(\widehat{A}: B))=B$.

Application to additive codes

- Let A be a finite abelian group, and let $C \subseteq A^{n}$ be an additive code.
- View $C \subseteq A^{n}$ as an example of " $B \subseteq A^{\prime}$ ".
- The dual code of $C \subseteq A^{n}$ is the annihilator $\left(\widehat{A}^{n}: C\right) \subseteq \widehat{A}^{n}$.

Good duality properties

- Given an additive code $C \subseteq A^{n}$.
- Dual $\left(\widehat{A}^{n}: C\right) \subseteq \widehat{A}^{n}$ is an additive code over \widehat{A}.
- Double annihilator: $\left(A^{n}:\left(\widehat{A}^{n}: C\right)\right)=C$.
- Size: $|C| \cdot\left|\left(\widehat{A^{n}}: C\right)\right|=\left|A^{n}\right|$.
- The MacWilliams identities. (Coming next.)

Two weight enumerators

- The Hamming weight enumerator of C is

$$
\operatorname{hwe}_{C}(X, Y)=\sum_{x \in C} X^{n-w t(x)} Y^{\mathrm{wt}(x)}
$$

- The complete weight enumerator of C is a homogeneous polynomial in $\mathbb{C}\left[Z_{a}: a \in A\right]$:

$$
\operatorname{cwe}_{C}\left(\left(Z_{a}\right)\right)=\sum_{x \in C} \prod_{i=1}^{n} Z_{x_{i}} .
$$

MacWilliams Identities

- The MacWilliams identities express the Hamming or complete weight enumerators of C in terms of those of its dual code ($A^{n}: C$).
- The expression involves a linear change of variables.
- The Hamming case, with $C^{\perp}=\left(\widehat{A}^{n}: C\right)$:
$\operatorname{hwe}_{C}(X, Y)=\frac{1}{\left|C^{\perp}\right|} \operatorname{hwe}_{C^{\perp}}(X+(|A|-1) Y, X-Y)$.
- Proof involves the Fourier transform.

Summation formulas

- Need multiplicative form of characters.
- For $\pi \in \widehat{A}$,

$$
\sum_{a \in A} \pi(a)= \begin{cases}|A|, & \pi=1 \\ 0, & \pi \neq 1\end{cases}
$$

- For $a \in A$,

$$
\sum_{\pi \in \widehat{A}} \pi(a)= \begin{cases}|A|, & a=0 \\ 0, & a \neq 0\end{cases}
$$

Fourier transform

- Given a function $f: A \rightarrow V, V$ a complex vector space. Define its Fourier transform $\hat{f}: \widehat{A} \rightarrow V$ by

$$
\begin{gathered}
\hat{f}(\pi)=\sum_{a \in A} \pi(a) f(a), \quad \pi \in \widehat{A} . \\
\widehat{\imath}: F(A, V) \rightarrow F(\widehat{A}, V)
\end{gathered}
$$

- Invert:

$$
f(a)=\frac{1}{|A|} \sum_{\pi \in \widehat{A}} \pi(-a) \hat{f}(\pi), \quad a \in A
$$

Poisson summation formula

Let B be any subgroup of A, and let $f: A \rightarrow V$. Then for any $a \in A$,

$$
\sum_{b \in B} f(a+b)=\frac{1}{|(\widehat{A}: B)|} \sum_{\pi \in(\hat{A}: B)} \pi(-a) \hat{f}(\pi)
$$

If $a=0$, then

$$
\sum_{b \in B} f(b)=\frac{1}{|(\widehat{A}: B)|} \sum_{\pi \in(\widehat{A}: B)} \hat{f}(\pi)
$$

A Fourier transform example

- Suppose V is a complex algebra.
- Suppose $f: A^{n} \rightarrow V$ has the form

$$
f\left(a_{1}, \ldots, a_{n}\right)=\prod_{i=1}^{n} f_{i}\left(a_{i}\right),
$$

where $f_{i}: A \rightarrow V$.

- Then

$$
\hat{f}\left(\pi_{1}, \ldots, \pi_{n}\right)=\prod_{i=1}^{n} \hat{f}_{i}\left(\pi_{i}\right) .
$$

Complete weight enumerator

- $V=\mathbb{C}\left[Z_{a}: a \in A\right]$, a complex algebra.
- $f: A^{n} \rightarrow V$,

$$
f\left(a_{1}, \ldots, a_{n}\right)=\prod_{i=1}^{n} Z_{a_{i}}
$$

- Then

$$
\hat{f}\left(\pi_{1}, \ldots, \pi_{n}\right)=\prod_{i=1}^{n}\left(\sum_{a_{i} \in A} \pi_{i}\left(a_{i}\right) Z_{a_{i}}\right)
$$

MacWilliams identities from Poisson summation formula

- Poisson:

$$
\sum_{b \in B} f(b)=\frac{1}{|(\widehat{A}: B)|} \sum_{\pi \in(\widehat{A}: B)} \hat{f}(\pi)
$$

- Replace A by A^{n}, B by additive code $C,(\widehat{A}: B)$ by dual code ($\widehat{A}^{n}: C$).

MacWilliams identities: complete weight enumerator

- $Z=\left(Z_{a}\right)_{a \in A ;} ; f\left(a_{1}, \ldots, a_{n}\right)=\prod_{i=1}^{n} Z_{a_{i}}$.
- Complete weight enumerator:

$$
\operatorname{cwe}_{C}(Z)=\sum_{x \in C} f(x)=\sum_{a \in C} \prod_{i=1}^{n} Z_{a_{i}}
$$

- MacWilliams identities:

$$
\operatorname{cwe}_{C}(Z)=\frac{1}{\left|\left(\widehat{A}^{n}: C\right)\right|} \operatorname{cwe}_{\left(\widehat{A}^{n}: C\right)}\left(\sum_{a \in A} \pi(a) Z_{a}\right)
$$

Specialize to Hamming weight enumerator

- Recall hwe ${ }_{C}(X, Y)=\sum_{x \in C} X^{n-w t(x)} Y^{\mathrm{wt}(x)}$.
- Specialize $\mathbb{C}\left[Z_{a}: a \in A\right] \rightarrow \mathbb{C}[X, Y], Z_{0} \mapsto X$, $Z_{a} \mapsto Y$ for $a \neq 0$. Then $\operatorname{cwe}_{C}(Z) \mapsto \operatorname{hwe}_{C}(X, Y)$.
- What happens to $\mathrm{cwe}_{\left(\hat{A}^{n}: C\right)}\left(\sum_{a \in A} \pi(a) Z_{a}\right)$ on the right side?

Specialization

$$
\begin{aligned}
\sum_{a \in A} \pi(a) Z_{a} & =\pi(0) Z_{0}+\sum_{a \neq 0} \pi(a) Z_{a} \\
& \mapsto X+\left(\sum_{a \neq 0} \pi(a)\right) Y \\
& = \begin{cases}X+(|A|-1) Y, & \text { if } \pi=1, \\
X-Y, & \text { if } \pi \neq 1 .\end{cases}
\end{aligned}
$$

MacWilliams identities: Hamming weight enumerator

$$
\operatorname{cwe}_{C}(Z)=\frac{1}{\left|\left(\widehat{A}^{n}: C\right)\right|} \operatorname{cwe}_{\left(\widehat{A}^{n}: C\right)}\left(\sum_{a \in A} \pi(a) Z_{a}\right)
$$

specializes to
$\operatorname{hwe}_{C}(X, Y)=\frac{1}{\left|C^{\perp}\right|} \operatorname{hwe}_{C^{\perp}}(X+(|A|-1) Y, X-Y)$,
where $C^{\perp}=\left(\widehat{A}^{n}: C\right)$.

Next steps

- What happens when A is a left module over a finite ring R and $C \subseteq A^{n}$ is a linear code?
- Is the dual code ($\widehat{A}^{n}: C$) linear?
- What duality properties hold?
- If $A=R$, can $\left(\widehat{R}^{n}: C\right)$ be expressed in terms of the dot product on R^{n} ?

