Técnicas Computacionais em Probabilidade e Estatística I

Aula V

Chang Chiann
MAE 5704- IME/USP
1º Sem/2008

Análise de 2 conjunto de dados

Modelo Probabilístico:

2 conjuntos de dados → amostras de duas v.a.s distintas.

Ex.: idade e peso

3 casos:

- 2 variáveis quantitativas;
- 2 variáveis qualitativas;
- 1 qualitativa e outra quantitativa.

Analisar dois conjuntos de dados por meio de:

- a) Métodos numéricos, ou seja, calcular medidas de posição e dispersão para cada conjunto de dados separadamente e, depois, medidas de associação entre os dois conjuntos;
- b) Métodos gráficos, a saber, aqueles já vistos para cada conjunto e, depois, gráficos para analisar as relações entre eles, como gráficos de dispersão e gráficos Q-Q(quantis-quantis).

Duas Variáveis Qualitativas

Os dados podem ser resumidos construindose uma tabela de distribuição de freqüências, que quantifica a freqüência das distintas categorias.

Variáveis qualitativas no arquivo *PULSE*

Ran

Smokes

Sex

Activity

Variáveis qualitativas no arquivo *PULSE*

```
MTB > Tally 'Sex' 'Smokes' 'Activity';
SUBC> Counts;
SUBC> Percents.
```

Summary Statistics for Discrete Variables

Sex	Count	Percent	Smokes	Count	Percent
1	57	61,96	1	28	30,43
2	35	38,04	2	64	69 , 57
N=	92		N=	92	

Activity	Count	Percent
0	1	1,09
1	9	9,78
2	61	66,30
3	21	22,83
N=	92	

Podemos também construir tabelas de <u>freqüências</u> conjuntas (tabelas de contingência), relacionando duas variáveis qualitativas.

Exemplo 1: Há indícios de associação entre Sexo e Hábito de fumar?

	Hábito de Fumar					
Sexo	Fuma Não Fuma Tota					
Masculino	20	37	57			
Feminino	8	27	35			
Total	28	64	92			

Qual o significado dos valores desta tabela? Como concluir?

Verificar associação através da:

- porcentagem segundo as colunas, ou
- porcentagem segundo as linhas.

	Hábito d	de Fumar				
Sexo	Fuma Não Fuma Total					
Masculino	71,43%	57,81%	61,96%			
Feminino	28,57%	42,19%	38,04%			
Total	100%	100%	100%			

Qual o significado dos valores desta tabela?

Como concluir?

Variáveis Qualitativas

Gráficos

- •Gráfico de setores
- •Gráfico de barras

Gráfico de setores

Um círculo é dividido em tantos setores quantas forem as categorias da variável. A área de cada setor é proporcional à freqüência da categoria

Arquivo *PULSE* — Gráfico de setores para a variável *Activity*

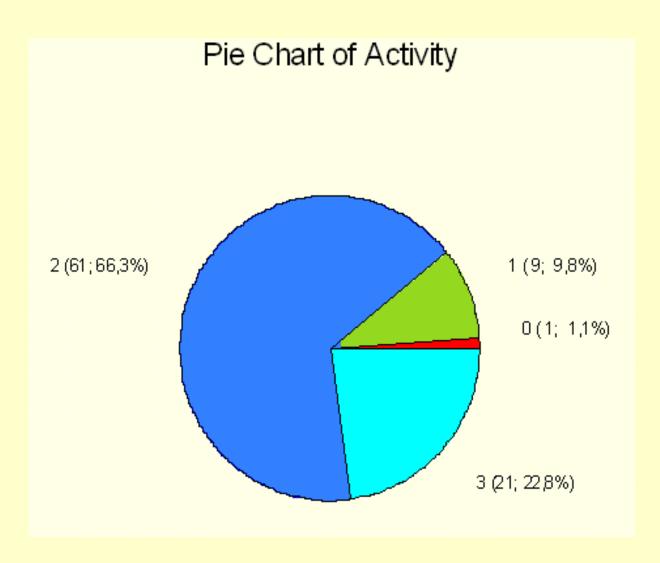
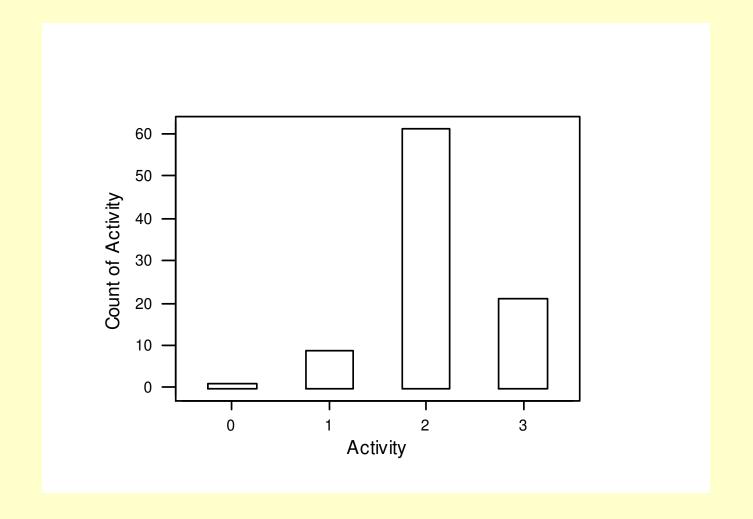


Gráfico de barras

Sobre um eixo, são representados retângulos, um para cada categoria da variável. A altura do retângulo é proporcional à freqüência da categoria

Arquivo *PULSE* — Gráfico de barras para a variável *Activity*

MTB > Chart C8



Testes de Independência

Objetivo: Verificar se existe independência entre duas variáveis medidas nas mesmas unidades experimentais.

Exemplo: Deseja-se verificar se existe dependência entre a renda e o número de filhos em famílias de uma cidade.

 250 famílias escolhidas ao acaso forneceram a tabela a seguir:

Pondo (P¢) —	Número de filhos				
Renda (R\$) -	0	1	2	+ de 2	Total
menos de 2000	15	27	50	43	135
2000 a 5000	25	30	12	8	75
5000 ou mais	8	13	9	10	40
Total	48	70	71	61	250

Em geral, os dados referem-se a mensurações de duas características (*A* e *B*) feitas em *n* unidades experimentais, que são apresentadas conforme a seguinte tabela:

AB	B ₁	B_2		B_s	Total
A_1	<i>n</i> ₁₁	<i>n</i> ₁₂		n_{1s}	n _{1•}
A_2	<i>n</i> ₂₁	<i>n</i> ₂₂	• • •	n_{2s}	n _{2•}
		• • •	•••		
A_r	n _{r1}	<i>n</i> _{r2}	•••	n _{rs}	n _{r•}
Total	n _{•1}	n _{•2}		n _{•s}	n

Hipóteses a serem testadas – **Teste de** independência:

H: A e B são variáveis independentes

A: As variáveis A e B não são independentes

 \rightarrow Quantas observações devemos ter em cada casela, se A e B forem independentes?

Se A e B forem independentes, temos que, para todos os possíveis pares (A_i e B_i):

$$P(A_i \cap B_j) = p_{ij} = P(A_i) \times P(B_j)$$
, para $i = 1, 2, ..., r \in j = 1, 2, ..., s$.

Logo, o *número esperado de observações com as características* $(A_i e B_j)$, entre as n observações sob a hipótese de independência, é dado por $n_i n_j$

 $E_{ij} = n \times p_{ij} = n \times p_{i.} \times p_{.j} = n \times \frac{n_{i.}}{n} \times \frac{n_{.j}}{n}$

sendo p_{ij} a proporção de observações com as características (A_i e B_i).

Assim, $E_{ij} = \frac{n_{i.} \times n_{.j}}{n}$

O processo deve ser repetido para todas as caselas (i, j).

Distância entre os valores observados e os valores esperados sob a suposição de independência:

$$\chi^{2} = \sum_{j=1}^{s} \frac{(O_{j} - E_{ij})^{2}}{E_{ij}}$$
Estatística do teste de independência

em que $O_{ij} = n_{ij}$ representa o total de observações na casela (i, j).

Supondo H verdadeira,

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} \sim \chi_{q}^{2}$$

sendo $q = (r-1) \times (s-1)$ graus de liberdade.

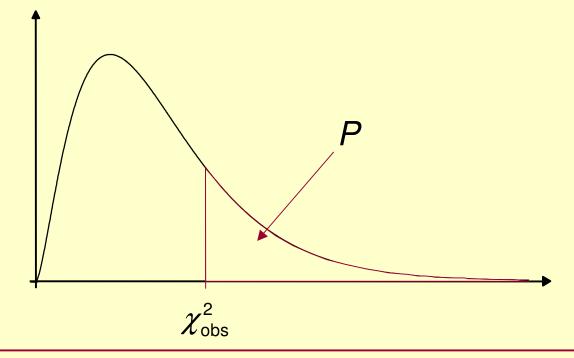
Regra de decisão:

Pode ser baseada no nível descritivo *P*, neste caso

$$P = P(\chi_q^2 \ge \chi_{\text{obs}}^2),$$

em que $\chi^2_{\rm obs}$ é o valor calculado, a partir dos dados, usando a expressão apresentada para χ^2 .

Graficamente:



Se, para α fixado, obtemos $P \le \alpha$, rejeitamos a hipótese H de independência.

Exemplo (continuação):

Estudo da dependência entre renda e o número de filhos

250 famílias foram escolhidas ao acaso

Hipóteses H: O número de filhos e a renda são independentes

A: Existe dependência entre o número de filhos e a

renda

Pondo (P¢) —		Núm	ero de	filhos	
Renda (R\$) -	0	1	2	+ de 2	Total
menos de 2000	15	27	50	43	135
2000 a 5000	25	30	12	8	75
5000 ou mais	8	13	9	10	40
Total	48	70	71	61	250

Exemplo do cálculo dos valores esperados sob H (independência):

• Número esperado de famílias sem filhos e renda menor que R\$ 2000:

$$E_{11} = \frac{48 \times 135}{250} = 25,92$$
.

Tabela de valores observados e esperados (entre parênteses)

Dende (Dê)	Número de filhos				
Renda (R\$)	0	1	2	+ de 2	Total
menos de 2000	15(25,92)	27(37,80)	50(38,34)	43(32,94)	135
2000 a 5000	25(14,40)	30(21,00)	12(21,30)	8(18,30)	75
5000 ou mais	8(7,68)	13(11,20)	9(11,36)	10(9,76)	40
Total	48	70	71	61	250

1 filho e renda de R\$ 2000 a R\$ 5000:

$$E_{22} = \frac{70 \times 75}{250} = 21,00$$

2 ou + filhos e renda de R\$ 5000 ou mais:

$$E_{34} = \frac{61 \times 40}{250} = 9,76$$

Lembre-se:
$$E_{ij} = \frac{n_{i.} \times n_{.j}}{n_{..}}$$

Cálculo da estatística de qui-quadrado:

Panda (P¢)	Número de filhos					
Renda (R\$)	0	1	2	+ de 2	Total	
menos de 2000	15(25,92)	27(37,80)	50(38,34)	43(32,94)	135	
2000 a 5000	25 (14,40)	30(21,00)	12 (21,30)	8(18,30)	75	
5000 ou mais	8(7,68)	13(11,20)	9(11,36)	10(9,76)	40	
Total	48	70	71	61	250	

$$\chi_{obs}^{2} = \frac{\left(15 - 25,92\right)^{2}}{25,92} + \frac{\left(25 - 14,40\right)^{2}}{14,40} + \frac{\left(8 - 7,68\right)^{2}}{7,68} + \frac{\left(27 - 37,80\right)^{2}}{37,80} + \frac{\left(30 - 21,00\right)^{2}}{21,00} + \frac{\left(13 - 11,20\right)^{2}}{11,20} + \frac{\left(50 - 38,34\right)^{2}}{38,34} + \frac{\left(12 - 21,30\right)^{2}}{21,30} + \frac{\left(12 - 21,30\right)^{2}}{21,30} + \frac{\left(9 - 11,36\right)^{2}}{11,36} + \frac{\left(43 - 32,94\right)^{2}}{32,94} + \frac{\left(8 - 18,30\right)^{2}}{18,30} + \frac{\left(10 - 9,76\right)^{2}}{9,76} = 36,62 .$$

Determinação do número de graus de liberdade:

• Categorias de renda:
$$r = 3$$

• Categorias de nº de filhos: $s = 4$ $\Rightarrow q = (r-1) \times (s-1) = 2 \times 3 = 6$

Logo,
$$\chi^2 \sim \chi_6^2$$
 e, supondo $\alpha = 0.05$, $P = P(\chi_6^2 \ge 36.62) = 0.000$

.. Como $P = 0.000 < \alpha = 0.05$, rejeitamos a independência entre número de filhos e renda familiar.

Os cálculos podem ser feitos diretamente no MINITAB:

$$Stat \rightarrow Tables \rightarrow Chi-Square test$$

Uma medida da relação entre duas variáveis qualitativas é o coeficiente de contingência de Pearson, dado por:

$$c = \sqrt{\frac{\chi^2}{\chi^2 + n}}$$

Uma modificação de C é o coeficiente

$$T = \sqrt{\frac{\chi^2}{n} \over (r-1)(s-1)}$$

Que atinge o valor máximo(um) quando r=s.