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Abstract

In the first part of this course, we present an introduction to the
subject covering some of the important results that can be applied
in this context, starting with the most basic facts. We begin with
the famous theorem of Maschke and use Wedderburn’s Theorem to
describe the structure of group algebras in the semisimple case and
its relation to primitive idempotents. We consider splitting fields and
a Theorem of R. Brauer then study the theorem of Berman and Witt
that gives the number of simple componentes in the semisimple case.

In the late sixties, S.D Berman [1] and F.J. MacWilliams [5], in-
dependently, introduced the idea of a group code, defined as an ideal
of a finite group algebra. In the second part, we construct idempo-
tents for abelian codes, always using the structure of subgroups of the
underlying group. In some cases, it is possible to compute the pa-
rameters of the codes, and bases, using the group algebra structure.
The construction of idempotents may also be extended to some non-
abelian codes defined from dihedral and quaternion groups We finish
mentioning some further developments on codes over rings.
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1 Introduction

The origins of Information Theory and Error Correcting Codes Theory are
in the papers by Shannon [65] and Hamming [35], where they settled the
theoretical foundations for such theories.

For a non empty finite set A, called alphabet, a code C of length n is
simply a proper subset of A™ and an n-tuple (ag, aq,...,a,—1) € C is called
a word of the code C.

If A =T, is a finite field with ¢ elements, then a linear code C of length
n is a proper subspace of Fy. If dimC = k (k < n), then the number of
words in C is ¢*.

We shall call “cyclic shift” the linear map « : Fy — Fj such that
m(ag, ar, ..., an_1) = (@p_1,00,01, ..., 0n_2).

A linear cyclic code is a linear code C' that is invariant under the cyclic
shift. This structure gives rise to fast-decoding algorithms, which is a con-
siderable aspect regarding the conditions on communication.

2]
1o and denote by [f(x)] the

class of the polynomial f(x) in R,. There is a natural vector space isomor-
phism ¢ : Fj) — R,, given by

Consider the quotient ring R, =

o(ag,a, ... an_1) = [ag + ax + -+ a,_12" .

Linear cyclic codes are often realized as ideals in R,, and the cyclic shift
is equivalent, via the isomorphism ¢, to the multiplication by the class of x
in R,,.

Group algebras may be defined in a more general setting, that is, for
any group and over any field, as it was seen in the first part of this course.
However, we restrict the definitions and results below to finite groups and
finite fields because this is the context for coding theory. We recall some
definitions.

Let G be a finite group written multiplicatively and I, a finite field. The
group algebra of G over [, is the set of all formal linear combinations

o= Zagg, where a4 € Fy.

geG

Given o = Zagg and 8 = Zﬂgg we have

geG geG

a=pF<=a,=03, forallged.
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The support of an element o € F,G is the set of elements of G effectively
appearing in «; i.e.,

supp(a) = {g € G | a, #0}.
We define

(Z %g) + (Z @g) =3 (ay + By)g.

9€G geG geG
(5 00) (£30) - £ .
geG heG g,h€G

For A in F,, we define

A (Z agg> => (Aay)g.

geG geqG

It is easy to see that, with the operations above, F,G is an algebra over
the field IF,.

The weight of an element o =
in its support; i.e.

gec 099 € FoG is the number of elements

w(a) = [{g [ ay # 0}/

For an ideal I of F,G, we define the minimum weight of [ as:
w(l) =min{w(a) | a € I, a # 0}.

Let C,, = (a) denote a cyclic finite group of order n generated by an
element a. MacWilliams [45] was the first one to consider cyclic codes as
ideals of the group ring F,C, which is easily proved to be isomorphic to
@F,ﬁ—[fh. In F,C),,, the cyclic shift is equivalent to the multiplication of the
elements of the code by a.

The following diagram helps us to understand the cyclic shift in these

three different ways of considering a cyclic code.

CcF % R,=—2 = FC,=F<a>

<z"—1>
cyclic
\J Tl a |
shift
n % Fqlz =
CcF % R,=—d- = FC,=F<a>



Extending these ideas, Berman [9, 10] and, independently, MacWilliams
[46] defined abelian codes as ideals in finite abelian group algebras and,
more generally, a group (left) code was defined as an (left) ideal in a finite
group algebra. Group codes were then studied using ring and character-
theoretical results.

From now on, for a finite group G and a finite field IF,, we treat ideals in
a group algebra F,G as codes. In this approach, the length of the code is the
order of the group G and the dimension of a code [ is its dimension as an
[F,-subspace in F,G. Length, dimension and minimum weight are the three
parameters that define a linear code.

A group code is called minimal if the corresponding ideal is minimal
in the set of ideals of the group algebra. Keralev and Solé in [40] showed
that many important codes can be realized as ideals in a group algebra,
for example, the generalized Reed-Muller codes and generalized quadratic
residue codes. These results are included in Section 9.1 of [39]. There is also
a good treatment on the subject in [22].

A word of warning is necessary here, because the expression “group code”
may also have some other meanings. For example, in Computer Science,
sometimes group codes consist of n linear block codes which are subgroups
of G™, where G is a finite abelian group, as in [12, 29].

Usually in the papers that present techniques to compute the idempo-
tents that generate the codes, character theory is used in the context of
polynomials, as it can be seen in [1, 2, 4, 5, 6, 51, 57, 58, 66]. Sometimes
the expressions for the idempotents are not very “reader friendly”. More-
over, the character theory and polynomial approaches in the computation of
idempotents did not fully explore the structure of the group underneath the
group algebra that defines the underlying set for the codes.

Here is the plan for this short course.

First Lecture: Introduction to the subject and construction of idempo-
tents using subgroups of an abelian group.

Second Lecture: Discussion of some topics on dimension and minimum
distance.

Third Lecture: Application of the previous topics to some specific cases.

Fourth Lecture: Approach of some equivalence questions.

Fifth Lecture: Some results on non-abelian codes.

In each lecture, some exercises or questions will be proposed.



FIRST LECTURE

2 Basic Facts

Let I, be the Galois field with p elements. In this section we list some
results on Finite Fields and Elementary Number Theory that will be needed
in the sequel. Our first result is well-known.

Lemma 2.1. [{4, Theorem XVL8] Let p be a positive prime number and
r,s € N* Then
Fpr ®IFP Fps =~ ng(’l”, 5) . Fplcm(r,s).

Proof. Exercise. O

Remark 2.2. Notice that any extension L of Fy of even degree contains a
subfield K with four elements, hence there exists an element 1 # a € L such
that a® = 1.

Lemma 2.3. Let r, s € N be non-zero elements such that ged(r,s) = 2. Let
u € For and v € Fys be elements satisfying the equation 2> +x +1 = 0.
Then

For @p, Fos = F2% & ]Fff (1)
and e; = (U®v) + (V> ®v?) and es = (U@v?) + (V@) are the primitive
idempotents generating to the simple components of (1).

Proof. The decomposition of Fyr ®@p, Fos as a direct sum follows from the
previous lemma.

Since u, u? € Fyr (resp. v,v? € Fys) are linearly independent over Fy, we
have that (u ®v), (u* ®v?), (u ®v?) and (u®> ® v) are linearly independent
in Fyr ®p, Fos. Hence e; #0 and e3 #0. As 1+v+0v2=0,1+u+u*=0,
and hence also u® = v® = 1, we obtain:

er-es = (W¥®1) + (120?) + (1ov) + (u®l) = (V+u)@l+1e(v+v?) =0
and also

e1tes = (u@v) + (1¥@v?) + (uv?) + (W¥®v) = uR(v+v?) +ulR(v+v?) =

=1®1.
As F,z @ F,z has two simple components, e; and ey are, in fact, the
corresponding primitive idempotents. L]



We shall also need the following result whose proof is elementary.

Lemma 2.4. Let p and q be two distinct odd primes such that

and 2 generates both groups of units U(Z,) and U(Z,). Then the least positive

integer k such that 2 = 1( mod pq) islem(p — 1,¢ — 1) = %.

Proof. Exercise. O

3 Subgroups and idempotents

We recall that an element in the group algebra F,G is called central if
it commutes with every other element of the algebra. A non-zero central
idempotent e is called primitive if it cannot be decomposed in the form
e =¢ +¢€”, where ¢/ and ¢’ are both non-zero central idempotents such that
ee” =e"e’ = 0. For char(F,) /|G|, the group algebra F,G is semisimple and
the primitive central idempotents are the generators of the minimal two-sided
ideals. Two idempotents €, ¢’ are orthogonal if ¢'¢” = ¢’¢’ = 0.

The primitive central idempotents of the rational group algebra QG were
computed in [34, Theorem VII.1.4] in the case G abelian; in [37, Theorem
2.1] when G is nilpotent; in [54, Theorem 4.4] in a more general context and
in [13, Theorem 7] an algorithm to compute the primitive idempotents is
given.

In what follows, we shall establish a correspondence between primitive
idempotents of F,G and certain subgroups of an abelian group G.

Let G be a finite (abelian) group and F, a field such that char(F,) }|G]|.
Given a subgroup H of GG, denote

~ 1
H=—5S"n 2)
2

—

which is an idempotent of F,G and, for an element = € G, set & = (z).
It is known that the idempotent G is always primitive, as a consequence
of [56, Proposition 3.6.7]'.
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Definition 3.2. Let G be an abelian group. A subgroup H of G is called a
co-cyclic subgroup if the factor group G/H # {1} is cyclic.

We use the notation
Se(G) = {H | H is a co-cyclic subgroup of G}.

For a finite group G, denote by exp(G) the exponent of G which is the
smallest positive integer ¢ such that g = 1, for all ¢ € G. A group G is called
a p-group if its exponent is a power of a given prime p. In particular, this
means that the order of every element of G is itself a power of p.

Let G be a finite abelian p-group and F, a field such that char(F,) }|G]|.
For each co-cyclic subgroup H of G, we can construct an idempotent of F,G.
In fact, we remark that, since G/H is a cyclic p-group, there exists a umque

subgroup H* of G containing H such that |H!/H| = p. Then ey = H — I7E
is an idempotent and we consider the set

{G}U{en = H — H? | H € Su(G)}. (3)

We recall the following results that are used throughout this paper.
In the case of a rational abelian group algebra QG, the set (3) is the set
of all primitive central idempotents [34, Theorem 1.4].

Theorem 3.3. [28, Lemma 5| Let p be a prime integer and G a finite abelian
group of exponent p" and [F, a finite field with q elements such that p } q.
Then (3) is a set of pairwise orthogonal idempotents of F,G whose sum is

equal to 1, i.e.,
1=G+ > en, (4)

where 1 also denotes the identity element in F,G.

Proposition 3.1. Let R be a rmg and H a normal subgroup of a group G. If |H| is
invertible in R, setting e = |H|H we have a direct sum of rings

RG = RGey & RG(1 — ep),
with RGey =2 R(G/H), RG(1 —en) = A(G,H) and

AGH) ={)_ an(h—1)|ay, € RG}.

heH



Proof. The fact that these elements are idempotents is straightforward. Let
H and K be different subgroups of G such that both G/H and G/K are
cyclic, not equal to {1}, H* and K* be subgroups containing H and K,
respectively, such that H*/H and K*/K are cyclic of order p. We shall
consider first the case when H C K. In this case, clearly H* C K* and thus

enex = (H—H)- (K = K*) = K - K* = K + K* =0,

If neither of these subgroups is contained in the other, then both H and
K are properly contained in H K, so also H* and K* are contained in HK,
hence H*K* C HK. Clearly, HK C H*K*. Therefore, HK = H*K*. Now,
since HK ¢ HK* C H*K™, it follows also HK* = HK and, in a similar
way, we have H*K = HK. Thus

enex = (H — HY) - (K — K*) = 0.

Also, if one of the idempotents is equal to eg a similar result follows easily.

Finally, we wish to show that the sum of these idempotents is equal to 1.
For each cyclic subgroup C' of G, we denote by G(C) the set of all elements
of C' that generate this subgroup; i.e.,

G(C) = {c € C| ged(o(c), |C[) = 1}.

If C denotes the family of all cyclic subgroups of G, then clearly |G| =
Y cec |G(C)| and, since G is a p-group, |G(C)| = |C| — |C|/p.

Let S = {G} US.(G) and denote e = ), s en. We claim that e = 1.
To prove this fact, it is enough to show that (FG)e = FG. As we have shown
that these idempotents are pairwise orthogonal, we have

(FG)e = P FG)en,

HeS

SO
dimp(FG)e = Z dimp(FG)ep.
HeS

Notice that H = H* + ey and that [/{\*eH =0, thus
(FG)H = (FG)H* & (FG)ey.

Hence

dimp(FG)ey = dimz(FG)H — dimp(FG)H*.
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It follows from the proof of [56, Proposition 3.6.7] that

and, clearly, dimy F|G/H] = |G/H| and dimp F[G/H*] = |G/H"|.

It is well known that there exists a bijection ® : C — § such that
| X| = |G/®(X)], for all X € C. This is a consequence of character theory
for finite abelian groups (see [61, Chapter 10]). If we denote by C' € C the
subgroup such that ®(C) = H, we have

dimy F[G/H] = |C,

dimp F[G/H"] = |G/H"| = |G/H|/|H*/H| = |C]/p,

SO

dimp((FG)en) = |C] = |Cl/p = |G(C)] (6)
and thus

> dimp((FG)en) = > 1G(0)] = |G].

HeS cec
This finishes the proof.

[

In our next statement, we denote by U(Z,») the set of invertible elements
of the ring Z,» of integers modulo p"; ¢ denotes the class of the integer ¢ in
Zyn and, when it is invertible, o(g) denotes its multiplicative order; i.e., the
least positive integer m such that g™ = 1.

Theorem 3.4. 28, Theorem 4.1] Under the same hypotheses of Theorem 3.3,
the set (3) is the set of all primitive idempotents of F,G if and only if o(q) =
o(p") in U(Zyn), with ¢ denoting the Euler’s totient function.

For positive integers r and m, we shall denote by 7 € Z,, the image of r in
the ring of integers modulo m. Then, for an element ¢ in a group G, define
Gy = {g" | ged(r,0(9)) = 1} = {g"|7 € U(Zoy))}. The following theorem
gives us conditions on the exponent e of the group G and the size g of the
finite field that satisfy Theorem 3.4.

Corollary 3.5. [47, Teorema 7.10] Let F, be a finite field with q elements
and G a finite abelian group with exponent e such that ged (¢, |G|) = 1. Then
Cy = Gy, for all g € G, if only if one of following conditions holds, with ¢
denoting the Fuler’s totient function:
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(a) e =2 and q is odd;

(b) e =4 and ¢ = 3(mod 4);

(c) e=p" and o(q) = ¢(p") in U (Zyn);
(d) e =2p" and o(q) = ¢(p") in U (Zgy).

Theorem 3.6. [28, Lemma 3] Let G = (g) be a cyclic group with order p"
and Fy a finite field with q elements such that § generates U (Zyn). Consider

G=Gy>G D..0G,={1}

the descending chain of all subgroups of G. Then a complete set of primitive
idempotents in F,G is:

60:@:—29 and ei:é\i—éijl,forlgign, (7)

with G; =< gpi >, for1 <i<n.

As the authors comment in [28], a straightforward computation shows
that these are the same idempotents given in [2, Theorem 3.5], though there
they are expressed in terms of cyclotomic cosets.

The idempotent generators of minimal ideals in the case of cyclic groups
of order 2p™ now follow easily from the previous results.

Theorem 3.7. [2, Theorem 2.6] Let F, be a finite field with q elements and
G a cyclic group of order 2p™, p an odd prime, such that o(q) = ¢(p"™) in
U(Zgpn). Write G = C x A, where A is the p-Sylow subgroup of G and
C = {1,t} is its 2-Sylow subgroup. If e;, for 0 < i < n, denote the primitive
idempotents of F, A, then the primitive idempotents of F,G are

1+t 1-t

5 i 5 G 0<i<n. (8)

Proof. (Sketch of the proof:) As C'is a cyclic group of order 2, we have

1t 14t
F,C = F,C (T) & F,C (%) ~F, &F,.

Now, since F,G =F,(C x A) =F,C ® F A and F,A = >"" (F,A)e;, with e
as in (7), the result follows. O
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More generally,

Theorem 3.8. [28, Theorem 4.2] Let p be an odd prime, G be an abelian
p-group of exponent 2p” and F, be a finite field with q elements such that
o(q) = ¢(p") in U (Zoyr). Write G = E X A, with E an elementary abelian 2-
group and A a p-group. Then the primitive idempotents of F,G are products
of the form f-e , where f is a primitive idempotent of F,E and e a primitive
idempotent of F,A.

QUESTION FOR DISCUSSION: WHAT ARE THE DIFFICULTIES (OR
CHALLENGES) TO FIND THE SET OF PRIMITIVE IDEMPOTENTS IF WE DROP
THE CONDITIONS ON THE SIZE OF THE FIELD?

SECOND LECTURE

3.1 Dimension and minimum distance

This section follows [28, Section 5| and is devoted to the computation of
dimension and minimum weight of codes generated by the idempotents pre-
sented in previous theorems.

Let |G| = 2™p™, with p denoting an odd prime and m > 0. As before,
we write G = F x A, with E an elementary abelian 2-group of order 2™
(eventually trivial) and A a p-group.

First if we write £ = (aq) X {ag) X+ - - {a,,), then the primitive idempotents
of F,E are the products of the form f = fifo--- f, with f; = HT“ or
fi= 1;‘“, for 1 <i<m.

In view of Corollary 3.5, these are the only cases where primitive idem-
potents of finite abelian group algebras can be computed in this way.

As the primitive idempotents of F,A are as in (7), then the products of
the form eg - ep, with eg a primitive idempotent of F,E and e4 a primitive
idempotent of F,A.

For a fixed idempotent eg of F,E and an arbitrary element y € E such
that y = a7 - - - a5, with each ¢; = 0 or 1, for 1 < i < m, we have

1+ 1+ 1+a,,

with e, =0 or 1.
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First let us consider the primitive idempotents of the form eEA An
clement of (F,G) - ep A is of the form 7 - egA, with y = > yeraca Qya Y Q-
Hence

Z aybyaeEA\:< Z aya(—1)€y> en A

yeE,acA yeE,acA

This computation shows both that the dimension of the ideal I = (F,G)e BA
is 1 and that its minimum distance is I(]) = |G].

Now, we consider 1dempotents of the form e = egepy, with ep € F L,
as above, and ey = H — H*, with H a subgroup of A such that A/H is
cyclic of order p', say, and H* is the unique subgroup of A containing H such
that [H* : H] = p. Set I. = (F,G)e. Let b € A be an element such that
A = (b, H). Then we also have H* = (b*'"' H).

Notice

(1 — b”Fl) epH = <1 — prl) eE(fI\* +ey) = (1 — prl) er eH.

Since b*' ¢ H, it is clear that supp <1 — bpi_1> ey is the disjoint union

HU bpile, hence the weight of this element is w ((1 — pr) ep 6H> =
2|E||H|. Now if we denote by ¢(I.) the minimum distance of I., we have
(1) = 2™ H|. ,

Since A is the disjoint union A = HUbHU- - -UW' ™~ H, then also G = Ex A
is the disjoint union G = (E x H)Ub(E x H)U--- U ' (E x H), so an

arbitrary element F,G can be written in the form o = f Bl a;b7, with

a; € F,|E x H.
Taking into account formula (9) and the fact that hH = H, forallh € H,
then each product ajepey = kjeger , with k; € Fy, for all 0 < j < p'~!
Since eHﬁ = ey, then (F,G)egey C (FqG)eEﬁ and an element 0 #£ v €
(F,G)epery = I, can be written in the form

Y= CJ./GEﬁ = (k‘o + ]’Clb + -+ kpi—lprl)GEﬁ.

As v # 0, we have at least one coefficient k; # 0. If v = kjbjeEﬁ,
we would have eEﬁ € (F,G)epen, a contradiction. So, at least two different
coefficients k;, k;; must be nonzero, for each v € I, and thus ¢(I,) > 2™ H].
Hence ((I..) = 2m+1|H|.
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Finally, we shall compute the dimension of minimal abelian codes; i.e.,
the dimension of ideals of the form (F,G)e, with e is a primitive idempotent
of F,G. Let e = egey be one such primitive idempotent. We have

(FqG)BEGH = ]FQ[E X A]€E€H = ((FQE)A)GEGH = ((FQE)GE)A €[,
As (F,E)eg = F,, for all primitive idempotents of F,E, we have
(FqG)eEeH = FABH,

so formula (6) gives .
dimg, [(F,G)epen] = o(p").

-~ -~

By a similar argument, we have dimg, [(F,G)epA] = dimg, [(F,A)A] = 1.

For non-cyclic abelian groups, we may also apply the ideas above to con-
struct idempotents. In [27], the following results are presented in details.

For a finite abelian group G, we write G = G, x --- X Gp,, where G,
denotes the p;-Sylow subgroup of GG, for the distinct prime numbers py, ..., p;.

Lemma 3.9. [27, Lemma IL5] Let G = Gp, X --- x G, be a finite abelian
group and H € S..(G). Write H = H,, X ---x H,,, where H,, is the p;-Sylow
subgroup of H. Then each subgroup H,, is co-cyclic in G,,, 1 <1 <t.

Proof. For H € S..(G), the quotient
G/H = Gm/Hm Xeoe X Gpt/Hpt

is cyclic, hence each factor G,/ H,, must be cyclic. Therefore, H,, = G,, or
H,, € S..(Gp,), for 1 <i <t. O

With the notation above, for each H € S..(G), define an idempotent
eg € F,G as follows. For each 1 < i < ¢, either H,, = G, or there exists

a unique subgroup HY such that [HY : H,] = p;. Thus, let ey, = é;. or

e, = ﬁ; — Hgi, respectively, and define
€H = eHm eHm T ert' (1())

For any other K € S..(G), with K # H, we have K, # H,,, for some
1 <@ <t, and, by Theorem 3.3, ep, ex, =0, hence egex = 0. It is easy to

see that Gey = 0, for all H € S..(G).
Thus, we have the following.
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Proposition 3.10. [27, Proposition 11.6] Let G be a finite abelian group and
F, a field such that char(F,) ) |G|. Then

B={ey|H € S.(G)}U{G} (11)
is a set of orthogonal idempotents of F,G, where ey is defined as in (10).

A similar construction of idempotents for rational group algebras of abelian
groups is given in [34, Section VII.1]. For the rational case, these idempotents
are primitive while for finite fields this is usually not true.

Now, we extend Theorem 3.3 to finite abelian groups.

Lemma 3.11. [27, Lemma I1.7] Let G be a finite abelian group and F, a
field such that char(F,)  |G|. Then, in the group algebra F,G, we have

1=G+ > en (12)

The following lemma starts the discussion about the relation between
idempotents and certain subgroups of the abelian group, which we elaborate
in more details in Section 5.

Lemma 3.12. 27, Lemma I1.8] Let G be a finite abelian group and F, a

field such that char(F,) f|G|. For each primitive idempotent e € F,G, e # G,
there ezists a unique H € S..(G) such that e - ey = e. Also, e -ex =0, for
any other K € S..(G).

QUESTION 1: How can we present a basis (as a vector space) for each
code generated (as an ideal) by an idempotent?
QUESTION 2: How are the primitive idempotents in the general case?

THIRD LECTURE

4 Cyclic and abelian codes of length p"¢™

4.1 Binary abelian codes

Primitive idempotents for .G, together with the corresponding dimensions
and weights of the ideals they generate, were determined in [28] under the
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following hypotheses:

G is a finite abelian group of exponent p™ (or 2p™, with p odd)
F, a field with r elements, r with multiplicative order ¢(p™) (mod p™).

In [15], we considered finite abelian groups of type G = G, x G, for
distinct odd primes p and ¢ such that G, is a p-group, G, is a g-group
satisfying the following conditions which will allow us to use the results in
28]:

(17) 2 generates the groups of units U(Z,2) and U(Zp)  (13)

(iii)  ged(p—1,9) = ged(p,g —1) = 1.

The hypothesis (i) above implies that at least one of the primes p and ¢
is congruent to 3 (mod 4). In this section, to fix notations, we shall always
assume that ¢ = 3 (mod 4). As a code (ideal) generated by a primitive
idempotent is always isomorphic to a field, condition (i) also helps us to
have some control on the number of simple components that appear in the
group algebra I, (G, xG,), because of the elementary facts of Number Theory
which were presented in Section 2

Methods to determine idempotent generators for minimal cyclic codes
were given in [5, 6, 71| using representation theory. We develop our results
without appealing to representation theory, working inside the group algebra.

In this section, we shall take r = 2. For two co-cyclic subgroups H of G,
and K of G, consider the respective idempotents ey = H—H*in FyGp, and
ex = K—K*in F,G,. Clearly é; . é\q = qu is a primitive idempotent
of F3G = Fo(G) x Gy).

We claim that idempotents of the form é; - ex are primitive. In fact, we
have (IFQG)@ e = (FaG - C/}’;)GK = (FyG,)ex which is a field. In a similar
way, it follows that idempotents of the form ey - é\q are primitive.

We prove that each idempotent of the form ey - ex decomposes as the

sum of two primitive idempotents in FoG, using the following argument. For
ey = H — H* set a € H*\ H (hence aH is a generator of H*/H). Set

a4 d® e a® if p = 1(mod 4) or

_ ! 14
“ {1+a20—|—a22+---+a2 °if p = 3(mod4) (14)
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and
—2

;a4 d? if p = 1(mod4) or
1+a®+a® + - +a””’, if p=3(mod4)

(15)

For exr = K — K*, set b € K*\ K and define v and v’ as in (14) and (15)
replacing a by b. As ged(p"*(p—1),¢°* ' (¢g—1)) = 2 we can apply Lemma 2.3
to see that

e(H,K) = uH-vK + o'H-v'K and
er(H,K) = uH - VK + oH-vK

are primitive orthogonal idempotents such that e; + e; = egey.
Hence, we have shown the following.

Theorem 4.1. [15, Theorem II1.1] Let G, and G, be abelian p and g-groups,
respectively satisfying the conditions in (13). For a group G, denote by S(G)
the set of subgroups N of G such that G/N # 1 is cyclic. Then the set of
primitive idempotents in Fy|G), x G| is:

G,y Gy
G, ex. KeS(G,),

ey -Gy, He S(G),
61(H,K), GQ(H,K), HES(GP),KGS(G(])

Particularly, in [15, Section IV] we compute, for each minimal code of
Fy(C, x C,), the generating primitive idempotent, its dimension and give
explicitly a basis for it over Fy. We reproduce the results in the sequel.

Let p # ¢ be odd primes and consider the group G = (g | ¢?? = 1).
Denote a = g%, b = ¢g” and write G = C, x C,, with C, = (a) and C, = (b).
Theorem 4.1, in this context, gives the following.

Theorem 4.2. [15, Theorem 4.1] Let G = (a) x (b) be as above and assume
that p and q satisfy (13). Then the primitive idempotents of FG are:

ey = @, e = d(l—@), ey = (1—&)13, es = wo+uv? and es = uwv®+uv,
where u = u(a) and v =v(b) are as in (14) above.

Proposition 4.3. [15, Proposition 4.3] With the same hypothesis as in The-
orem 4.2 we have:
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(7) {eo} is a basis of (F2G)ep.

(i) Bi={a(tl = 1) |1 <j<qg—1} and B, = {Ve, | 1 < j < q—1} are
bases of (F2G)ey.

(iii) Bo={(a? —1)b |1 <j<p—1} and B, = {afey | 1 < j < p—1} are
bases of (FoG)es.
Let s,t € Z be such that s¢ = 1( mod p) and tp = 1( mod q), then:
(i0) {4,99, 8%, 9" > Yy}, with y = (14 a®)(1+ b)es, is a basis of
(FQG)B;),.
(p=D(g=1) 4

) {v.9v,9°y,....9° 2 y}, withy = (1 + a®)(1 4 b')ey, is a basis of
(]FQG)€4.

Proof. The validity of (i) is obvious. To prove (ii), notice that

~

(FoG)ey = (FoG)a(1 — b) = (FoC,) (1 — b)

and this isomorphism maps the element € (FoC,)(1 — b) to zd € (F2Q)e.
As the set {B/ — 1|0 < j < q— 1} is a basis of (FoC,)(1 — b) (see [56,
Proposition 3.2.10, p.133]), it follows that B is a basis of (F2G)e;.

To prove that B; is also a basis of (FoG)ey, we prove first that the set
{bV —b|1<j<q—1}is a basis of (F2C,)(1 —b). To do so, it suffices to
show that it is linearly independent, as it contains precisely ¢ — 1 elements.

Assume that there exist coefficients z; € Fo, 1 < j < ¢ — 1, such that
S a (b —b) = 0. If Y0 oy = 0, then 371 a6/ = 0 s0 x; = 0 for all
j, 1< <q—1.1f Z?:xj = 1 then Z?;}ijj +b = 0 so we must have
z; =1, for all 1 < j < ¢— 1, which implies Z?;i z; = 0, a contradiction.

Because of the isomorphism above, it follows that also B; is a basis of
(]FQG)@l.

The proof of (¢i7) is similar.

To prove (iv), notice that, by Lemma (2.1), dimpg, [(F2G)es] = (’)_1)2&.
Also, (FyG)es = Fa(ges) is a finite field and ges is a root of an irreducible
polynomial of degree %. Hence, the set

(p=1)(a-1)
p 2(1 -1

63}

{637 ges, 92637 -y g
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is a basis of (F2G)es.
We shall prove independently in Lemma 4.5 that the element

Yy = (1 + CZS)<1 + bt)€3 € (F2G>€3
is nonzero. Then {y, gy, ¢°y, . . . ,gw_ly} is also a basis of (FoG)es.
The proof of (v) is a consequence of the isomorphism (FoG)es = (FoG)ey
[

Corollary 4.4. [15, Corollary 4.4] Let G be as above. The dimensions of
the minimal ideals of FoG are:

)
) (FoG)

(17i) dimp,[(FoG)es] = p— 1.
) (F2Gles] = (p—1)(g —1)/2.
) dimg, [(FyGes] = (p—1)(g —1)/2.

In [15, Theorem 4.7] we presented the results on minimum weight for
these codes.

We now compute the weight of a particular element of FoG.

Lemma 4.5. With the same hypothesis of the Theorem 4.2 and notation
above, the element y = (1 + g*7)(1 + g™)es = (1 + a®)(1 + b')es € (F2G)es,
with s,t € 7 such that s¢ = 1( mod p) and tp = 1( mod q), has weight
p+aq.

Remark 4.6. Lemma 4.5, shows that the elements in the bases defined in
parts (iv) and (v) of Proposition 4.3 have all the same weight p + q.

Theorem 4.7. Let G =< g > be an abelian group of order pq as in Theo-
rem 4.2. Then:

(1) w((F2G)eo) = pyg.

(1) w((FoGer) = 2p.

(447) ((IFQG)GQ) = 2q.

(iv) 4 < w(FaGQ)es) <p+q.
(v) 4 <w((F2Ges) <p-+q.
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Proof. (i) follows immediately as (FoG)ey = Fo.
(ii) Recall that e; = a(1—b). Since (b+b%)e; = (b+b?)a € (F2G)ey and
supp(ba) N supp(b?a) = O then w((b+ b?)e;) = 2p. Hence w((F2G)ep) < 2p.
An arbitrary element o € (FoG)e; is of the form

-1 p 1

Q

o= kaallﬂa 1 —b

i,j

kzg 1 — b ] d, with km‘ € ]FQ,

7=0 1:0
hence is also an element of (FyG)a. An element 5 € (FoG)a is of the form

qg—1 p—1

B= Z&Ja Va=> (O t;)Va, with (;; € F,.

7=0 =0

Thus a nonzero element € (FoG)a has weight w(5) = np, with n > 1,
as the elements ¥ a, for different values of j have disjoint supports.

Now as Vae; = be; # ba, the element va ¢ (FuG)e;. Hence, for an
element a € (FyG)e; to have weight p, we must have o = V’a, for some j, a
contradiction. Therefore, 2p is the minimum weight of the code (FyG)e;.

(1ii) follows as (i) interchanging a with b and p with g¢.

For (iv) and (v) it is enough to compute the weight of one of these codes,
since there exists an automorphism of FoG induced by a group automorphism
of G that maps one code into the other, hence they are equivalent.

As (14+a)(1+b)(es+es) =1+a)(1+b)(1+a)(1+b) =(1+a)(l+D),
then (1 +a)(1+40b) € (F2G)(es + e4). Besides, it is easy to prove that there
is no element of weight 2 in (FoG)(e5 + €4) and, as ez, eq € (F2G)(e3 + e4),
then 4 < w[(F2G)(es + e4)] < w[(F2G)ey], for j = 3,4. By Lemma 4.5, we
have w[(F2G)es] < p+q.

O

4.2 Examples

Example 4.8. The upper bound for the weights of the codes in parts (iv)
and (v) of Theorem 4.7 is sharp, as it is attained by the code generated by
the primitive idempotent e = g+ g*> + > + g* + g% + g% + ¢° + ¢'? € FoC}5.
Indeed, the group code I = (FyChs)e has dimension 4 over Fy and it is easy
to see that I = {g’ e|j =0,...,14} U{0}. Hence all non zero elements in
I have weight equal to w(e) = 8.
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However, this is not always the case as we can see below.

Example 4.9. Let Cs3 = (g | ¢** = 1) be the cyclic group with 33 elements
and (FoCs3)e the abelian code generated by the primitive idempotent e =
I+ P+ P+ +E+ P+ + g+ g2+ gh gl 4 gl 4 g8 g
G2+ + gP + ¢+ g2 + ¢+ g3 + g%, Then the weight distribution of
(FyCs3)es is as follows:

Vector Weight 12 114 | 16 | 18 | 20 | 22
Number of Vectors | 165 | 165 | 165 | 330 | 165 | 33

In fact, notice first that the ideal (FoCjss)e is a field and Corollary 4.4
shows that its dimension over Fy is 10, so its group of units, U((FyCs3)e),
has order F3° — 1 = 1023 = 33 - 31.

Notice that C33 = C33-¢ C U((FoCs3)e). Also ((g+g71)e)*> = (g7 +g)e
thus z = (g + g~')e is an element of order equal to either 1 or 31 inside
U((FyCs3)e). But, x # e, as w(z) = 18 and w(e) = 22. Hence U((FyCs3)e) =
033 e X <ZL’>

Computing the 2-cyclotomic classes of x in (z), we have Uj = {0},

Uik = {Qf, 1'2’ IE4, 3787 x16}7 UZ* = {x37 $67 [E12, $247 $17}7

Ur = {25,219, 220,29, 218}, Up = {27, 2", 225, 2, 219},

Ur = {2,222, 213, 2% 22} and Up = {2'%, 2%, 2%, 27, 22},

Now for a fixed 0 < k < 31, we have w(g’z¥) = w(z*), for all 0 < j < 32
and for each 0 <t <6, all y € Uy have the same weight.

Using these facts to compute the weights, we have that:

e There are 33 distinct elements of weight 22 in (FoCj3)es, since w(ez) =
22.

e There are 330 distinct elements in (FoCs3)es with weight 18, as w(x) =
18, w(2°) =18 and Uy NU; = 0.

e There are 165 distinct elements in (FyCss)es with weight 16, since
w(x?®) = 16.

e There are 165 distinct elements in (FyCss)es with weight 20, since
w(z) = 20.

e There are 165 distinct elements in (FyCss)es with weight 12, since
w(zt) =12.
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e There are 165 distinct elements in (FoCs3)es with weight 14, since
w(z®) = 14.

4.3 Ideals in Fo(Cpm x Cpn), m > 2,n > 2

The results in Section 4.1 allow us to obtain the following.

Theorem 4.10. Let p and q satisfy (13). Let G = (a) x (b), with Cpm = (a)
and Cyn = (b). Then the minimal ideals of Fo(Cym X Cyn) are described in
the following table.

Ideal Primitive Dimension Code
Idempotent Weight
I ab 1 "

Ly |a@” +b77") | ¢ Hq—1) |2pmg"

I; (@” +a# | plp—1) |2 g
P'—p He~1(g-1)

I uv + u*v?

. 2
ok 2 2 Pt =g (g—1)
I uv” + uv 5

where 0 <1 <m, 0<j5<n,

—

uw o= a’ (¥ + a7 4+ a7, ifp=1( mod4) or

u = a"(1+a®" +a" 4. 4P, ifp=3( mod 4)

vo= Z;‘;(bQOqj_1 V0T T ifg=1( mod 4) or
vo= WA P YT g =3( mod 4)

Proof. EXERCISE.
]

Example 4.11. Forp =3 and ¢ = 5, let G = C3m X Csn = (a) x (b), with
o(a) = 3™ and o(b) = 5". According to Theorem 4.10, in Fo(Csm X Cyn) with
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1<i<m—1and1<j<n-—1, the code I}; = (uv + u*v?) is generated by
the element

egjl.) = wo+uPv? = a3 (0 + 0¥ 4+ 0 P
+ a3V @ (Y + 07 + a0 + 67,

Using FExample 4.8 and the computations above, we see that w(egjl-)) =

w([;j) — gm—(i+1) . gn—0(+1) . §.

4.4 The case of three primes

The methods of the previous sections can be extended to the general case, but
computations become much more envolved. As an illustration, we show below
how to obtain the primitive idempotents when |G| envolves three distinct
primes.

Theorem 4.12. Let py, po and p3 be three distinct positive odd prime num-
bers such that ged(p;—1, pj—1) =2, for 1 <i# j <3, and 2 generates the
groups of units U(Z,,). Then the primitive idempotents of the group algebra
FoG for the finite abelian group G = Cp, x Cp, x Cp,, with Cp, =< a >,
Cp, =< b> and C,, =< c >, are

eo = abé, e; = ab(1 — ¢), es = a(1 — b)é, e3 = (1 — a)be,

es = (uv + u20?)é, e5 = (v + uv?)é e = (uw + u?w?)b,

er = (uPw + uw?)b eg = (vw + v*w?)a, ey = (V2w + vw?)a
D)(1 — &) + u2vw + uvw?
(1-0)(1 — &) + u*v*w? + uvw
(1 —¢) + v*ow + uwvw? and
(1 — &) + uvw + uvw?,
b), w =w(c) are defined as in (14).

Proof. EXERCISE.
]

Comparing and using both the group algebra techniques of [15, 28] with
the polynomial techniques of [5], Bastos and Guerreiro [7, 8] improved the
presentation of minimal idempotents of length p"g given in [41], correcting
some coefficients in their expressions.
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4.5 Cyclic codes of length 2™

Codes are usually considered over the binary field Fy. For cyclic codes of
length 2™, with a natural m > 1, over a field of odd size, the results obtained
using a polynomial approach by Bakshi and Raka [4], Pruthi [60], Sharma
et al. [68], Sharma et al. [67] and using the group algebra approach, by
Prado [59] in her Ph.D. thesis, are essentially the same. In Chapter 2, Prado
states the general facts:

Theorem 4.13. [59, Lema 2.1.1] Let G = {(a) be a finite cyclic group of
order 2™, m > 1 and F, a finite field of odd characteristic. Let

G=GyDG D---DG,={1}

be the descending chain of all subgroups of G, with G; = (a2i> and |G;| =
2m=t Then the elements eg = G and e¢; = G; — Gi_1, with 1 < i < m, form
a set of orthogonal idempotents of F,G' such that eg + e + -+ + €, = 1.

Theorem 4.14. [59, Lema 2.2.1] Under the same hypothesis of Theorem 4.183,
let I = F,Ge;, with 1 <1 < m, be the ideals of F,G generated by the idem-
potents e; of Theorem 4.13. Then

dim(L;) = 27, d(L)=|G|=2""" for1 <i<m.

The notion of a visible code was given by Ward [75], where he defines
a visible basis for a code as a basis where all its elements have the same
weight. Prado also proved the following for codes of length 2™.

Theorem 4.15. [59, Proposigao 2.3.1] Under the same hypothesis of Theo-
rem 4.13, for 1 <i <m, the set

2 2i-1 1
B; = {ei,ae;,a%e;, ..., a e}

is a visible basis for the code I; = F,Ge;.

In her thesis [59], Prado studied in details the minimal codes generated
by primitive idempotents in F,Com, with ¢ odd. She considered four cases:
q = 1(mod38), ¢ = 3(mod8), ¢ = 5(mod8) and ¢ = 7(mod 8). The order of
¢(mod 2™), the number of simple components of F,Cym and the computation
of idempotents are different for each one of these cases. For ¢ = 3(mod 8) and
q = 5(mod 8) a complete discussion is presented in the thesis and the other
cases are exemplified with particular examples. Here is the case ¢ = 3(mod 8).
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Theorem 4.16. [59, Proposigao 3.1.1] Let F, be a field with q elements such
that ¢ = 3(mod 8) and G = (a|a*" = 1) be a cyclic group of order 2™. The
following elements of the group algebra F,G

l+a+a*+--- 4!

€o

2m .
l—a+a*— - —a*"!
€1 = m
_1—a2+a4—---—a2m_2
€2 = gm—1
o = (1 a4)(1+a23+---+a2’”—2‘°’)(2+aa+aa3)
3= (1—
om
1+a* 4+ 4+a* )2 - aa— ad®
U1t ) )
(1 gy 0 2 4 ad? 4 ad?)
1= (1-
gm—1
o= (1— 8Lt e+ 42— aa® — aa’)
4 gm—1

ey

. (1—a (14a>" N2+ aa® "+ ad®? )
m—1 — -

24
moa (140" N2 —aad® " —ad®?™ )

o (24 @a? T + ad®?" )

Em = (1 —a? ) 93
m—3 m—3

mo1 (2 — ad® " —aa®? )

e =(1-a*"") 5
form a complete set of primitive idempotents of F,G, with a* = =2 in F,.

In Chapter 4 of her thesis, Prado simplifies results of Poli [57] in order to
obtain a clearer description of the principal nilpotent ideals of a group algebra
of finite abelian groups in a modular case (i.e., when char(F,) divides the
order of the group G). She also exemplifies the process of lifting idempotents
modulo a nilpotent ideal.
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FOURTH LECTURE

5 On equivalence of abelian codes

The question of equivalence in Coding Theory has many approaches. In
Section 6.2, we have define combinatorial equivalence and mention some other
definitions. In [51], we found the following for abelian codes. Here G stands
for a finite abelian group and [, is a finite field with ¢ elements.

Definition 5.1. Two abelian codes I; and Iy are G-equivalent if there exists
an automorphism 0 of G whose linear extension to F,G maps Z; on Z,.

The following statements also appeared in [51].

Theorem A [51, Theorem 3.6] Let G be a finite abelian group of odd order
and exponent n and denote by T(n) the number of divisors of n. Then there
exist precisely T(n) non G-equivalent minimal abelian codes in FyG.

Theorem B [51, Theorem 3.9] Let G be a finite abelian group of odd order.
Then two minimal abelian codes in FoG are G-equivalent if and only if they
have the same weight distribution.

Unfortunately both statements are not correct. The errors arise from the
assumption, implicit in the last paragraph of [51, p. 167], that if e and f are
primitive idempotents of FoC),, and FyC),, respectively, then ef is a primitive
idempotent of F5[C,,, x C,]. To the best of our knowledge, these results have
not been used in a wrong way in the literature.

We first communicated the following counterexamples to both Theorems
A and B in [26]. The ommited proofs of this section may be found in [27].

Proposition 5.2. [26, Proposition 3.1] Let p be an odd prime such that 2
generates U(Z,2) and G = {(a) x (b) an abelian group, with o(a) = p* and
o(b) = p. Then FoG has four inequivalent minimal codes, namely, the ones
generated by the idempotents eq = G, e, = b — (a?) x (b), e =a — G and
e3 = (a?) x (b) — G.

Also all minimal codes of FoG' are described in Table 1 with their dimen-
sion and weight. Moreover, the minimal inequivalent codes Iy and I3 have
the same weight distribution.
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’ Code ‘ Primitive Idempotent ‘ Dimension | Minimum Weight

Io €0 =ab=0G 1 p3

I e1 =b— (ar) x {b) P -p 2p

Ly ey =a®b—(a?) x (b) | p*®—p 2p
j=1,....p—1

I es=a—G p—1 2p?

127; €9; = abi —@ P — 1 2p2
i=1,....p—1

I3 ez = (aP) x (b) — G p—1 2p?

Table 1: Minimal codes in Fy(Cp2 x C))

In [26, Proposition 4.2] we showed that Theorem A holds in the special
case of minimal codes in Fo(Cpn x Cpn) and, in [27, Theorem V.3], we gen-
eralize these result for G' a direct product of m > 2 copies of a cyclic group
Cpn, as follows.

Proposition 5.3. [27, Proposition V.3] Let m and r be positive integers and
p a prime number. If G = (Cpr)™ is a finite abelian p-group and F, is a field
of char(F,) # p. Then a primitive idempotent of F,G, different from @, 18
of the form K- en, where K is a subgroup of G isomorphic to (Cpr)™ ' and
en, 1s a primitive idempotent of F,(h), where h € G is such that G = (h) x K
and (h) = C,r.

PROOF: Exercise.
This result can be applied as follows.

Corollary 5.4. [27, Corollary V.4] Let m and r be positive integers, p a
prime number, a finite abelian p-group G = (Cpr)™ and F, a finite field with
q elements such that o(q) = ¢(p") in U(Z,). Then the minimal abelian codes
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in F,G are as follows, where h and K are as in Proposition 5.3.

’ Primitive Idempotent \ Dimension \ Weight
G 1 pm
K(h? —h) p—1 2pr(m=1+(r—1)
K (W — hr) pp—1) |2prtm- bt
R =) | pp—1) |20

R — ) [ p(p—1) | 2ptm D09

K(1—h) pPip—1)| 2ptmY

Consequently, the number of non G-equivalent minimal abelian codes is
r+1=7(p").

PROOF: Exercise.

Corollary 5.5. [27, Corollary V.5] Let n,m > 2 be integers, G = (C,)™
an abelian group and F, a finite field such that ged(q,n) = 1. Then the

primiative idempotents of F,G' are of the form K - ey, where K is a subgroup
of G isomorphic to (C,)™ ', h € G is such that G = K x (h) and ey, is a
primitive idempotent of F,(h).

PROOF: Exercise.

Theorem 5.6. [27, Theorem V.6] Let G = C™ be a direct product of cyclic
groups isomorphic to one another, of exponent n, and F, a finite field such
that char(F,) | |G|. Then, the number of non G-equivalent minimal abelian
codes is precisely T(n).

PROOF': Exercise.
We fully discussed the G-equivalence of abelian codes and established
in [27, Section I1I] a relation between the classes of equivalence of G-equivalent

codes and some classes of isomorphisms of subgroups of G, as follows.

We say that two subgroups H and K of a group G are GG-tsomorphic if
there exists an automorphism ¢ € Aut(G) such that ¥(H) = K.
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Notice that isomorphic subgroups are not necessarily G-isomorphic. For
example, for a prime p, if G = (a) x (b) with o(a) = p* and o(b) = p,
then (a?) and (b) are isomorphic, as they are both cyclic groups of order p.
However, they are not G-isomorphic, since (b) is contained, as a subgroup
of index p, only in (a?) x (b) while (a?) is contained in (a) and in (a'b), for
all 1 <7 < p—1. An automorphism of G carrying one to the other would
preserve also inclusions.

We shall denote by P(FF,G) the set of all primitive idempotents of F,G.
Recall the notion of co-cyclic subgroup (Definition 3.2). Then, under the
same hypotheses of Lemma 3.12, the following map is well-defined

D : PF,G) — Seo(G)U{G}
e£G  —  ®e)=H,, (16)
G — G

where H, is the unique co-cyclic subgroup of G such that e - ey, = e.

Theorem 5.7. [27, Theorem 11.9] Let G be a finite abelian group, F, a field
such that char(F,) | |G| and H € S..(G). Then ey is the sum of all primitive
idempotents e € P(F,G) such that ®(e) = H.

The study of the G-equivalence of ideals involves to know how the group
of automorphisms Aut(G) acts on the lattice of the subgroups of G and hence
on the idempotents in the group algebra which arise from these subgroups.
From now on, we use the same notation for an automorphism of the group
G and its linear extension to the group algebra F,G. The following results
from [27] relate subgroups in G and idempotents in F,G.

Lemma 5.8. [27, Lemma II1.1] Let G be a finite abelian group, H € S..(G)
and ey its corresponding idempotent defined as in (10). Then, for any ¢ €
Aut(G), we have Y¥(en) = ey and (G) = G.

Proof. By Lemma 3.9, H = H, x Hp, x --- x H,,, where Hy, is the p;-
Sylow subgroup of H which is either equal to G, (the p;-Sylow subgroup
of G) or co-cyclic in G, , for each 1 < i < t. Since ¢ € Aut(G), v(H) =
(Hp, ) }X(Hy, )% - -x(H,y,). Then each 1p(H,,) is either equal to G, the p;-
Sylow subgroup of ¢)(H), or is also co-cyclic in G,,. Hence ¢)(HE ) = 1 (H)? .

Clearly, (G) = G, for all ¢ € Aut(G). 0
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For finite abelian groups, Propositions 5.9, 5.10 and 5.11 below estab-
lish a correspondence between G-equivalent minimal ideals in F,G and G-
isomorphic subgroups of G.

Proposition 5.9. [27, Proposition II1.2] Let G be a finite abelian group and
F, a field such that char(F,) | |G|. Ife, ¢ € P(F,G) are such that ¢(e) = ¢,
for some automorphism 1 € Aut(G) linearly extended to F,G, then

w(He> = H@Z}(e) = He’7
i.e., H, and H, are G-isomorphic.
We set LAut(G) = {¢ € Aut(G) |¢Y(H) = H, for all H < G}.

Proposition 5.10. [27, Proposition II1.7] Let G be a finite abelian group
and F, a field such that char(F,) t |G|. If ¢, " € P(F,G) are both different
from G and Hy = H.r, then there exists an automorphism 1 € LAut(G)
whose linear extension to F,G maps €' to e”.

The following is the converse of Proposition 5.9.

Proposition 5.11. [27, Proposition 1I1.8] Let G be a finite abelian group
and F, a field such that char(F,) ) |G|. If ¢, " € P(F,G), both different
from @, are such that Y(Hy) = Her, for some ¢ € Aut(G), then there exists
an automorphism 6 € Aut(G) whose linear extension to F,G maps €' to e”,
i.e., the ideals of F,G generated by € and e" are G-equivalent.

Proof. Since 1p(H.) = Her, for 1» € Aut(G), by Lemma 5.8, we have

V(e )en, = V() vlen,) = (e en,) = V().

Hence, by uniqueness, we have Hyy = H.». Now, by Proposition 5.10, there
exists an automorphism § € LAut(G) such that 6(¢(e’)) = €”. Therefore,
taking 6 = Ji € Aut(G), the result follows. O

As an application of Propositions 5.9 and 5.11, in [27, Section IV] we
consider the minimal codes in Fy(Cyn x C,), for an odd prime p and n > 3.
Its proof is similar to the proof of Proposition 5.2. This gives a whole family
of counterexamples to Theorem A.
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] Code Dimension \ Weight ‘

Lo = {ab) = (G) 1 P
L = ({a?) x (b) = G) p—1 2p"

I; = (ab’ — G) p—1 2p"

1=0,...,p—1

L = ((a7") x (b) — (a?) x (b)) p(p—1 2p"
Ly = (a?b' — (a?) x (b)) plp—1) | 2p"

Iy = (") x (b) = {a" ") x (b)) | P (p—1) | 2p"*H!

Iy = (@b — (@) x (b)) P —1) | 2
i=1,...,p—1

L1 = ((b) — (@) x (b)) P -1 | 2p
L1y = (a0 — (") x (b)) | p™ V(p—1)| 2p
1=1,...,p—1

Table 2: Minimal codes in Fy(Cyn x C)

Proposition 5.12. [27, Theorem IV.3] Let n > 3 be a positive integer and p
an odd prime such that 2 generates U(Zyn) and G = (a) x (b) be an abelian
group, with o(a) = p" and o(b) = p. Then the minimal codes of FoG are
described in Table 2. Moreover, there are 2n inequivalent minimal codes in

]FQ (Cpn X Cp) .

In the first column of Table 3 we give a complete list of representatives
of classes of G-isomorphisms of subgroups of C,» x C),, and, in the second
column, we list the corresponding representatives of G-equivalent classes of
minimal codes of Fo(Cpn % Cy).

5.1 Codes of length p" also for non-cyclic abelian groups

Let F, be a finite field with ¢ elements and G a cyclic group of order p”
generated by a such that ged(¢,p) = 1. Then the group algebra F,G is
semisimple and each of its ideals is a direct sum of minimal ones. Under
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] Subgroups \ Codes ‘

G I =(G)
(a) Iy =(a—G)
(a) x (D) I = ({a) x {b) ~ G)
(aPb) Iy, = (aPb — (aP) w
()< 0) | b= (@) x () = (@) x )

<a‘p‘k‘b> Liirs = <c§’“\b‘—. (a7 x (b))
() 5 () | Tirs = (@1 x (8) = (@) x ()

o~

{b) Ly = (b—{a”" 1) x (b))

Table 3:

the conditions (b) and (c) of Corollary 3.5, the minimal ideals (codes) are
generated by the primitive idempotents given by Theorem 3.6.

In her thesis [49], Melo first considered all cyclic codes of F,G, that is,
not only the minimals and computed dimension and minimum weights of
these codes, using the following result.

Lemma 5.13. [25, Proposi¢ao 2.1] Under the hypothesis above and consid-
ering I; the minimal ideal of F,G generated by the primitive idempotent e;,
as in (7), for 1 <i <n, we have

d(L;) =2|Gi| = 2p""  and dimg, I; = o(p") =p" —p' 1,
and a basis for I; is
B;={a(1-b)G;|a€c A,1+£be B},

with A a transversal of G; in G;_1 and B a transversal of G; in G. For the
minimal code 1y = (F,G)eo, we have

w(ly) =p" and  dimg, Iy = 1.

Considering that the dimension of a direct sum of ideals is the sum of
their dimensions, Melo [49, 50] focused her attention on computing minimum
weight of the direct sum of minimal ideals as follows.
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Theorem 5.14. Under the hypothesis of this section and of Lemma 5.13,
we have:

(i) [49, Lema 2.3] if 0 < i < j, then w(I; & I;) = 2|G,| = 2p™ .

(ii) [49, Lema 2.4] If 1 < j, then w(ly & I;) = 2|G,| = 2p™ 7.

(1ii) [49, Lema 2.5] If I = Iy & Iy, then w(l) = |G| = p™ .

(iv) [49, Lema 2.6] If I = @._,(F,G)e;, then I = (FqG)é\t and w(l) =
|G| =p" .

(v) [49, Lema 2.7) If I = @;_,(F,G)e;,, with 0 < iy < iy < -+ < i, and
€ + €yt Fe, #Fegter+ -+ ey, then w(l) =2|G,,| = 2p™ ™.

Melo [49, Section 2.3] also considered the distribution of weights for these
cyclic codes. Furthermore, in [49, Chapter 3], she briefly compared cyclic
and non-cyclic abelian codes of length p?, fully exploring some examples
using GAP Wedderga package.

For the group G = C, x C,, = (a) x (b) and F, a finite field of ¢ elements
such that g generates U(Z,), the idempotents of F,G are

eozé,elza—a,eg:B—a,fi:c;gi—@, with 1 <i<p-—1.

Note that if H and K are any among the subgroups (a), (b),{ab’), with
1<i<p-1, then G = H x K. For the idempotents e = H — G and
e = K — (G associated to H and K, respectively, and considering the ideal

I =(F,Gea (F,G)f, Melo proved:

Theorem 5.15. [49, Teorema 3.2.1] The minimum weight of the ideal I is
d(I) = 2p — 2 and its dimension is dimg, I = 2p — 2.

5.2 Essential idempotents an one weight cyclic codes

In [16], a special type of idempotent elements in the semisimple group algebra
of a finite abelian group is considered, the so called essencial idempotents.
These idempotents were previously considered by Bakshi, Raka and Sharma
in [6], where they were called non-degenerate, in the special case of group
algebras of cyclic groups over finite fields.

Definition 5.16. In a semisimple group algebra F,G of a finite group G,
a primitive idempotent e is an essential idempotent if eH = 0, for every
subgroup H # {1} in G. A minimal ideal of F,G is called an essential ideal
if it is generated by an essential idempotent.
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The following is a characterization of essential idempotents.

Proposition 5.17. [16, Proposition 2.3] Let e € F,G be a primitive central
tdempotent. Then e is essential if and only if the map m : G — Ge s a
group isomorphism.

Corollary 5.18. [16, Corollary 2.4] If G is an abelian group and F,G con-
tains an essential idempotent, then G is cyclic.

For cyclic groups, Chalom, Ferraz and Polcino Milies [16] proved the
existence of a non-zero central idempotent which is the sum of all essential
idempotents. They also give a criteria to determine essential idempotents
using the well-known Galois descent method and, as a consequence, compute
the number of these idempotents in F,C,,, for C,, a cyclic group of order n.

In [16, Section 3| they show that the coeficients of the primitive idem-
potents of a semisimple group algebra F,A, for A is a finite abelian group,
can be easily computed as a concatenation of the coeficients of an essential
idempotent in the group algebras of a cyclic factor of A. In terms of coding
theory, this will imply that every minimal abelian code generated by a non
essential idempotent is a repetition code: their elements can be written as
repetitions of the coeficients of elements in a cyclic code generated by an
essential idempotent. In particular, one application of this is to determine
the weight distribution of all codes when the weight distributions of codes
generated by essential idempotents are known.

Nascimento, in her Ph.D. Thesis [52], uses this notion of essential idem-
potents to state conditions for a cyclic code in F,C), to be a one-weight code.
Besides, she describes precisely the form of the elements on such a code and
determines the number of one-weight codes in F,C,. She also constructs
examples of two weight codes in F,(C,, x C,,) and gives conditions to ensure
that a code is of constant weight in F,A, for A an abelian group. Her work
simplifies many of the proofs given by Vega [73] for the same facts. In the
literature there is also an interesting paper by Wood [79] on linear codes of
constant weight.

FIFTH LECTURE
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6 Non Abelian Codes

6.1 Dihedral and Quaternion Codes

As a natural way to proceed, Theorem 3.3 is used by Dutra [23, 25] in her
Ph.D. thesis to compute idempotents for non abelian group codes, particu-
larly, for dihedral and quaternion groups. For the proofs of the results pre-
sented in this section, the thesis can be fully accessed in http://www.mat.ufmg.br/site/pos-
principa/mestrado-e-doutorado/teses/
For n > 1, Dutra considered the semisimple group algebras F,D,, of the
dihedral groups D, = {(a,b|a™ = b* = 1, bab = a™') over a finite field F,
and gave conditions under which the number of its simple components is
minimum, that is, the same as for the rational group algebra QD,,. These
conditions are stated in the following theorem.

Theorem 6.1. [23, Teorema 2.2| Let F, be a field with q elements and D,
the dihedral group with 2n elements such that ged(q,2n) = 1. Let p,p1 and
p2 be distinct odd primes and m,m; and my be positive integers. Then F,D,
and QD,, have the same number of simple components if and only if one of
the following conditions occurs:

(i) n=2 or4 and q is odd.

(ii) n = 2™, with m > 3 and congruent to 3 or 5 modulo 8.

(i1i) n = p™ and the class q generates the group of units U(Zym).

(iv) n = p™, the class q generates the group U*(Zym) = {x* |z € U(Zym)}
and —1 1is not a square modulo p™.

(v) n=2p™ and the class q generates the group of units U(Zym ).

(vi) n = 2p™, G generates the group U*(Zym) = {z* |z € U(Zpn)} and
—1 is not a square modulo p™.

(vii) n = 4p™, 4 divides ¢(p™) and the class G generates the group U(Zym).

(viit) n = 4p™, 4 does not divide ¢(p™), ¢ = 1(mod4) and the class G
generates the group U(Zym).

(ix) n = 4p™, 4 does not divide ¢(p™), ¢ = —1(mod4) and the class q
has order ¢(p™)/2.

(x) n = p{"py2, with ged(o(p™), d(ps?)) = 2 and q or —q has order
o(p1"'py"*) /2 modulo pY*' py™.

(xi) n = 2p{"py'?, with ged(d(p]™), ¢(py?)) = 2 and q or —q has order
o(p1"'py?)/2 modulo pY* py™.

34



Under such conditions, Dutra computed the set of minimal codes of F,D,,,
their dimensions, minimum weights and bases for these codes as follows.

Theorem 6.2. [23, Proposi¢ao 3.1] Let ¢ and n be integers related as in
conditions (i) and (ii) of Theorem 6.1. If C is a dihedral code of length 2n
generated by the idempotent e, then C has dimension and minimum weight
described in the table below.

e dimp,c | w(C)

ba 1 om+l
(1-"bja 1 | 2mt!
b(a2 — Q) 1 | omtt
(1-b)(a2—a)| 1 gm-+1
(agi _ agi—l) 91 gm—i+1

Theorem 6.3. [23, Proposicao 3.2] Let q and n be integers related as in
conditions (iii) and (iv) of Theorem 6.1. If C is a dihedral code of length 2n
generated by the idempotent e, then C has dimension and minimum weight
described in the table below.

e dimg ¢ | w(C)

ba 1| 2pm
(1—b)a 1 2p™
(a7 —a") | 20(p") | 2p™

Theorem 6.4. [23, Proposigao 3.3] Let ¢ and n be integers related as in
conditions (v) to (ix) of Theorem 6.1. For n = p{"py? with py = 2,my; =1
or 2 and py an odd prime, if C is a dihedral code of length 2n generated by
the idempotent eies, then C has dimension and minimum weight described in
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the table below.

e e dimp, ¢ w(C)
bC/'?;nl Cp;nz 1 2py" Py
(1-b)Cpm Cyma 1 2py"'py”
b(cp’f’l‘l Cpm1) Cpma 1 2py" Py
(1= b)(Cpmir = Cym) Cyma 1 21"y

C’prlm Cpgnrg — Cp;nrjﬂ 20(p) 2p7" py* 7
Comi—i = C i Cyr2 26(p1) 2p7" ' pl?
Com—i = Cmi—it1 | Coma—y = Cyma—sr | 20(p})20(p)) | 407" 'py* ™

Theorem 6.5. [23, Proposigao 3.4] Let ¢ and n = p{"*py?, with p; and py odd
distinct prime numbers, integers related as in condition (x) of Theorem 6.1.
If C is a dihedral code of length 2n generated by the idempotent eies, then C
has dimension and minimum weight described in the table below.

a €2 dimg ¢ w(C)

bCop Cpp2 1 2p1" py”

(1= b)Cyp Cpp2 1 2p}" py?
Cpm Coma-s = Cmamgnr | 20(p) 2p7phe
Gy = Gy Gy 20(]) | 200"y
Cymi = Comiint | Cmasg = Cmaminr | 20(p1)26(p) Apipye

Theorem 6.6. [23, Proposigao 3.5] Let ¢ and n = 2p{"'py?, with p; and
p2 odd distinct prime numbers, integers related as in condition (xi) of The-
orem 6.1. If C is a dihedral code of length 2n generated by the idempotent
epere2, then C has dimension and minimum weight described in the table
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below.

eg eq eo diquC w(C)
= ™y m
bCs cpyln1 cp;nQ 1 ap " 1py*?
R m m
(1 —b)C2 Cp;nl CP;nQ 1 ap*lpyt?
= ™
b(1 — Ca) cp;n1 cp;n2 1 4p]"1py"?
= — ™y m
(1-5)(1— C3) cpyln1 cp;n2 1 1
Cz C m Comg—i = C my—j+1 26(p3) appy 2T
Py Py Po
— — — — 7 my]—1_mg
Ca Cp;nl—i, - Cp'{n,l—71+1 Cp;nz 2¢(p7) 4p; 2
— = — e Fi my _mo—j
(1-C2) Cp;"l Cprnz—j - Cp;anj#»l 2¢(p2) 4p; "y
(1-2C2) C mi—i = C my—it1 C mo 26(p1) apy"t T py'?
Py Py P2 - -
Ca Comg—i = C my—it1 | Comg—j = C my—jt1 | 26(p])26(p3) | 8p"t "p3"2 77
Py Py Py Py
(1—C2) Comp—i = C mi—it1 | Comg—j = C my—jt1 | 26(p])26(p3) | 8p7"* "p3"2 77
Py Py P2 P2

Similar results were obtained by Dutra [23, Capitulos 4 e 5] for group
codes over the quaternion groups.

6.2 Metacyclic Codes and Equivalence Questions

A group G is metacyclic if it contains a normal cyclic subgroup H such
that G/H is also cyclic. It is easy to prove that a finite metacyclic group has
the following presentation

G = <a, bla™ =1,0" =a®, bab™' = ai>, (17)

with a and b such that H = (a) and G/H = (bH), for m,n € N and
1 < s,i < m such that s|m, m|s(i — 1), i < m, ged(i,m) = 1. For s = m,
we say that G is a split metacyclic group and, in this case, G is the
semi-direct product G = (a) x (b).

Earlier approaches on non-abelian metacyclic codes include results ob-
tained by Sabin [62] and Sabin and Lomonaco [63], where we also find the
following definition of equivalence of codes.

Definition 6.7. Let G and H be two finite groups of the same order and
F, a field. A combinatorial equivalence is a vector space isomorphism
Y F,G — F,H induced by a bijection ¢ : G — H.

Two codes C C F,G and C c F,H are said to be combinatorially

equivalent if there erists a combinatorial equivalence ¢ : F,G — F,H
such that ¥(C) = C.
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For G a metacyclic finite group such that ged(q,|G|) = 1, Sabin and
Lomonaco [63], by using group representation theory, proved that codes
generated by central idempotents in F,G are combinatorially equivalent to
abelian codes. This motivated the search for left minimal codes in F,G.

Considering the group algebra of a non-abelian split metacyclic group
G over a finite field F,, Assuena (3] in his Ph.D. thesis, found a necessary
condition under which F,G has the minimum number of simple components.

Theorem 6.8. [3, Teorema 2.1.16] Let G be a metacyclic group and F, a
finite field with q elements such that ged(q, |G|) = 1. If the number of simple
components of the group algebra F,G is minimal, then U(Z,) = (q) and
U(Zm) = (i){q)-

In his thesis, Assuena used the structure of the group to determine the
minimal metacyclic codes for a non abelian split metacyclic group of order
p™", with p and ¢ odd prime numbers, under the conditions that F,G is
semisimple and the number of simple components of F;,G' is minimum.

For Dpm, the dihedral group of order 2p™, and F, a finite field such that
ged(q,2p™) = 1, he constructs left minimal codes that are not combina-
torially equivalent to abelian codes and also exhibits one case where a left
minimal code is more efficient then the abelian ones of the same length,
giving a positive answer to a conjecture of Sabin and Lomonaco [63].

Further studies on group codes are given in [11], where it is defined a
(left) G-code as any linear (left) code of length n over a field F, which is
the image of a (left) ideal of a group algebra via an isomorphism F,G — Fy
which maps the finite group G of order n to the standard basis of Fy. Their
ideas are used in [64] to study two-sided and abelian group ring codes and
in [30], where Garcia Pillado et al. first communicated an example of a non-
abelian Sj-code over F5. The full proof of this computacional construction
was given later in [31]. New examples of non-abelian G-codes are given in [32]
and, particularly, using the group SL(2;F3) instead of the symmetric group,
they prove, without using a computer for it, that there is a code over I,
of length 24, dimension 6 and minimal weight 10. This code has greater
minimum distance than any abelian group code having the same length and
dimension over [y, and, moreover, it has the greatest minimum weight among
all binary linear codes with the same length and dimension.

In [24] Elia and Garcia Pillado give an overview of the properties of ideal
group codes defined as principal ideals in the group algebra of a finite group
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G over a finite field F, and present their encoding and syndrome decoding.
They also describe in detail a correction of a single error, using syndromes.

7 Codes over rings

In the 1990’s many papers on cyclic codes over rings started to appear,
motivated by the fact that good non linear binary codes were related to
linear codes over Z4 (see, for example, [17, 38, 55]). The paper [36] by
Hammons et al. was even the best paper award for Information Theory of
the IEEE-IT Society in the 1996 Symposium of IT - Whistler (Canada).
Wood [77] addressed the problem of duality for modules over finite chain
rings and applied it to equivalence of codes and to the extension theorem of
MacWilliams.

In [14] Carlderbank e Sloane determine the structure of cyclic codes over
Zym. Later on, in [38] Kanwar and Lépez-Permouth did the same, but with
different proofs. With the same techniques, Wan [74] extended the results
from [38] to cyclic codes over Galois rings. Em 1999, Norton and Salagean-
Mandache in [53] extended results of [14, 38] to cyclic codes over finite chain
rings and later on, in 2004, Dinh and Lépez-Permouth in [19] prove the same
results in a different way.

Codes over rings developed even more in the beginning of the 21st century
that they deserved a CIMPA Summer School in 2008 [72]. Further works can
be found in [18], [42], [48]. A small survey on the subject is [33].

In his thesis [69, 70], Silva used group ring approach to characterize cyclic
codes over chain rings, their duals and some conditions on self-dual codes,
simplifying the proofs and improving results given in [19].

Let R be a finite commutative chain ring with unity such that | R |= ¢*,
for a prime ¢. For M the maximal ideal of R, the quotient R = % is a field
and we work under the hypotesis that ¢ {| G |, for a finite cyclic group G.
Under these conditions, the group ring RG is a principal ideal ring, as Silva
proves in [69, Teorema 2.1.9], after characterizing all the ideals in RG. The
following general fact is a basis for all this work.

Theorem 7.1. [69, Teorema 2.1.2] Let R be a local ring, with mazimal ideal
M =< a> and | R |= ¢*, and G a cyclic group of order n such that q { n.
If {€o, ...,€m} is a full set of primitive orthogonal idempotents in RG, then
{eg, ...,em} is a full set of primitive orthogonal idempotents in RG.
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The next theorem characterizes all cyclic codes of length n over the local
ring RGe; (see [69, Corollary 11.31]), for R a chain ring and e; a primitive
orthogonal idempotent, translating results of [19] to the group ring setting.
To simplify the notation we write (RG)a’e; as (a’e;).

Theorem 7.2. [69, Teorema 2.1.3] Let R be a commutative finite chain ring
with unity, | R |= ¢, M = {(a) the mazimal ideal of R and t the nilpotency
index o indice de nilpoténcia of a in R. Let G = C,, such that g tn. If I is
an ideal of RGe;, then I is of the form I = <akiei>, with 0 < k; < 't.

Corollary 7.3. [69, Corollary 2.1.4] Under the same hypothesis of Theo-
rem 7.2, the ideal RGe; is indecomposable in RG and the code {a'"'e;) is
manimal.

From this we have a characterization of all cyclic codes of length n over
chain rings.

Theorem 7.4. Let R be a commutative finite chain ring with unity, | R |=
q", M = (a) the mazimal ideal of R and t the nilpotency index of a in R. Let
G =190/ gy =1) be such that qtn and {eo, ...,em} be a full set of primitive
orthogonal idempotents of RG. Then:

(i) [69, Teorema 2.1.5] If I is an ideal of RG, then I is of the form
I=1)&®..®&l1,, with I, = <a"”ei>, for0 <k; <t.

(i1) [69, Teorema 2.1.8] The number of such codes of length n over R is
(t+1)m*

One important data in a code is its number of words. Next theorem gives
this number for cyclic codes over finite chain rings. We have
Rla] _ Rlz] Rlx]
RG = RGey @ ... ® RGe,, ~ ~ PD...06——:,
(zn =1) — (fo) (fm)
where f; are irreducible factors of x” — 1 and , after reordering the indexes

if necessary, we have RGe; ~ ™4 Hence, | RGe; |=| R [“#, for w; = deg(f;).

— (fi)

Theorem 7.5. [69, Teorema 2.1.7] Under the same hypothesis of Theo-
rem 7.2, let C' be a cyclic code of the form C = <ak"167;1> D ... D <akireir>

> (= ki)w,
in RG. The the number of words in C is | C |=| R |s=1
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Considering * : RG — RG the classical involution, Silva also gives a
description of the dual cyclic codes in RG as follows.

Theorem 7.6. [69, Teorema 2.2.3] Under the same hypothesis of Theo-
rem 7.4, the dual code of a cyclic code C' = <ak°eo> D ... D <akmem>, with
0<k <t isC-=d>", <at_k”er*>.

As in [19], Silva in [69, Section 2.2] states the conditions for the ring R
under which the group ring RG admits self-dual codes.

Chapter 3 of [69] is dedicated to codes over chain rings of length p", for
a prime p, extending the results of Ferraz and Milies [28] and of Melo [49]
to this context. Silva also proves in [69, Teorema 3.0.14] some facts about
the size of such codes and computes minimum weight of these codes [69,
Teoremas 3.0.15 to 3.0.18], similarly to Theorem 5.14. He also discusses
about free codes in RG in [69, Section 3.1] and about MDS codes of length
p™ over R in [69, Section 3.2]. Finally, in [69, Chapter 4], Silva proves all
such results for cyclic codes of length 2p™ over finite chain rings.

There are also interesting discussion on equivalence of linear codes over
rings in [20, 21, 76, 78].
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