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Abstract

The area of nonlinear time series models has experienced a great development since the 1980s.
Although there is a wide range of parametric nonlinear time series models, in general we do not know
if the postulated model is the most appropriated for a specific data set. This situation highlights the
importance of nonparametric models. An interesting nonparametric model to fit nonlinear time series
is the well-known functional coefficient regression model. Nonparametric estimations by, e.g., local
linear regression and splines, are developed in the literature. In this work we study the estimation
of such a model using wavelets. It is a proposal that takes into account both, classical and warped
wavelets. We present the rates of convergence of the proposed estimators and carry out simulation
studies to evaluate automatic procedures (among AIC, AICc and BIC) for selecting the coarsest and
finest scales to be used during the estimation process. Moreover, we illustrate the methodology with
an application to a real data set, where we also calculate multi-step-ahead forecasts and compare the
results with other methods known in the literature.

Keywords: Daubechies-Lagarias algorithm; varying coefficient models; functional autoregressive
models; father wavelets; warped wavelets

1 Introduction

Nonlinear time series models started to be strongly developed from the 1980s (see e.g. Tong, 1993)
with parametric models. Good reasons for these developments are features of nonlinearity that frequently
exceed the capacity of linear models such as the ARMA model (Box et al., 1994), the fractional ARMA
model (Granger and Joyeux, 1980) and vector ARMA and vector ARMA model with exogenous vari-
ables (Hannan and Deistler, 1988). Examples of nonlinear parametric models that have been proposed
are the exponential autoregressive (EXPAR) model of Haggan and Ozaki (1981), the threshold autore-
gressive (TAR) model of Tong (1983) and the smooth transition autoregressive (STAR) model of Granger
and Teräsvirta (1993).

Although nonlinear parametric models (as the ones mentioned above) can deal with such features
of nonlinearity, nonparametric models have gained more and more attention of researchers with the
technological advances in the recent years. One can highlight, among other features, that these models
are appealing because of their flexibility, which makes them useful to validate parametric models or
suggest new ones. In time series analysis, mathematical tools such as splines, kernels and Fourier series
have played an important role in the development of new nonparametric models.

In the field of regression models, the functional coefficient regression (FCR) model arises as an
interesting alternative in modeling data sets because of its flexibility. Such a model is defined as follows.
Let {Yt, Ut,Xt} be a jointly strictly stationary process, where Ut is a real random variable and Xt
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a random vector in Rd. Suppose that E(Y 2
t ) < ∞. Considering the multivariate regression function

m(x, u) = E(Yt|Xt = x, Ut = u), the FCR model has the form

m(x, u) =

d∑
i=1

fi(u)xi, (1)

where the fi(·)s are measurable functions from R to R and x = (x1, . . . , xd)
>, with > denoting the

transpose of a matrix or vector. Frequently, the coefficient functions are assumed to be compactly sup-
ported in some closed interval C. For the sake of simplicity, assume that C = [0, 1]. In the nonpara-
metric framework, when Ut and Xt are lagged values of Yt, FCR models correspond to the functional-
coefficient autoregressive (FAR) models of Chen and Tsay (1993).

FCR models, also known as varying-coefficient models, were initially studied by Hastie and Tibshi-
rani (1993) in the case of independent data. In the context of time series analysis, we can highlight dif-
ferent approaches. Just to mention a few references, Chen and Tsay (1993) proposed a recursive method
using arranged local regression to estimate the coefficient functions; Cai et al. (2000) and Chen and Liu
(2001) considered local linear regression to estimate the regression function, using the same bandwidth
in the estimation of the coefficient functions; Huang and Shen (2004) proposed a more flexible approach
with polynomial splines, where the coefficient functions are allowed to be estimated with different num-
ber of knots. An advantage of this last paper is that polynomial splines estimate the coefficient functions
globally.

A common feature of the papers mentioned above is that their authors assumed independent errors.
However, in practical situations, it may be interesting to relax this assumption. In this sense, Montoril
et al. (2014) generalized the spline approach of Huang and Shen (2004), where the errors were allowed
to be correlated. We intend to keep using such a flexibility, but now focusing on the use of wavelets in
the estimation of the functional coefficients of the FCR model.

The reason why we perform studies using wavelet bases is because this kind of approach has not
been deeply studied for FCR models, although wavelets have been successfully used in many fields
of Statistics. Some examples are density estimation (Donoho, 1993; Hall and Patil, 1995a,b), spectral
density estimation (Gao, 1993, 1997; Moulin, 1994; Neumann, 1996) and nonparametric regression esti-
mation (Donoho and Johnstone, 1995; Donoho et al., 1995; Donoho and Johnstone, 1998; Hall and Patil,
1996; Nason, 1996; Amato and Antoniadis, 2001; Brown et al., 2001; Amato et al., 2006; Kulik and
Raimondo, 2009; Zhao et al., 2012). Also, see Ogden (1997) and Vidakovic (1999) for comprehensive
survey of wavelet applications in Statistics.

Thus, in this work we study wavelet-based estimators for the functional coefficients of FCR models.
The methodology proposed follows part of the idea of warped wavelets of Kerkyacharian and Picard
(2004), where we apply some transformation to Ut, in order to give more accurate estimates of the coef-
ficient functions in regions where there is a smaller density of data. However, when the transformation
is the identity, the estimator becomes based on the classical wavelets. Also, differently from the usual,
in our study it is not necessary to assume that the errors are independent. This is important because,
depending on the data set, residual analyses may indicate that this assumption is not being satisfied.

We organize this work as follows. In Section 2, we propose a wavelet-based method to estimate
the coefficient functions of the model (1). Consistency and rates of convergence are presented and an
algorithm for estimation is discussed. In Section 3, we present the criteria functions used in this work,
in order to select the coarsest and finest scales in the wavelet bases, as well as the stepwise method for
selecting variables for the wavelet-based method. In Section 4, some results of simulation studies are
reported. The industrial production index data set is studied in Section 5, where we compute forecasts
and compare the results with other models. In Section 6, we give some concluding remarks.

2 Wavelet-based estimator

In this section we present a general wavelet method for estimating the coefficient functions of the
model (1). Such a method is based on warped wavelets, which we briefly explain.
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By wavelet basis we know that it has an associated multiresolution analysis (MRA), where a sequence
of nested and closed subspaces {Vj}j∈Z of L2(R) satisfies the following properties:

• Vj ⊂ Vj+1;

• f(·) ∈ Vj ⇐⇒ f(2·) ∈ Vj+1;

•
⋂
j∈Z

Vj = {0};

•
⋃
j∈Z

Vj = L2(R);

• There exists a function ϕ ∈ V0 such that {ϕ(· − k)}k∈Z is a Riesz basis for V0.

Usually ϕ is called father wavelet (or scaling function) and it generates a basis {ϕJk}k for the space
VJ , where J is called resolution level and ϕJk(·) = 2J/2ϕ(2J · −k). Based on the MRA above it is
possible to develop infinitely many different kind of scaling functions. Using these scaling functions,
one can calculate the mother waveletsψ (or simply wavelets), which generate a basis {ψjk}k for the
orthogonal complement Wj of Vj in Vj+1. Two of the most famous families of compactly supported
wavelets are the Daublets and the Symmlets, whose mother wavelets have specific numbers of vanishing
moments (see e.g. Daubechies, 1992; Härdle et al., 1998).

Frequently, studies related to wavelet-based estimators require assumptions like equally spaced data
and dyadic (power of two) sample sizes. These assumptions are frequent because the wavelet-based
estimators tend to be computed by discrete wavelet transforms (DWT), which are easy and fast to be cal-
culated, requiring just O(n) operations, where n corresponds to the sample size (see e.g. Mallat, 2008,
for more details). However, in this work we use the Daubechies-Lagarias algorithm (Daubechies and
Lagarias, 1991, 1992). This algorithm is an iterative method useful for computing values of compactly
supported orthonormal wavelet functions (for example, Daublets and Symmlets) in specific points of in-
terest with preassigned precision (more details in Vidakovic, 1999). Moreover, although the Daubechies-
Lagarias algorithm is not as fast as the DWT, with the computational advances this issue is no longer a
problem. Besides, this algorithm has the advantage of not requiring equally spaced data nor dyadic
sample sizes.

In order to explain how the warped wavelets work in our case, let H be a continuous distribution
function that is assumed to “spread” the data in the unit interval, and H−1 its inverse. For the sake
of simplicity, let us suppress the subscript i of the coefficient function fi. Denote g = f ◦ H−1 and
y = H(u), u ∈ [0, 1]. Then we have that the orthogonal projection gJ of g, for some resolution level J ,
will be

gJ(y) =
∑
k

αkϕJk(y), (2)

where y ∈ [0, 1]. Thus, an approximation to the function f will be

f(u) = g(H(u)) ≈ gJ(H(u)) =
∑
k

αkϕJk(H(u)).

Note that, even in the case where the basis {ϕJk}k is orthogonal, f is not approximated by the expansion
of an orthogonal basis, unless if H(u) = u, u ∈ [0, 1]. This happens because ϕJk is “warped” by the
distribution function H . A consequence of this is

αk =

∫ 1

0
gJ(y)ϕJk(y)dy =

∫ 1

0
f∗(u)ϕJk(H(u))dx,

where f∗ = gJ ◦H .
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Warped wavelets were proposed by Kerkyacharian and Picard (2004) and are also related to the
papers of Cai and Brown (1998, 1999). The interest of these authors was to keep using the DWT in
situations where the data are no longer equally spaced. This was done by applying a transformation to
the data set such that it becomes equally spaced, and then the usual wavelet techniques can be applied.
The transformation applied in the afore mentioned papers was the empirical distribution function of the
data.

For us, the main idea of considering warped wavelets is that, when the data set is too concentrated in
some specific region, this region will have more precise estimates, while the region with lower density
will have estimates with higher variability.

In our case, since we are using the Daubechies-Lagarias algorithm, it is not necessary to deal with
equally spaced data sets. Our main interest is to be able to apply (if necessary) some transformation so
that the data used can be close to a uniform distribution. Thus, we can use any distribution function that
is able to achieve this aim. In this case, the variability of the coefficient function estimates must be about
the same in different regions of the support of these functions. An interesting feature of this approach is
that it has the classical wavelets as a particular case, when H(u) = u.

It is important to mention that, in this situation, it is interesting to consider wavelets defined in the
unit interval, because H(u) ∈ [0, 1], u ∈ [0, 1]. Periodized wavelets can be defined in such an interval,
and they have the advantage of handling boundary conditions. They are denoted by

ϕpjk(u) =
∑
l

ϕjk(u− l), ψpjk(u) =
∑
l

ψjk(u− l), u ∈ [0, 1],

where j ∈ Z and k = 1, . . . , 2j .
It is possible to see that the basis {ϕpJk}k has an associated MRA in [0, 1] and, if {ϕJk}k is an

orthonormal basis, then {ϕpJk}k is orthonormal as well (more details in Restrepo and Leaf, 1997). Here-
after, the superscript “p” will be removed from notation for convenience.

2.1 Linear wavelet-based estimator

Since the functions in (1) may have different degrees of smoothness, it may be important to be able
to consider different scaling functions and resolution levels on the estimation process of each coefficient
function. Thus, let ϕ(i) be the father wavelet and Ji the resolution level associated to each fi, i =

1, . . . , d. For the sake of simplicity, denote φik(·) = 2Ji/2ϕ(i)(2
Ji · −k). Therefore, it is possible to

use the orthogonal projection of each coefficient function onto a multiresolution space VJi , and then
approximate the regression function (1) by

m(x, u) ≈
d∑
i=1

2Ji∑
k=1

αikφik(H(u))xi, (3)

where x = (x1, . . . , xd)
>.

By model (1), one can think in expressing the process {Yt, Ut,Xt} according to the stochastic rep-
resentation

Yt =

d∑
i=1

fi(Ut)Xti + εt,

where εt corresponds to the errors of the model. Now, let Σ be the covariance matrix of the errors and
assume initially that it is known. Thus we can estimate the wavelet coefficients in (3) minimizing the
least squares function

`(α) = (Y −Vα)>Σ−1(Y −Vα), (4)

whereα = (α>1 , . . . ,α
>
d )>,αi = (αi1, . . . , αiri)

>, Y = (Y1, . . . , Yn)> andV is a n×
∑d

i=1 2Ji matrix
such that its t-th row corresponds to φik(H(Ut))Xti, i = 1, . . . , d, k = 1, 2, . . . , 2Ji . The coefficient
vector estimator is

α̂ = (V>Σ−1V)−1V>Σ−1Y . (5)
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Note that we can assume Σ as an identity matrix when the errors are uncorrelated and homoscedastic.
Based on the wavelet coefficient estimates, it is possible to estimate each coefficient function by

f̂i(u) =
2Ji∑
k=1

α̂ikφik(H(u)),

where α̂i = (α̂i1, . . . , α̂i2Ji )
> is the estimator of αi, i = 1, 2, . . . , d.

2.1.1 Theoretical results

Since the wavelet coefficients depend on the distribution function H and are intrinsically related to
the functions fi ◦ H−1, we study the distance between the estimator and the coefficient function using
a norm weighted by the probability density function h(u) = dH(u)/du. The weighted norm, with a
weight function w, of a specific function f can be defined as

‖f‖L2(w) :=

(∫ 1

0
f2(x)w(x)dx

)1/2

.

Thus, in our case, the distances will be

‖f̂i − fi‖2L2(h)
=

∫ 1

0
(f̂i(x)− fi(x))2h(x)dx

=

∫ 1

0
(f̂i(H

−1(y))− fi(H−1(y)))2dy

= ‖f̂i ◦H−1 − fi ◦H−1‖22,

(6)

where ‖f‖2 =
(∫ 1

0 f
2(x)dx

)1/2
. The use of (6), it is worth mentioning, is not new in literature. It is

used, for example, in Kulik and Raimondo (2009).
The theoretical results presented in this paper are based on a set of frequently used assumptions.

Before exhibiting these assumptions, let us present two symbols that will be used. Let xn and yn be two
positive sequences. Thus we say that xn . yn if the ratio xn/yn is uniformly bounded, and xn � yn if
xn . yn and yn . xn.

Assumptions

(W0) The eigenvalues of Σ are bounded away from zero and infinity;

(W1) The marginal density of Ut is bounded away from zero and infinity uniformly on [0, 1];

(W2) The eigenvalues of E(XtX
>
t |Ut = u) are uniformly bounded away from zero and infinity for all

u ∈ [0, 1];

(W3) 2j0 � 2Ji � nr, 0 < r < 1, i = 1, . . . , d;

(W4) The process {Yt,Xt, Ut}t∈Z is jointly strictly stationary. The α-mixing coefficient α(t) of
{Yt,Xt, Ut}t∈Z satisfies α(t) . t−α for α > (2 + r)/(1− r);

(W5) For some sufficient large m > 0, E|Xti|m <∞, i = 1, . . . , d;

(W6) The distribution function H used for warping the wavelet basis is continuous and strictly mono-
tone, and its probability density function h is bounded away from zero and infinity uniformly on
[0, 1].
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Most of the assumptions (W0) – (W5) above are frequently used in the literature, and basically the
same as the assumptions used in Montoril et al. (2014) (only (W3) differs, but it is analogous to another
used). The assumption (W6) is quite general, because there are many different distribution functions (as
in the cases of the Normal distribution, t-Student and Cauchy) satisfying it .

Let us denote by gJii the orthogonal projection of fi ◦H−1 onto VJi and ρi = ‖gJii − gi‖2. Thus we
can derive rates of convergence to zero for the distances between the wavelet-based estimators and the
real coefficient functions, which are presented below.

Theorem 2.1 If the assumptions (W0) – (W6) hold, then

d∑
i=1

E‖f̂i − fi‖2L2(h)
≤ C

d∑
i=1

(
2Ji

n
+ ρ2i

)
,

for some C > 0. In particular, if ρi = o(1), then E‖f̂i − fi‖2L2(h)
= o(1), i = 1, . . . , d.

The result of the theorem above is valid in both situations, when the errors of the model are in-
dependent (Σ is an identity matrix) and when they are correlated. It is easy to see that the assump-
tion (W6) ensures that E‖f̂i − fi‖22 and E‖f̂i − fi‖2L2(h)

have the same rate of convergence, because
the probability density function is bounded away from zero and infinity on the support of the coeffi-
cient functions. Moreover, denote ρn = max1≤i≤d ρi and Jn = max1≤i≤d Ji. It is straightforward

that E‖f̂i − fi‖22 = O
(
2Jn
n + ρ2n

)
, i = 1, . . . , d, which is similar to the rates of convergence of

the spline-based estimators in Huang and Shen (2004) and Montoril et al. (2014). The quantities ρi,
i = 1, . . . , d, measure the size of the approximation error and their magnitudes are determined according
to the smoothness of the coefficient functions, as discussed by Huang and Shen (2004).

It is frequently assumed that the function of interest belongs to Besov spaces in works involving
wavelet-based estimators (some examples are Kerkyacharian and Picard, 1992; Donoho et al., 1996;
Kulik and Raimondo, 2009). In this case, based on Theorem 9.3 of Härdle et al. (1998), it is possible
to see that ρi = O

(
2−Jis

)
, where s corresponds to the regularity parameter of the Besov space. This

ensures that the rate of convergence of f̂i to fi is of order 2Jn
n + 2−2sJn . Such a rate of convergence will

be minimized when 2Jn has the same rate of convergence as the sequence n1/(2s+1). In this case the rate
of convergence of f̂i to fi is of order n−

2s
2s+1 .

In practice we replace in (5) the matrix Σ by some estimator, say Σ̂, resulting in

ᾱ = (V>Σ̂
−1
V)−1V>Σ̂

−1
Y . (7)

Then, based on (7), the wavelet-based estimator of the coefficient functions in model (1) can be written
as

f̄i(u) =
2Ji∑
k=1

ᾱikφik(H(u)), i = 1, . . . , d.

One can find rates of convergence analogues for the wavelet-based estimator above, whenever the
estimator of the covariance matrix Σ̂ is consistent in probability. The result follows in the theorem
below.

Theorem 2.2 If assumptions (W0) – (W6) hold and Σ̂ is consistent in probability estimating Σ, then

d∑
i=1

‖f̄i − fi‖2L2(h)
= Op

(
d∑
i=1

(
2Ji

n
+ ρ2i

))
.

In particular, if ρi = o(1), then f̄i is consistent in probability in estimating fi, i.e., ‖f̄i−fi‖L2(h) = op(1),
i = 1, . . . , d.

Since the results of the theorem above are similar to the results in Theorem 2.1, their conclusions are
analogous.
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2.1.2 Algorithm for estimating the coefficient vector

In the Section 2 we discuss the estimation of the coefficient functions of the FCR model using a
wavelet-based approach. The estimator of the wavelet coefficients is presented in matrix notation, as in
(7). The estimation process could be done iteratively, fixing previous estimates of the vectorα in order to
estimate θ (the autoregressive coefficients of the errors) and vice-versa, until some convergence criterion
be reached, e.g. the convergence of the residual mean square. This procedure tends to provide estimates
that are close to minimize the least squares function. The drawback is that the calculations under matrix
notation may be computationally expensive, since it is necessary to handle big matrices.

The estimation under backshift notation, applying autoregressive filters in the least squares function,
provides an analogous and more efficient method.

Assuming that the errors are autoregressive, it is possible to rewrite (4) in terms of backshift notation,
aiming to minimize the white noise variance. In other words, denoting by η the vector (α>,θ>)> and vt
as the t-th row of V, we estimate the wavelet coefficients α and the autoregressive coefficients θ jointly,
minimizing numerically

`(η) =
n∑
t=1

{
θp(L)

(
Yt − x>t α

)}2
, (8)

where θp(L) = 1 − θ1L − . . . − θpLp, with the backshift operator satisfying LkVt = Vt−k, k > 0. In
the following, an algorithm to compute the estimates for α and θ is presented.

Algorithm

(a1) Estimate the coefficient vector α by ordinary least squares, and denote it by α̂;

(a2) Fit an autoregressive model to the residuals of step (a1), i.e., ε̂t = Yt − x>t α̂, say,

θ̂p(L)ε̂t = εt;

(a3) Estimate η numerically, minimizing (8), using the estimates in steps (a1) and (a2) as initial values.

2.2 Regularized wavelet-based estimators

An interesting advantage of wavelet-based estimators is their ability to adapt more satisfactory with
irregular functions. The MRA can provide expansions based on scaling functions and wavelets in dif-
ferent scales. As a result, one can reduce the noise in the estimates shrinking or thresholding detail
coefficients.

Since in a MRA the space VJ , for a specific resolution level J , can be written as Vj0 ⊕Wj0 ⊕ . . .⊕
WJ−1, the orthogonal projection gJ of g, previously defined in (2), can be analyzed by father and mother
wavelets as

gJ(y) =
2j0∑
k=1

αj0kϕj0k(y) +
J−1∑
j=j0

2j∑
k=1

βjkψj0k(y),

where the βjk’s correspond to the detail coefficients at scale j and j0 to the coarsest level (or scale). In
this case, J − 1 is usually known as the finest level (or scale). The detail coefficients at coarser levels
(closer to j0) tend to capture global features of gJ , while those at finer levels (closer to J − 1) are
more responsible for local characteristics of the function. This is an advantage because one can reduce
the noise in the coefficient function estimates by shrinking or thresholding detail coefficient estimates.
These detail coefficients β̄jk’s can be easily obtained by applying discrete wavelet transform (DWT)
to the coefficient estimates ᾱik, k = 1, . . . , 2Ji (see Mallat, 2008, for more details). Once the detail
coefficients are shrunk/thresholded, one can apply the inverse DWT and obtain the wavelet coefficient
estimates back, say ᾱhJk (the superscript “h” would indicate that it was applied the hard threshold to the
detail coefficients in the wavelet domain).
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For the sake of simplicity, we will consider in this work only the hard thresholding approach to
regularize the linear wavelet-based estimators. However, the procedure is similar to other methodologies
and the theoretical results also hold in other shrinking/thresholding cases. See e.g. Nason (2008) for
other examples of shrinking and thresholding methods.

Basically, the hard threshold method corresponds to the function ηλ(x) = 1(x > λ)x, where 1(A)
is equal to one, if A occurs, or zero otherwise. The value of λ corresponds to the threshold and it can be
calculated under different approaches. In this work we consider the universal threshold of Donoho and
Johnstone (1994), which in our case will be λ = σ

√
2(J − 1) log 2. The value of σ (standard deviation

of the noise) is unknown in practice and is usually estimated by the MAD (median of absolute deviation),
of the wavelet coefficients from the finest level of detail. In other words, the MAD estimator of a vector
x is defined by MAD(x) = 1.4826 · median(|x − median(x)|), where 1.4826 is a scale factor useful to
ensure consistency for when the in the case of normality.

The regularization is based on the wavelet coefficient estimates of individual coefficient function
estimates f̄i. In order to make it clearer, the steps of regularization are summarized below.

2.2.1 Steps to obtain the regularized coefficient functions

(s1) Apply the DWT to ᾱi1, . . . , ᾱi2Ji and obtain {{ᾱj0r}, {β̄jk}, r = 1, . . . , 2j0 , k = 1, . . . , 2j , j =
j0, . . . , Ji − 1};

(s2) Calculate σ̂ = MAD(β̄Ji−1), where β̄Ji−1 = (β̄J−1,1, . . . , β̄Ji−1,2Ji−1)>, and set
λ̂ = σ̂

√
2(Ji − 1) log 2;

(s3) Apply the hard thresholding method to each detail coefficient defining β̄hjk = ηλ̂(β̄jk), k =

1, . . . , 2j , j = j0, . . . , Ji − 1;

(s4) Apply the inverse DWT to the thresholded coefficients and obtain ᾱhi1, . . . , ᾱ
h
i2Ji

. The regularized
coefficient function estimate will be

f̄hi (u) =

2Ji∑
k=1

ᾱhikφik(H(u)).

The steps above must be applied to each coefficient function estimate, as stated before, and the value
of the coarsest level j0 does not need to be the same in each case. Similarly, one could regularize the
coefficient function estimates f̂i, i = 1, . . . , d, presented in Section 2.1. In this case, in step (s1) above,
the DWT would be applied to α̂i1, . . . , α̂i2Ji . The resulting regularized coefficient functions estimated
could be denoted by f̂hi (u), i = 1, . . . , d.

2.2.2 Theoretical results

Once the linear wavelet-based estimators presented in Section 2.1 are regularized, it is possible to
show that their asymptotic properties do not change. The results are presented in the following theorems.

Theorem 2.3 If the assumptions (W0) – (W6) hold, then

d∑
i=1

E‖f̂hi − fi‖2L2(h)
≤ C

d∑
i=1

(
2Ji

n
+ ρ2i

)
,

for some C > 0. In particular, if ρi = o(1), then E‖f̂i − fi‖2L2(h)
= o(1), i = 1, . . . , d.

As in the case of the linear estimators, the theorem above is useful to ensure the consistence of the
(now regularized) wavelet-based estimators for the case where the covariance matrix of the errors are
unknown, as it happens in practice. Since the rates of convergence are the same, all the conclusions with
respect to Theorem 2.1 are analogous in the theorems of the regularized case.
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Theorem 2.4 If assumptions (W0) – (W6) hold and Σ̂ is consistent in probability estimating Σ, then

d∑
i=1

‖f̄hi − fi‖2L2(h)
= Op

(
d∑
i=1

(
2Ji

n
+ ρ2i

))
.

In particular, if ρi = o(1), then f̄i is consistent in probability in estimating fi, i.e., ‖f̄i−fi‖L2(h) = op(1),
i = 1, . . . , d.

3 Selecting the resolution level and variables

The assumption (W3) in Section 2, used in the presented theoretical results, is related to the choice of
the multiresolution space VJi where each coefficient function will be projected so that we can calculate
its estimate. However, in practical situations we do not know which value of Ji should be chosen. The
same problem happens to the choice of the coarsest scale used during the regularization (see Section
2.2.1). An alternative is to use an automatic method to select the more appropriate values for the finest
and coarsest scales (Ji − 1 and j0, respectively). These values can be chosen based on some criterion
function. In this work we evaluate three different criteria, namely: AIC Akaike (1974), AICc Hurvich
and Tsai (1989) and BIC Schwarz (1978).

Denote the sample size by n and the residual mean square by RMS, which will correspond to `(η̄)/n,
where ` is presented in equation (8) and η̄ is obtained in step (a3) of the algorithm of estimation. Fur-
thermore, for specific values of finest and coarsest levels, let us denote

p =(number of autoregressive coefficients assumed for the errors)

+ (number of wavelet coefficients)

− (number of detail coefficients zeroed during the regularization process).

The criteria functions are then defined as

AIC = log(RMS) +
2p

n
,

AICc = AIC +
2(p+ 1)(p+ 2)

n(n− p− 2)
,

BIC = log(RMS) +
p

2
log(n).

Moreover, the criteria above can be used in the stepwise method for selecting the variables. This is
important specially when there is no knowledge on the physical background of the data. Doing similarly
to Huang and Shen (2004), in the case of the FAR model (the procedure is straightforward for situations
with exogenous variables), fixed a constant q > 0, it is possible to select a threshold lag 1 ≤ r ≤ q and a
set of significant lags Sr ⊆ {1, . . . , q}, which compose the class of candidate models

Yt =
∑
i∈Sr

fi(Yt−r)Yt−i + ε.

Fixing a threshold lag r, it is possible to choose an optimal set of significant lags S∗r by adding and
removing variables. During the addition stage, we can choose one significant lag at a time among the
candidate lags, selecting the one that was not selected yet and that minimizes the RMS. This procedure
stops when the specified number of significant lags q is reached. The deletion stage is similar to the
addition stage, where we start selecting the set with maximum number of significant lags and then we
remove one at a time, choosing the one that minimizes the RMS. Then we can choose the optimum set
of significant lags S∗r as the one which minimizes a criterion function (e.g. AIC) among the sequence of
subsets of lags obtained during the addition and deletion stages. The model to be chosen corresponds to
the one in which the pair {r, S∗r} is minimum, for 1 ≤ r ≤ q.
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4 Simulation study

In this section we run some simulation studies, in order to compare the performance of the wavelet-
based approach proposed in Section 2. We can compare, for example, the estimates using the three
criteria functions for selecting the coarsest and the finest scales; different situations for the errors of the
model; and the quality of estimates of the proposed methods.

In order to evaluate how close is an estimate to the real function, we use an approximation of the
mean integrated squared error. This approximation is based on the average squared error related to each
coefficient function (ASEi), and it is defined as

ASE2 =
d∑
i=1

ASE2
i , with

ASEi =

{
n−1grid

ngrid∑
k=1

[
f̄i(uk)− fi(uk)

]2}1/2

,

where {uk, k = 1, . . . , ngrid} is a grid of points equally spaced in an interval that belongs to the range of
the data set. Following Huang and Shen (2004), we selected the maximum of the 2.5 percentiles of the
simulated data sets as the left boundary (u1) and the minimum of the 97.5 percentiles of the data sets as
the right boundary (ungrid). We consider ngrid = 250.

Thus, small values of the ASE2 indicate a good performance of the estimates. These values can
be summarized by location/dispersion measures. Although it is not presented here, a few outliers were
observed from the ASE’s obtained from the simulations. For this reason, we consider robust measures
such as the median and the mad for location and dispersion measures, respectively.

We simulate two different models: the EXPAR model and another alternative model, where the
coefficient functions are not so smooth as in the EXPAR case. For both situations, similar structures are
used:

• 10,000 samples of size 400 are simulated;

• autoregressive errors generated with order 1, 2 and 3, with AR coefficients and standard deviation
of white noise presented in Table 1;

• the white noises are iid and normally distributed;

• the coefficient functions are estimated using different wavelet bases, which are Daublets D8, D12,
D16, D20, and Symmlets S8, S12, S16, S20, where DN corresponds to the N -tap of Daubechies’
Extremal Phase wavelet filter, and SN represents theN -tap Daubechies’ Least-Asymmetric wavelet
filter;

• FAR models with order 2 are studied (with two coefficient functions). For the sake of simplicity,
we use the same coarsest and finest scale (j0 and J − 1, respectively) and the same wavelet basis
during the estimation process of both coefficient functions, f1 and f2.

[Table 1 about here.]

4.1 First example

The first simulated model corresponds to the EXPAR model (Haggan and Ozaki, 1981; Cai et al.,
2000; Huang and Shen, 2004; Montoril et al., 2014)

Yt = f1(Yt−1)Yt−1 + f2(Yt−1)Yt−2 + εt,

where f1(u) = 0.138 + (0.316 + 0.982u)e−3.89u
2
, f2(u) = −0.437 + (0.659 + 1.260u)e−3.89u

2
.
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We considered two different wavelet-based estimators, which are called Classical and Warped. In
the first case, the warping function is the identity function (i.e., H(u) = u). The Warped estimates are
obtained using the warping functionH as the empirical distribution function linearly interpolated. Based
on these two wavelet-estimates, we observed which criterion function (AIC, AICc or BIC) is selecting
the most appropriate values for the coarsest and finest scales. For this simulation study, we consider as
candidates to the finest and coarsest levels the values based on J = 2, 3, 4, with j0 = 2, . . . , J . The case
where j0 = J is a convention to indicate the linear wavelet-based estimator.

The results are summarized in Table 2, and different conclusions can be taken from there. For each
criterion function, one can see that the estimates based on the Classical estimates tend to be better than
the Warped estimates for all the AR order used for the errors. With respect to the criteria functions, all of
them seem to be selecting quite well the coarsest and the finest scales (among their candidates), although
the estimates with the AICc are a little better for the Classical wavelet-based case, and the estimates
using the BIC criterion show themselves more interesting for the Warped wavelet-based proposal.

[Table 2 about here.]

Since the errors of the EXPAR models generated are correlated in our simulation study, we believe
that an interesting approach to be used for comparisons with the wavelet-based estimates corresponds to
the spline-based method proposed by Montoril et al. (2014). Thus, using quadratic splines, we computed
the ASE2’s based on the three criteria functions (AIC, AICc and BIC) to select the best number of knots
(equally spaced). The values used as candidates for the number of knots are varying from 2 to 5. The
results are presented in Table 3. In order to make easier the comparisons, we also present in this table
the results of the Classical and Warped wavelet-based estimates using the D16 wavelet basis. Observe,
initially, that the AIC and AICc are providing the best estimates, as it happened in Montoril et al. (2014).
Furthermore, one can observe that the results presented in Table 2 are very competitive, when compared
to the results based on splines, specially the Classical estimates. This indicates that the wavelet-based
method is able to provide estimates as good as the spline approach.

[Table 3 about here.]

In order to illustrate the estimates, we use one generated data set of the EXPAR model and present in
Figure 1 the estimates of f1 and f2 based on the Classical and Warped approaches, and the spline method.
For this data, in the Classical case, the AIC/AICc selected j0 = 3 and J = 3, which corresponds to a
linear wavelet-based method. With respect to the Warped case, the AICc function (as well as the BIC)
suggested j0 = 2 and J = 2. Finally, the spline method was fitted with five knots, selected by the
AIC. In this case, the Warped estimates seem to providing values closer to the real coefficient functions.
Although the Classical wavelet estimates look biased for f1, the shape of its estimates are quite similar to
the real functions, which is not happening so well for the Spline estimates, specially for negative values
of the coefficient function f2 in extreme regions.

[Figure 1 about here.]

4.2 Second example

In this simulation study, we consider the same structure of the EXPAR model in the first simulation
example. However, the coefficient functions are a little more irregular. Denoting by d(x;µ;σ) the
probability density function of a normal distribution with mean µ and standard deviation σ at the point
x, the coefficient functions used in this example are

f1(u) = 0.8 + 0.5d(u; 0; 0.03)

f2(u) = −0.4− 0.25(d(u;−0.2; 0.05) + d(u; 0.2, .05)).

The idea in this simulation study is to evaluate how the estimates behave when the coefficient func-
tions are not as smooth as in the EXPAR case. Actually, the coefficient functions resemble constants with
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short “bumps” in small regions. In this study, we consider as candidates for the finest and the coarsest
scales the values based on J = 4, 5, 6 and j0 = 2, . . . , J . Again, the case where j0 = J corresponds to
the linear wavelet-based estimation.

In Table 4 are presented the results of this simulation study. Observe that for the three criteria func-
tions the Warped wavelet-based estimates overcome the estimates obtained using the Classical wavelet-
based method. Furthermore, in the Classical wavelet-based case, the AIC and AICc functions are pro-
viding the best selections of coarsest and finest scales. On the other hand, in this simulation the AICc
tends to provide better selections of j0 and J for the Warped wavelet-based method.

[Table 4 about here.]

In this example of simulation we also run estimations by the spline methodology and, as in the first
example, we present the Classical and Warped results using the D16 wavelet basis. We considered as
candidates to be selected by the criteria functions the number of knots (equally spaced) varying from 2
to 30. The results are presented in Table 5. The good performance of the Warped approach is highlighted
when compared to the spline-based estimates. Furthermore, we can observe that the Classical method is
providing results very competitive when compared to the spline-based estimates (the Classical estimates
do not overcome the spline estimates only for the case where the errors are simulated by an AR(2)). In
this simulation, we can also see that the best results of the spline method are obtained by selecting the
number of knots with the AIC function, as happened in the first example of simulation.

[Table 5 about here.]

A data set is generated and fitted according to the Classical and Warped wavelet-based methods, and
by the spline-based approach. The AIC/AICc selected j0 = J = 5 in the Classical case. The AICc
suggested j0 = 4 and J = 5 to be used for the Warped wavelet method. In order to fit the spline-
based model, the AIC/AICc functions indicated the value 7 to be the number of knots. The estimates
are presented in Figure 2. We can observe, for example, how hard it is to the spline estimates to follow
the shape of the real coefficient functions. On the other hand, we can see that the Warped estimates are
able to follow the “irregularities” of the real coefficient functions more satisfactory than the Classical
wavelet-based estimates. Furthermore, the Warped estimates have shown themselves more accurate at
more extreme regions.

[Figure 2 about here.]

4.3 Classical Wavelets vs. Warped Wavelets vs. Splines and the criteria functions

The two examples of simulations presented in Sections 4.1 and 4.2 compared two different cases
(among infinitely many other possible) of wavelet-based estimation of coefficient functions, where we
considered a case that we called Classical and another that we called Warped. In the Classical case, we
used as warping function the identity function (or the accumulated distribution function of a Uniform
distribution in the unit interval). In the second case, we considered as warping function the empirical
cumulated distribution function linearly interpolated.

Using an approximation to the mean integrated square error, denoted here by ASE2, we compared the
performance of these two wavelet-based estimates, according to several different wavelet bases. Further-
more, using three different criteria functions (AIC, AICc and BIC) we selected the best pair of coarsest
and finest scales. An interesting advantage of using this mechanisms is that they are also able to select
linear wavelet-based fitting, when it provides the best coefficient function estimates. The results have in-
dicated that, for both wavelet-based cases, the AICc can be considered an appropriate criterion function
to select the coarsest and finest scales.

It was observed indications that the Classical method tend to provide better estimates than the Warped
case when the coefficient functions are smooth (as in the first example of simulations). On the other hand,
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when the coefficient functions have short but abrupt deviations (as in the second example of simulation),
the Warped wavelet-based estimates presented the best results.

Furthermore, we compared the wavelet-based estimates with the spline approach, and it was possible
to be observed that the wavelet-based results were quite competitive in the first example of simulation,
when the coefficient functions are smooth. However, in the second example, when the coefficient func-
tions were no longer too smooth, it became clear the advantage of considering the wavelet approach
instead of the spline method, specially the Warped case.

In both examples of simulation, the Daublets D16 presented the good estimates for Classical and
Warped cases.

5 Application to Industrial Production Index

In order to illustrate the proposed methodology, we consider the monthly seasonally adjusted indus-
trial production index (IPI) of the USA, from December 1980 to December 2007, with 325 observations.
The data set was obtained from the Federal Reserve Bank of St. Louis (http://research.stlouisfed.org).
We apply the log-return transformation to the series, i.e., Yt = 100× log(Xt/Xt−1), resulting in 324 ob-
servations that can be observed in Figure 3. This time series is of great interest in economics, frequently
fitted by ARMA models. In this work we model its dynamic behavior using wavelet-based methodology
of Section 2. Furthermore, we evaluate the performance of the proposed method running out-of-sample
forecasts.

[Figure 3 about here.]

As in the simulation study, we take into account the wavelet-based modeling using the identity func-
tion as warping function (Classical Wavelets) and also the empirical cumulative distribution function,
linearly interpolated, as the warping function (Warped Wavelets).

We consider the set {1, 2, 3} to select the candidates for significant lags, as well as for the threshold
lag. For the sake of simplicity, the model selection is performed in two stages. In the first stage we
focus on the selection of the threshold lag and the significant lags, according to the coarsest and finest
scales. Once these quantities are selected, in the second stage we perform residual analyses to each
resulting model, in order to detect a more appropriate autoregressive order to the errors, if necessary.
The coefficient functions and the AR coefficients of the errors are then jointly estimated and the value
of the criterion function is recalculated (AICc for the wavelet-based models). The final model is chosen
according to the one that presents the smallest value of the criterion function used. For the residual
analysis we used Ljung-Box tests, autocorrelations and partial autocorrelations.

It is important to mention that we regularized the wavelet coefficients using the hard thresholding
with the universal policy, as described in Section 2.2. The candidates for the coarsest and finest scales
to be used are based on 0 ≤ j0 ≤ J and 2 ≤ J ≤ 4. We consider the Daubechies D16 wavelet basis to
estimate the coefficient functions.

The selected models for the Classical wavelet-based method is presented in Table 6. The best model
was the case where j0 = J = 4, which corresponds to the linear wavelet-based estimator.

[Table 6 about here.]

The resulting model selected for the Classical wavelet-based approach is then

Yt = f2(Yt−1)Yt−2 + f3(Yt−1)Yt−3 + εt

εt = θ1εt−1 + θ2εt−2 + θ3εt−3 + θ4εt−4 + θ5εt−5 + θ6εt−6 + θ7εt−7 + εt,
(9)

where εt is a white noise. The estimated coefficient functions are presented in Figure 4, and the autore-
gressive estimates are θ̂7(L) = 1− 0.129L− 0.514L2 + 0.145L3 − 0.048L4 − 0.215L5 − 0.051L6 +
0.124L7.

[Figure 4 about here.]
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The selected models for the Warped wavelet-based method are presented in Table 7. Observe that,
with the only exception of pair j0 = 4 and J = 4, there is agreement in the choice of threshold lag
and significant lags, as well as in the assumption of no correlated errors, which was verified in residual
analyses. As in the selection for the Classical case, the smallest AICc value came from a the linear
wavelet-based estimates, now with j0 = J = 2. The final model corresponds to

Yt = f2(Yt−3)Yt−2 + f3(Yt−3)Yt−3 + εt, (10)

where εt is white noise.

[Table 7 about here.]

The fitted Warped model provided the coefficient function estimates presented in Figure 5.

[Figure 5 about here.]

With respect to the forecasts, it is important to mention that the procedure adopted is similar to Huang
and Shen (2004) and Montoril et al. (2014). Briefly, consider a time series {Y1, . . . , YT } following the
dynamic of a functional coefficient regression model (let us assume with autoregressive errors). In order
to predict YT+h, for a given lead time h, it is possible to generate predictions based on the estimates
of the fitted model. Basically, sampling (with replacement) the predicted white noise and applying an
autoregressive filter, using the autoregressive estimates of the residuals, it is possible to generate new
residuals, say {εb,T+1, . . . , εb,T+h}. Using these generated residuals, we can compute recursively the
forecasts {Ŷb,T+1, . . . , Ŷb,T+h} using the coefficient function estimates. This procedure can be repeated
B times, i.e., 1 ≤ b ≤ B.

The optimal predictor that minimizes the mean squared error criterion is E (YT+h|FT ), where FT
corresponds to the given information set up to the time T . Then we can consider
ŶT+k = (1/B)

∑B
b=1 Ŷb,T+k, k = 1, . . . , h, as the forecasts. It is also possible, using the simulated

forecasts, to estimate density forecasts and forecast intervals (see Huang and Shen, 2004, for more de-
tails). Based on the arguments of these authors, we consider only forecasts inside of the range of the data
set (forecasts out of the range of the historical data will be discarded), because coefficient function esti-
mates out of these range are not reliable. In this paper, the forecasts are calculated based on B = 5, 000
valid replications.

In order to evaluate the performance of the forecasts, we consider an approximation to the mean
squared prediction error (MSPE) for 12 multi-step-ahead forecasts. In this case, we apply a rolling
procedure considering 60 subseries (Y1, . . . , YT , with T = 253, . . . , 312), making 12 multi-step-ahead
forecasts and calculating their square prediction error. Thus, with the 60 results for the 12 multi-step-
ahead forecasts, the MSPE is calculated by averaging the squared prediction errors.

For each subseries, we choose the best candidate for the coarsest and finest scales, among 2 ≤ j0 ≤
J , 2 ≤ J ≤ 4, and the threshold lag and the significant lags among {1, 2, 3} using the Daubechies
D16 wavelet basis. In order to select the appropriate AR order for the errors, we use the AIC among
the candidates {1, . . . , 7}. Then, with the chosen model, we make 12 multi-step-ahead forecasts and,
applying the procedure described above, we calculate the MSPEs for the forecasts. Both methods were
taken into account, the Classical and the Warped wavelet-based approaches.

For the sake of comparisons, we also consider the AR model and spline-based method of Montoril
et al. (2014). In these cases, the selection of the order was made by the AIC. For the spline-based
approach, we use quadratic splines, with the number of (equally spaced) knots being chosen among the
candidates {2, . . . , 10}. The selection of the FAR model, in the spline case, was made similarly to the
wavelet-based methodology.

The forecast results are presented in Table 8. Observe that the MSPEs obtained from the Warped
wavelet-based method tend to overcome the others. The forecasts of the Warped method, when compared
to the AR model are better in 8 of the 12 horizons (4, 6, 7, 8, 9, 10, 11, 12). With respect to the Classical
approach, only in the steps 11 and 12 the Warped method does not provide better forecasts. Finally, when
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the forecasts of the Warped wavelet-based model are compared to the Spline-based forecasts, one can
see that, in 11 of the 12 forecast horizons the Warped case overcomes the spline approach (for horizons
greater than or equal to 2).

[Table 8 about here.]

6 Conclusions and Remarks

In this work we propose a wavelet-based approach for estimating coefficient functions of FCR mod-
els. The methodology takes into account the idea of warped wavelets, where the wavelet bases is
“warped” by a function H . This can be seen as a general method, because when H is a identity function,
the coefficient function estimator is based on the classical wavelets. The proposed method is able to take
into account the case where the errors are correlated. Furthermore, the methodology may consider the
regularization of the coefficient function estimates. In this work we used the hard threshold method.

The coarsest and finest scales of the wavelet-based estimates are selected according the a similar
procedure used by Huang and Shen (2004) and Montoril et al. (2014), based on some criteria function.
An advantage of using this procedure is that it can also suggest when it is not necessary to regularize the
wavelet-based estimates.

In order to evaluate the potential of the proposed methodology, we performed numerical studies
and compared the results with other approaches. In simulation studies, we compared the results of
two wavelet-based estimates (Classical and Warped cases) with the spline-based method. We could see
improvement of the coefficient function estimates, specially when the coefficient functions are not too
smooth.

An application to a real data was also performed. In this case we used the monthly seasonally adjusted
industrial production index (IPI) of the USA, from December 1980 to December 2007. We compared
forecasts of two wavelet-based methods (as in the simulation study, the Classical and the Warped cases)
with the spline-based model and the AR methodology. It was observed that the Warped wavelet-based
model overcame the other methods, highlighting the good quality of our proposal.
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Figure 1: Classical wavelet-based (dashed lines), Warped wavelet-based (dotted lines) and Spline (dot-dashed
lines) estimates of the coefficient functions f1 (left side) and f2 (right side) of the EXPAR model generated. The
real coefficient functions correspond to the solid lines.
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Figure 2: Classical wavelet-based (dashed lines), Warped wavelet-based (dotted lines) and Spline (dot-dashed
lines) estimates of the coefficient functions f1 (left side) and f2 (right side) of the data generated in according to
the simulation of the second example. The real coefficient functions correspond to the solid lines.
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Figure 4: Classical wavelet-based estimates of the coefficient functions of model (9) for the industrial production
index series.
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Figure 5: Warped wavelet-based estimates of the coefficient functions of model (10) for the industrial production
index series.
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Table 1: Parameters of the autoregressive errors used in the simulation studies.

p φp(L) σε
1 1− 0.8L 0.1200
2 1− 0.8L+ 0.7L2 0.1260
3 1− 0.6L+ 0.7L2 − 0.6L3 0.1348
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Table 2: Median (MAD) of the ASE2’s for the Classical Wavelet (CW) and Warped Wavelet (WW) according to
several different wavelet bases. These values were obtained according to different criteria functions (AIC, AICc
and BIC) for selecting the coarsest and finest scales among 0 ≤ j0 ≤ J and J ∈ {2, 3, 4}. The hard threshold
method was used to regularize the estimates. Three different AR errors were used in the simulations of the data
sets, with parameters presented in Table 1.

AR
Basis

AIC AICc BIC
order CW WW CW WW CW WW

AR(1)

D8
0.004 0.011 0.004 0.010 0.004 0.006

(0.003) (0.010) (0.003) (0.009) (0.003) (0.005)

D12
0.004 0.027 0.004 0.025 0.006 0.018

(0.003) (0.024) (0.003) (0.021) (0.004) (0.011)

D16
0.004 0.014 0.003 0.013 0.004 0.008

(0.003) (0.012) (0.003) (0.011) (0.003) (0.006)

D20
0.004 0.023 0.004 0.022 0.005 0.015

(0.002) (0.019) (0.002) (0.017) (0.004) (0.008)

S8
0.005 0.030 0.005 0.028 0.007 0.018

(0.003) (0.028) (0.003) (0.025) (0.005) (0.012)

S12
0.004 0.025 0.004 0.024 0.007 0.014

(0.003) (0.024) (0.003) (0.022) (0.005) (0.008)

S16
0.004 0.021 0.004 0.020 0.006 0.011

(0.003) (0.020) (0.003) (0.018) (0.004) (0.007)

S20
0.004 0.021 0.004 0.019 0.006 0.012

(0.003) (0.018) (0.003) (0.016) (0.004) (0.007)

AR(2)

D8
0.005 0.007 0.005 0.006 0.006 0.004

(0.003) (0.005) (0.003) (0.004) (0.003) (0.002)

D12
0.004 0.007 0.003 0.006 0.004 0.004

(0.002) (0.006) (0.002) (0.005) (0.002) (0.003)

D16
0.004 0.004 0.003 0.004 0.004 0.003

(0.002) (0.003) (0.002) (0.003) (0.002) (0.002)

D20
0.003 0.006 0.003 0.005 0.004 0.004

(0.002) (0.005) (0.002) (0.004) (0.002) (0.002)

S8
0.005 0.009 0.005 0.009 0.004 0.006

(0.003) (0.007) (0.002) (0.007) (0.002) (0.003)

S12
0.004 0.006 0.004 0.006 0.004 0.004

(0.002) (0.005) (0.002) (0.004) (0.002) (0.003)

S16
0.004 0.005 0.003 0.004 0.004 0.003

(0.002) (0.004) (0.002) (0.003) (0.002) (0.002)

S20
0.003 0.005 0.003 0.005 0.003 0.003

(0.002) (0.004) (0.002) (0.004) (0.002) (0.002)

AR(3)

D8
0.008 0.010 0.008 0.010 0.009 0.010

(0.004) (0.007) (0.004) (0.007) (0.006) (0.006)

D12
0.007 0.010 0.007 0.009 0.008 0.006

(0.004) (0.008) (0.004) (0.006) (0.005) (0.004)

D16
0.007 0.009 0.007 0.009 0.009 0.009

(0.004) (0.007) (0.004) (0.006) (0.005) (0.004)

D20
0.006 0.009 0.006 0.008 0.008 0.007

(0.004) (0.006) (0.004) (0.006) (0.005) (0.004)

S8
0.008 0.013 0.008 0.012 0.009 0.008

(0.004) (0.011) (0.004) (0.009) (0.005) (0.004)

S12
0.007 0.011 0.007 0.010 0.008 0.008

(0.004) (0.009) (0.004) (0.007) (0.005) (0.004)

S16
0.007 0.011 0.007 0.010 0.009 0.008

(0.004) (0.008) (0.004) (0.007) (0.005) (0.005)

S20
0.007 0.010 0.007 0.009 0.008 0.008

(0.004) (0.008) (0.004) (0.007) (0.005) (0.005)

25



Table 3: Median (MAD) of the ASE2’s for the (quadratic) spline-based (Spl) estimates. These values were obtained
according to different criteria functions (AIC, AICc and BIC) for selecting the number of (equally spaced) knots
among {2, 3, 4, 5}. Three different AR errors were used in the simulations of the data sets, with parameters
presented in Table 1. For the sake of comparisons, ASE2 estimates of the Classical case (CW) and Warped case
(WW) are presented, for the estimates based on the Daubechies D16.

AR AIC AICc BIC
order Spl. CW WW Spl. CW WW Spl. CW WW

AR(1)
0.004 0.004 0.014 0.004 0.003 0.013 0.005 0.004 0.008

(0.002) (0.003) (0.012) (0.002) (0.003) (0.011) (0.003) (0.003) (0.006)

AR(2)
0.003 0.004 0.004 0.003 0.003 0.004 0.003 0.004 0.003

(0.002) (0.002) (0.003) (0.002) (0.002) (0.003) (0.002) (0.002) (0.002)

AR(3)
0.022 0.007 0.009 0.022 0.007 0.009 0.022 0.009 0.009

(0.008) (0.004) (0.007) (0.008) (0.004) (0.006) (0.009) (0.005) (0.004)
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Table 4: Median (MAD) of the ASE2’s for the Classical Wavelet (CW) and Warped Wavelet (WW) according to
several different wavelet bases. These values were obtained according to different criteria functions (AIC, AICc
and BIC) for selecting the coarsest and finest scales among 0 ≤ j0 ≤ J and J ∈ {4, 5, 6}. The hard threshold
method was used to regularize the estimates. Three different AR errors were used in the simulations of the data
sets, with parameters presented in Table 1.

AR
Basis

AIC AICc BIC
order CW WW CW WW CW WW

AR(1)

D8
0.890 0.267 0.905 0.270 1.073 0.324

(0.566) (0.189) (0.559) (0.197) (0.713) (0.264)

D12
0.828 0.263 0.834 0.289 0.907 0.452

(0.390) (0.178) (0.384) (0.213) (0.467) (0.359)

D16
0.803 0.248 0.806 0.277 0.868 0.581

(0.291) (0.185) (0.284) (0.232) (0.307) (0.433)

D20
0.808 0.255 0.819 0.321 0.848 0.638

(0.284) (0.189) (0.268) (0.256) (0.301) (0.389)

S8
0.785 0.281 0.805 0.289 0.944 0.324

(0.521) (0.193) (0.511) (0.198) (0.576) (0.236)

S12
0.748 0.268 0.758 0.285 0.832 0.344

(0.355) (0.197) (0.340) (0.215) (0.373) (0.273)

S16
0.735 0.257 0.747 0.269 0.794 0.392

(0.286) (0.199) (0.275) (0.212) (0.301) (0.335)

S20
0.734 0.248 0.740 0.270 0.785 0.455

(0.260) (0.185) (0.248) (0.210) (0.260) (0.391)

AR(2)

D8
1.415 0.200 1.409 0.168 1.431 0.180

(0.613) (0.153) (0.594) (0.119) (0.532) (0.136)

D12
1.337 0.199 1.343 0.157 1.350 0.202

(0.582) (0.153) (0.568) (0.114) (0.515) (0.165)

D16
1.277 0.181 1.284 0.146 1.306 0.213

(0.591) (0.147) (0.576) (0.113) (0.524) (0.188)

D20
1.285 0.186 1.287 0.144 1.276 0.209

(0.619) (0.143) (0.603) (0.102) (0.516) (0.174)

S8
1.356 0.209 1.355 0.165 1.383 0.178

(0.632) (0.163) (0.619) (0.119) (0.557) (0.132)

S12
1.277 0.182 1.287 0.152 1.300 0.170

(0.610) (0.141) (0.592) (0.107) (0.544) (0.121)

S16
1.269 0.175 1.254 0.145 1.271 0.180

(0.624) (0.136) (0.608) (0.105) (0.527) (0.146)

S20
1.269 0.169 1.268 0.143 1.272 0.182

(0.632) (0.129) (0.609) (0.102) (0.506) (0.151)

AR(3)

D8
1.289 0.238 1.301 0.207 1.547 0.280

(1.159) (0.187) (1.168) (0.144) (1.198) (0.224)

D12
0.999 0.219 1.008 0.209 1.109 0.349

(0.548) (0.176) (0.548) (0.166) (0.685) (0.301)

D16
0.893 0.219 0.892 0.211 0.914 0.449

(0.369) (0.179) (0.363) (0.167) (0.383) (0.330)

D20
0.899 0.213 0.898 0.220 0.922 0.473

(0.364) (0.173) (0.351) (0.176) (0.373) (0.315)

S8
1.092 0.236 1.094 0.214 1.226 0.257

(0.870) (0.180) (0.857) (0.151) (1.007) (0.200)

S12
0.892 0.225 0.894 0.208 0.919 0.300

(0.452) (0.177) (0.454) (0.152) (0.467) (0.241)

S16
0.843 0.223 0.841 0.211 0.853 0.329

(0.356) (0.175) (0.350) (0.163) (0.356) (0.270)

S20
0.829 0.221 0.832 0.209 0.839 0.370

(0.315) (0.178) (0.303) (0.161) (0.313) (0.295)
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Table 5: Median (MAD) of the ASE2’s for the (quadratic) spline-based (Spl) estimates. These values were obtained
according to different criteria functions (AIC, AICc and BIC) for selecting the number of (equally spaced) knots
among {2, . . . , 30}. Three different AR errors were used in the simulations of the data sets, with parameters
presented in Table 1. For the sake of comparisons, ASE2 estimates of the Classical case (CW) and Warped case
(WW) are presented, for the estimates based on the Daubechies D16.

AR AIC AICc BIC
order Spl. CW WW Spl. CW WW Spl. CW WW

AR(1)
1.042 0.803 0.248 1.049 0.806 0.277 1.112 0.868 0.581

(0.268) (0.291) (0.185) (0.266) (0.284) (0.232) (0.266) (0.307) (0.433)

AR(2)
0.880 1.277 0.181 0.885 1.284 0.146 0.909 1.306 0.213

(0.199) (0.591) (0.147) (0.199) (0.576) (0.113) (0.204) (0.524) (0.188)

AR(3)
1.031 0.893 0.219 1.041 0.892 0.211 1.084 0.914 0.449

(0.195) (0.369) (0.179) (0.196) (0.363) (0.167) (0.217) (0.383) (0.330)
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Table 6: Classical wavelet-based model selections for the industrial production index according to the coarsest
(j0) and finest (J) scales using the 16-tap Daubechies wavelet filter (Daublet D16). AICc(1) corresponds to the
criterion function value in the first stage of selection that provided the smallest AICc, r and S∗

r are the resulting
threshold and the significant lags, respectively. The two last columns correspond to the autoregressive order
suggested to the errors after a residual analysis and the updated value of AICc in the final model.

j0 J AICc(1) r S∗r p AICc(2)

0 2 -1.210 1 {1, 2, 3} 1 -1.219
1 2 -1.215 1 {1, 2, 3} 1 -1.232
2 2 -1.215 3 {2, 3} 0 -1.215
0 3 -1.189 3 {2, 3} 0 -1.189
1 3 -1.189 3 {2, 3} 0 -1.189
2 3 -1.189 3 {2, 3} 0 -1.189
3 3 -1.243 1 {1, 2, 3} 1 -1.263
0 4 -1.147 2 {2} 3 -1.171
1 4 -1.146 2 {2} 3 -1.171
2 4 -1.130 2 {2} 3 -1.169
3 4 -1.130 2 {2} 3 -1.169
4 4 -1.218 1 {2, 3} 7 -1.273
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Table 7: Warped wavelet-based model selections for the industrial production index according to the coarsest
(j0) and finest (J) scales using the 16-tap Daubechies wavelet filter (Daublet D16). AICc(1) corresponds to the
criterion function value in the first stage of selection that provided the smallest AICc, r and S∗

r are the resulting
threshold and the significant lags, respectively. The two last columns correspond to the autoregressive order
suggested to the errors after a residual analysis and the updated value of AICc in the final model.

j0 J AICc r Sr* p AICc
0 2 -1.201 3 {2, 3} 0 -1.201
1 2 -1.197 3 {2, 3} 0 -1.197
2 2 -1.213 3 {2, 3} 0 -1.213
0 3 -1.188 3 {2, 3} 0 -1.188
1 3 -1.189 3 {2, 3} 0 -1.189
2 3 -1.185 3 {2, 3} 0 -1.185
3 3 -1.177 3 {2, 3} 0 -1.177
0 4 -1.190 3 {2, 3} 0 -1.190
1 4 -1.201 3 {2, 3} 0 -1.201
2 4 -1.192 3 {2, 3} 0 -1.192
3 4 -1.177 3 {2, 3} 0 -1.177
4 4 -1.131 2 {2} 3 -1.146

30



Table 8: MSPEs of multi-step-ahead forecasts, based on 60 subseries of the monthly seasonally adjusted industrial
production index. The second column corresponds to AR model results, the third column to the Classical wavelet-
based (CW) results, the fourth column to the Warped wavelet-based (WW) forecasts and the fifth column to the
spline-based results.

h AR CW WW Spline
1 0.289 0.354 0.321 0.305
2 0.301 0.372 0.332 0.345
3 0.305 0.378 0.318 0.345
4 0.294 0.318 0.290 0.307
5 0.288 0.325 0.297 0.310
6 0.287 0.315 0.284 0.298
7 0.279 0.326 0.278 0.307
8 0.284 0.298 0.267 0.290
9 0.289 0.301 0.281 0.298

10 0.288 0.280 0.274 0.288
11 0.289 0.274 0.276 0.289
12 0.273 0.262 0.267 0.289
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