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Linear Codes over Finite Fields

1. Linear Codes over Finite Fields

I Definitions

I Error correction and the Hamming weight

I Syndrome decoding and the dual code

I Equivalence of codes
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Linear Codes over Finite Fields

Objectives

I Introduce some the language of coding theory over
finite fields.

I Introduce, with examples, some of the mathematical
problems that will be discussed in later lectures.
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Linear Codes over Finite Fields

Basic vocabulary

I Let F be a finite field.

I A linear code over F of length n is a vector
subspace C ⊆ Fn.

I Let k = dimF C be the dimension of C over F.

I We say that C is a linear [n, k]-code.

I The elements of C are called codewords.
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Linear Codes over Finite Fields

Encoding

I A linear code is often presented by an encoding
map, represented by a generator matrix G .

I G will be a matrix of size k × n of rank k

I G defines a linear transformation Fk → Fn, x 7→ xG ,
with inputs written on the left. (Why? Tradition!)

I Fk is the information space. The linear code C is
the image of the encoding map (row space of G ).

I There are many possible encoding maps: use PG , P
invertible k × k .
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Linear Codes over Finite Fields

Errors in transmission

I Error-correcting codes are designed to detect and
correct errors in transmission in communication
channels.

Fk −−−→
encode

Fn +noise−−−−→
transmit

Fn −−−→
decode

Fn −−−−−→
unencode

Fk

I The code adds redundancy which, if done properly,
may allow errors to be corrected (“decoding”).
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Linear Codes over Finite Fields

Parity check matrix

I Given a linear [n, k]-code C , we can think of C as
the solution space of a system of linear equations.

I A parity check matrix for C is an (n − k)× n
matrix H of rank n − k such that

C = {c ∈ Fn : HcT = 0}.
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Linear Codes over Finite Fields

Dual code

I Given linear [n, k]-code C , the dual code C⊥ is the
linear [n, n − k]-code generated by the parity check
matrix of C .

I Define the dot product on Fn by a · b =
∑n

i=1 aibi .

I Then C⊥ = {b ∈ Fn : c · b = 0, for all c ∈ C}.
I Note that (C⊥)⊥ = C .
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Linear Codes over Finite Fields

Example

I F = F2, n = 7, k = 4, n − k = 3:

G =


0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
1 1 1 1 1 1 1


H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
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Linear Codes over Finite Fields

Syndromes

I Suppose c ∈ C is transmitted, and suppose some
error is introduced, so that y = c + e is received.
Here, e is the (yet to be determined) error vector.

I Applying the parity check matrix, we see that
HyT = HcT + HeT = HeT (the “syndrome”).

I The error vector e lies in the same coset of C as the
received vector y .
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Linear Codes over Finite Fields

Likelihood

I Of all vectors in the coset y + C , which is the most
likely to be the error vector?

I One model of a communication channel: the
symmetric binary channel.

I Let F = F2, the binary field. When an element of
F2 is transmitted, there is a probability of p that the
other element will be received. Assume
0 ≤ p ≤ 1/2.
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Linear Codes over Finite Fields

Hamming distance and Hamming weight

I The Hamming weight wt(y) of a vector y ∈ Fn is
the number of nonzero entries in y ;
wt(y) = |{i : yi 6= 0}|.

I The Hamming distance between two vectors
y , x ∈ Fn is the Hamming weight of their difference:
d(y , z) = wt(y − z).

I The Hamming distance d is a distance, so (Fn, d) is
a (discrete) metric space.
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Linear Codes over Finite Fields

Likelihood, again

I Provided p < 1/2, an error vector with small
Hamming weight is more likely to occur than one of
larger Hamming weight.

I Syndrome decoding: given a received vector
y = c + e, the most likely error vector is a vector of
minimal Hamming weight in the coset y + C .

I Such an e exists, but it may not be unique.
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Linear Codes over Finite Fields

Minimum distance of a code

I Given a code C , the minimum (Hamming)
distance of C is
dC = min{d(b, c) : b, c ∈ C , b 6= c}.

I For linear codes, this equals the minimum
(Hamming) weight, min{wt(c) : c ∈ C , c 6= 0}.

I Suppose C has minimum distance dC . Let
t = b(d − 1)/2c.

I Nearest neighbor decoding corrects up to t errors.
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Linear Codes over Finite Fields

Example (again)

I F = F2, n = 7, k = 4:

G =


0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
1 1 1 1 1 1 1


I Codewords: 0000000, 0001111, 0110011, 1010101,

1111111, 0111100, 1011010, 1110000, 1100110,
1001100, 0101010, 1101001, 1000011, 0100101,
0011001, 0010110. dC = 3.
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Linear Codes over Finite Fields

Example (and again)

I F = F2, n = 7, k = 3:

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


I Codewords: 0000000, 0001111, 0110011, 1010101,

0111100, 1011010, 1100110, 1101001. dC⊥ = 4.
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Linear Codes over Finite Fields

Decoding C

I Because dC = 3, we can correct one error.

I If wt(e) = 1, there is a single 1 in position i .

I The syndrome HeT is the ith column of H .

I The ith column of H is the base 2 expression of i ,
so the syndrome tells us the location of the error.

I Suppose y = 1011101 is received. Syndrome
HyT = 100T, so most likely c = 1010101 was sent.
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Linear Codes over Finite Fields

Weight distributions

I Given C , its weight distribution is
(A0,A1, . . . ,An), where Ai = |{c ∈ C : wt(c) = i}|,
the number of codewords of Hamming weight i .

I For our example, C has (1, 0, 0, 7, 7, 0, 0, 1).

I C⊥ has (1, 0, 0, 0, 7, 0, 0, 0).

I In the next slide, we organize this information
differently.
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Linear Codes over Finite Fields

Hamming weight enumerator

I For a linear code C ⊆ An, define the Hamming
weight enumerator of C by

hweC (X ,Y ) =
∑
x∈C

X n−wt(x)Y wt(x).

I hweC (X ,Y ) =
∑n

i=0 AiX
n−iY i , where Ai is the

number of codewords in C of Hamming weight i .

I In our example: hweC⊥(X ,Y ) = X 7 + 7X 3Y 4,
hweC (X ,Y ) = X 7 + 7X 4Y 3 + 7X 3Y 4 + Y 7.
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Linear Codes over Finite Fields

MacWilliams identities

I One can verify in our binary example that the
weight enumerators are related in the following way:

hweC (X ,Y ) =
1

|C⊥|
hweC⊥(X + Y ,X − Y ).
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Linear Codes over Finite Fields

Properties of dual codes

I Given a linear code C ⊆ Fn.

I Dual C⊥ is also a linear code in Fn.

I Double dual: (C⊥)⊥ = C .

I Dimension/size: dimC + dimC⊥ = n, or:
|C | · |C⊥| = |Fn|.

I The MacWilliams identities.

I The next several lectures will be about
generalizations of these properties.
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Linear Codes over Finite Fields

Equivalence of linear codes

I When should two linear codes be considered as
being the same?

I “Extrinsic”: differ by a monomial transformation of
Fn.

I “Intrinsic”: related by a weight-preserving
isomorphism.
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Linear Codes over Finite Fields

Monomial transformations

I A monomial transformation T : Fn → Fn is an
invertible linear transformation whose matrix has
exactly one nonzero entry in each row and column
(a “monomial matrix”).

I Monomial transformations are precisely the
invertible linear transformations Fn → Fn that
preserve the Hamming weight.

I Linear codes C1,C2 ⊆ Fn are monomially
equivalent if there exists a monomial
transformation T with T (C1) = C2.
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Linear Codes over Finite Fields

Weight-preserving maps

I If T (C1) = C2, then the restriction of T to C1 is a
linear isomorphism C1 → C2 that preserves
Hamming weight.

I Is the converse true?

I Yes!—MacWilliams (1961–62). Weight preserving
maps extend to monomial transformations.

I Call this the “MacWilliams extension theorem”.
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Linear Codes over Finite Fields

Upcoming lectures

I Lectures 2 and 3 will address generalizations of dual
codes and the MacWilliams identities for linear
codes defined over finite rings and modules.

I Lecture 4 will discuss self-dual codes (where
C = C⊥) in a general setting. Lecture 5: exercises!

I Lectures 6–10 will deal with different aspects of the
extension problem: do weight-preserving maps
extend to monomial transformations?

I Many of the techniques are based on characters of
finite abelian groups and the modules built out of
these characters.
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