Character-Theoretic Tools for Studying Linear Codes over Rings and Modules

Jay A. Wood

Department of Mathematics Western Michigan University http://sites.google.com/a/wmich.edu/jaywood

Algebraic Methods in Coding Theory CIMPA School Ubatuba, Brazil July 3, 2017

Acknowledgments

 Thanks to CIMPA, our other sponsors, and the organizing committees for organizing this school, for inviting me to speak, and for their hospitality.

1. Linear Codes over Finite Fields

Definitions

- Error correction and the Hamming weight
- Syndrome decoding and the dual code
- Equivalence of codes

Objectives

- Introduce some the language of coding theory over finite fields.
- Introduce, with examples, some of the mathematical problems that will be discussed in later lectures.

Basic vocabulary

- Let \mathbb{F} be a finite field.
- A linear code over 𝔅 of length n is a vector subspace C ⊆ 𝔅ⁿ.
- Let $k = \dim_{\mathbb{F}} C$ be the dimension of C over \mathbb{F} .
- We say that C is a linear [n, k]-code.
- The elements of *C* are called **codewords**.

Encoding

- ► A linear code is often presented by an encoding map, represented by a generator matrix G.
- G will be a matrix of size $k \times n$ of rank k
- G defines a linear transformation 𝔽^k → 𝔽ⁿ, x ↦ xG, with inputs written on the left. (Why? Tradition!)
- ▶ ℝ^k is the information space. The linear code C is the image of the encoding map (row space of G).
- There are many possible encoding maps: use PG, P invertible k × k.

Errors in transmission

 Error-correcting codes are designed to detect and correct errors in transmission in communication channels.

The code adds redundancy which, if done properly, may allow errors to be corrected ("decoding").

Parity check matrix

- Given a linear [n, k]-code C, we can think of C as the solution space of a system of linear equations.
- A parity check matrix for C is an $(n-k) \times n$ matrix H of rank n-k such that

$$C = \{c \in \mathbb{F}^n : Hc^{\mathsf{T}} = 0\}.$$

Dual code

- Given linear [n, k]-code C, the dual code C[⊥] is the linear [n, n − k]-code generated by the parity check matrix of C.
- Define the **dot product** on \mathbb{F}^n by $a \cdot b = \sum_{i=1}^n a_i b_i$.
- Then $C^{\perp} = \{ b \in \mathbb{F}^n : c \cdot b = 0, \text{ for all } c \in C \}.$
- Note that $(C^{\perp})^{\perp} = C$.

Example

•
$$\mathbb{F} = \mathbb{F}_2$$
, $n = 7$, $k = 4$, $n - k = 3$:

* ロ > * 個 > * 注 > * 注 >

Syndromes

- Suppose c ∈ C is transmitted, and suppose some error is introduced, so that y = c + e is received. Here, e is the (yet to be determined) error vector.
- Applying the parity check matrix, we see that
 Hy^T = Hc^T + He^T = He^T (the "syndrome").
- The error vector e lies in the same coset of C as the received vector y.

Likelihood

- Of all vectors in the coset y + C, which is the most likely to be the error vector?
- One model of a communication channel: the symmetric binary channel.
- Let 𝔽 = 𝔽₂, the binary field. When an element of 𝔽₂ is transmitted, there is a probability of *p* that the other element will be received. Assume 0 ≤ *p* ≤ 1/2.

Hamming distance and Hamming weight

- The Hamming weight wt(y) of a vector y ∈ ℝⁿ is the number of nonzero entries in y; wt(y) = |{i : y_i ≠ 0}|.
- ► The Hamming distance between two vectors y, x ∈ 𝔽ⁿ is the Hamming weight of their difference: d(y, z) = wt(y − z).
- ► The Hamming distance d is a distance, so (𝔽ⁿ, d) is a (discrete) metric space.

Likelihood, again

- Provided p < 1/2, an error vector with small Hamming weight is more likely to occur than one of larger Hamming weight.
- Syndrome decoding: given a received vector
 y = c + e, the most likely error vector is a vector of
 minimal Hamming weight in the coset y + C.
- Such an *e* exists, but it may not be unique.

Minimum distance of a code

- Given a code C, the minimum (Hamming) distance of C is
 d_C = min{d(b, c) : b, c ∈ C, b ≠ c}.
- For linear codes, this equals the minimum (Hamming) weight, min{wt(c) : c ∈ C, c ≠ 0}.
- Suppose *C* has minimum distance d_C . Let $t = \lfloor (d-1)/2 \rfloor$.
- Nearest neighbor decoding corrects up to t errors.

Example (again)

•
$$\mathbb{F} = \mathbb{F}_2$$
, $n = 7$, $k = 4$:

$$G = egin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \ 0 & 1 & 1 & 0 & 0 & 1 & 1 \ 1 & 0 & 1 & 0 & 1 & 0 & 1 \ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Codewords: 0000000, 0001111, 0110011, 1010101, 1111111, 0111100, 1011010, 1110000, 1100110, 1001100, 0101010, 1101001, 1000011, 0100101, 0011001, 0010110. d_C = 3. Example (and again)

• $\mathbb{F} = \mathbb{F}_2$, n = 7, k = 3:

$$H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Codewords: 0000000, 0001111, 0110011, 1010101, 0111100, 1011010, 1100110, 1101001. d_{C⊥} = 4.

Decoding C

- Because $d_C = 3$, we can correct one error.
- If wt(e) = 1, there is a single 1 in position *i*.
- The syndrome He^{T} is the *i*th column of H.
- The *i*th column of *H* is the base 2 expression of *i*, so the syndrome tells us the location of the error.
- Suppose y = 1011101 is received. Syndrome
 Hy^T = 100^T, so most likely c = 1010101 was sent.

Weight distributions

- ► Given C, its weight distribution is (A₀, A₁,..., A_n), where A_i = |{c ∈ C : wt(c) = i}|, the number of codewords of Hamming weight i.
- ▶ For our example, *C* has (1,0,0,7,7,0,0,1).
- C^{\perp} has (1, 0, 0, 0, 7, 0, 0, 0).
- In the next slide, we organize this information differently.

Hamming weight enumerator

For a linear code C ⊆ Aⁿ, define the Hamming weight enumerator of C by

$$\mathsf{hwe}_{\mathcal{C}}(X,Y) = \sum_{x \in \mathcal{C}} X^{n-\mathsf{wt}(x)} Y^{\mathsf{wt}(x)}$$

- hwe_C(X, Y) = ∑ⁿ_{i=0} A_iXⁿ⁻ⁱYⁱ, where A_i is the number of codewords in C of Hamming weight i.
- ▶ In our example: $hwe_{C^{\perp}}(X, Y) = X^7 + 7X^3Y^4$, $hwe_C(X, Y) = X^7 + 7X^4Y^3 + 7X^3Y^4 + Y^7$.

MacWilliams identities

One can verify in our binary example that the weight enumerators are related in the following way:

$$\mathsf{hwe}_{\mathcal{C}}(X,Y) = rac{1}{|\mathcal{C}^{\perp}|} \mathsf{hwe}_{\mathcal{C}^{\perp}}(X+Y,X-Y).$$

Properties of dual codes

- Given a linear code $C \subseteq \mathbb{F}^n$.
- Dual C^{\perp} is also a linear code in \mathbb{F}^n .
- Double dual: $(C^{\perp})^{\perp} = C$.
- Dimension/size: dim C + dim $C^{\perp} = n$, or: $|C| \cdot |C^{\perp}| = |\mathbb{F}^{n}|.$
- The MacWilliams identities.
- The next several lectures will be about generalizations of these properties.

Equivalence of linear codes

- When should two linear codes be considered as being the same?
- "Intrinsic": related by a weight-preserving isomorphism.

Monomial transformations

- A monomial transformation T : Fⁿ → Fⁿ is an invertible linear transformation whose matrix has exactly one nonzero entry in each row and column (a "monomial matrix").
- ► Monomial transformations are precisely the invertible linear transformations 𝔽ⁿ → 𝔽ⁿ that preserve the Hamming weight.
- Linear codes C₁, C₂ ⊆ ℝⁿ are monomially equivalent if there exists a monomial transformation T with T(C₁) = C₂.

Weight-preserving maps

- If $T(C_1) = C_2$, then the restriction of T to C_1 is a linear isomorphism $C_1 \rightarrow C_2$ that preserves Hamming weight.
- Is the converse true?
- Yes!—MacWilliams (1961–62). Weight preserving maps extend to monomial transformations.
- Call this the "MacWilliams extension theorem".

Upcoming lectures

- Lectures 2 and 3 will address generalizations of dual codes and the MacWilliams identities for linear codes defined over finite rings and modules.
- Lecture 4 will discuss self-dual codes (where $C = C^{\perp}$) in a general setting. Lecture 5: exercises!
- Lectures 6–10 will deal with different aspects of the extension problem: do weight-preserving maps extend to monomial transformations?
- Many of the techniques are based on characters of finite abelian groups and the modules built out of these characters.