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Abstract

Functional magnetic resonance imaging (fMRI) has
become a prominent technique in neuroscience. Ac-
tivation brain maps are obtained by statistical anal-
ysis of fMRI time series, considering BOLD sig-
nal as dependent variable and expected haemody-
namic response function (HRF) as regressor in a
general linear model (GLM). However the results
of GLM rely on the HRF specification. Consider-
ing periodic paradigm designs, we propose a mul-
tisubject frequency domain approach for activation
brain mapping, which solely requires the stimulation
frequency, avoiding subjective choices of HRF. We
present some computational simulations, which evi-
dence a good performance of the proposed approach.
Further, is also presented an application of the new
method in fMRI datasets, related to motor paradigm
in periodic block and event related designs.

1 Introduction

Nowadays, several studies in neuroscience are
based on neuroimaging techniques. Since the de-
scription of the blood oxygenation level dependent
signal (BOLD) by Ogawa et al.[23], the number
of studies based on functional magnetic resonance
imaging (fMRI) has been increasing significantly.
Tolias et al.[31], Logothetis[17] and Logothetis and
Pfeuffer[18] showed that BOLD signal can be con-
sidered as an indirect measure of neuronal activity,
due to local blood flow properties after spikes. In
an fMRI session, several images are acquired dur-
ing time, allowing the temporal monitoring of BOLD
signal concurrently to the presentation of stimulus.
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The main advantages of fMRI analysis compared
to EEG and PET is its non-invasive properties and
also the high spatial resolution. The images in an
fMRI session are acquired in slices providing a 3-
dimensional visualizations of the whole brain (vol-
ume), including non-cortical areas. In terms of
data structure, each slice is a matrix composed by
X × Y voxels, and each voxel represents a brain
area. Hence, at each voxel there are T measure-
ments, {yt, t = 1, .., T}, which constitute the time
series of BOLD signal related to that area.

The evaluation of BOLD temporal properties con-
sidering the paradigm design may be very useful to
infer about neural dynamics. In general, the focus
of most fMRI studies is the inferences about the ef-
fect of external stimulus in the BOLD signal. Con-
sidering parametric approaches, the general linear
model (GLM, Graybill[13])is the most used method
to identify brain activations, commonly named by
SPM (statistical parametric mapping). A linear or
non-linear regression is performed considering the
observed BOLD signal as dependent variable and an
expected haemodynamic response function (HRF) as
regressor (Turner et al.[32], Buchel et al.[5], Friston
et al.[10, 11]). As the dependent variable is obtained
directly from the data, the first issue in this analysis
is the determination of the HRF regressor. Assum-
ing that the sequence and times of stimulus is known,
there are many proposals to the HRF determination
(Buchel et al.[6], Friston et al.[12]) based on haemo-
dynamic delay, Volterra kernels, and non-parametric
smoothing. The statistical significance of activation
is obtained using a Wald statistics or a t-test.

In this paper, we propose a multisubject activa-
tion mapping in frequency domain, considering pe-
riodic paradigms. In this new proposed approach,
hemodynamic response function specification is not
necessary, hence subjective or incorrect determina-
tions of HRF are avoided. Further, we have an ex-
treme reduction in computational time, because the

Fast Fourier Transform (fft) algorithm used is much
faster than GLM estimation.

We also show some simulations focusing on
power evaluation and asymptotic null distribution of
no activation. An application to real fMRI dataset
involving motor task is also presented.

2 Methods

2.1 Time Series Analysis

A time series is a set of observations yt, each one
being recorded at a specified time t. The obvious
correlation introduced by the sampling of adjacent
points in time can usually restrict the applicability
of the many conventional statistical methods tradi-
tionally dependent on the assumption that these ad-
jacent observations are independent and identically
distributed. Time series analysis is the systematic ap-
proach by which one goes about answering the math-
ematical and statistical questions posed by these time
correlations. In general, we observe one or more re-
alizations {yt, t = 1, · · · , T} of a stochastic process
{Yt} and describe this process and make inferences
about it. In time series analysis, there are two ap-
proaches commonly identified as the time domain
approach and the frequency domain approach.

In the time domain, the correlation structure of a
second order stationary process is described by the
autocovariance function (acf) γy(k) defined as

γy(k) = Cov(yt, yt−k) = E((yt − µ)(yt−k − µ)),

where µ is the mean of the process. This funtion
measures the linear dependence between two points
separated by a lag k on the same series observed.

In the frequency domain, the correlation struc-
ture is represented by the spectral density, f(λ),
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λ ∈ [−1/2, 1/2], defined by

f(λ) =

∞∑

k=−∞

γ(k)exp(−2πiλk), (1)

where λ is measured in cycles per unit of time. The
spectral density describes the long-run properties of
the process in terms of periodic components at dif-
ferent frequencies in any given realization.

2.2 Spectral Time Series Analysis of
Periodic Stimulus Designs

In the analysis of fMRI voxel time series, con-
sidering the case of a event-related or block periodic
designs, the stimulus oscillation frequency is defined
as the fundamental frequency of activation. Thus,
our aim is the identification of voxels which have
BOLD signal oscillating in the stimulus frequency.
Note that similar to GLM, this issue is performed in
order to detect responses to the stimulus. We con-
sider the model

yt =

K∑

j=1

Rj sin(2πωjt+ψ)+εt, t = 1, · · · , T, (2)

where yt represents the BOLD signal, K is the num-
ber of components, Rj is the amplitude, ωj is the fre-
quencies of interest and εt is a gaussian white noise.

The variance of a voxel time series, {yt, t =
1, · · · , T}, attributable to an oscillation of frequency
λj is obtained by the spectral density (1) with λ =
λj , which can be estimated by the periodogram de-
fined as

I(λj) =| dy(λj) |
2, (3)

where dy(λj) is the discrete Fourier transform at the
Fourier frequencies

λj =
j

T
, j = 1, 1, · · · , [

T

2
],

of yt and defined as

dy(λj) =
1

T

T∑

t=1

ytexp(−i2πλjt). (4)

In practice, the discrete Fourier transform is ob-
tained using the Fast Fourier Transform (fft) algo-
rithm, which is computationally efficient. Most of
the frequencies will contain information solely about
the correlation structure of the underlying stochastic
process at the voxel. Figure 1 shows some haemore-
sponse functions and their respective periodograms.

Time

se
rie

s

0 20 40 60 80 100
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
0.0 0.5 1.0 1.5

0
10

00
30

00
50

00

Frequency

se
rie

s

Time

se
rie

s

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.5 1.0 1.5

0
10

00
30

00
50

00

Frequency

se
rie

s
Time

se
rie

s

0 20 40 60 80 100

−
5

0
5

10

0.0 0.5 1.0 1.5

0
10

00
30

00
50

00

Frequency
se

rie
s

Figure 1: Some haemoresponse function and
their respective periodograms.

The large value at the fundamental frequency is
indicative of response to the stimulus. Hence, for a
periodic design, we are only interested in the spectral
density at a fourier frequency λa (the fundamental
frequency of activation).

The asymptotic sampling properties of the peri-
odogram are well-known. For stationary series,

(I) I(λj) and I(λk) are asymptotically independent,
for all j 6= k;
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(II) for k = 1, · · · ,K , K << T , k
T ≈ λ and k

T 6=
0,±1/2, · · · ,

2I(λk)

f(λ)

D
−→ χ2

2, (5)

independently, where χ2
2 denotes a chi-squared

random variable with 2 degrees of freedom [28,
3, 4].

2.3 Testing for a Response to the
Stimulus

The periodogram (spectral density estimate) pro-
vides us with a baseline against which to test for sig-
nificant departures from the underlying process. We
define the ratio statistic at the fundamental frequency
of activation, λa, for each voxel time series as

Ra =
[T/2]I(λa)

∑[T/2]
j=1 I(λj)

, (6)

to obtain a test statistic for significant activation.
Large value of Ra indicates a large effect at the fun-
damental frequency.

From (I) and (II), under the hypothesis of no acti-
vation, the statistic

Ra ∼ F (2, 2[T/2]),

asymptotically, where F (2, 2[ T
2 ]) is a F-distribuition

with 2 and 2[T
2 ] degrees of freedom [28, 3, 4]. Anal-

ogously, for N subjects, we have.

R∗

a =
[T/2]

∑N
n=1 In(λa)

∑N
n=1

∑[T/2]
j=1 In(λj)

∼ F (2N, 2N [T/2]).

(7)
Hence, we reject the null hypothesis of no acti-

vation for large power in the fundamental frequency
of activation. Nevertheless, some fMRI time series
are autocorrelated. In this cases, pre-whitening fil-
ters which preserve the time series periodicity should
be applied.

3 Simulations

All simulations in this section were performed us-
ing the R Statistical Software (www.r-project.org).
Firstly, consider the case of white noise time series.
We simulated 10000 gaussian white noises of length
100 for 6 subjects in order to empirically estimate
the F-statistics probability density function under the
null hypothesis (frequency λ = 0.05). The his-
togram, theoretical and estimated density via kernel
smoothing are presented in Figure 2. Note that the
estimated and theoretical densities are really similar,
indicating a good asymptotic approximation even for
short length time series.

Focusing on the power evaluation, consider the
following model:

xtn = β sin(2πλt/T ) + εtn, t = 1, ..., T (8)

where T is the time series length, n = 1, .., N is an
index representing each subject, λ is the fundamental
frequency of activation, β is a coeficient representing
the energy in frequency λ and εt is a gaussian white
noise. Ten thousand simulations were performed for
each evaluation and the size of the tests is α = 0.05.
The effect in the power of the test by increasing the
energy in the fundamental frequency of activation β
for N = 6, T = 100 and λ = 0.05 is shown in
Figure 3. On the other hand, the effects of sample
length (T ) and number of subjects (N ) are presented
in Figures 4 and 5, respectively.

The simulations evidence a good performance of
the proposed statistical test. Figure 2 points toward
a reasonable approximation of F-statistics null dis-
tribution for short length time series. This is a very
important result, due to the length of BOLD time se-
ries. In many cases of periodic designs, the fMRI ex-
periments have short sample length in order to avoid
habituation effects. Further, Figure 3,4 and 5 show a
fast increasing in the power of test, as the parameters
N , T and β increase.
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Figure 2: F-statistics empirically estimated
probability density function (black line). The
theoretical function is shown in the red line.
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Figure 3: Test power as a function of energy in
the fundamental frequency of activation(β).
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Figure 4: Test power as a function of time series
length(T ).
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Figure 5: Test power as a function of the number
of subjects(N ).
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4 Application to fMRI Data

In this section, we present the usefulness of the
proposed method, illustrated with clinical applica-
tion in an fMRI motor paradigm in both block and
event-related designs.

Seven right handed [24] healthy volunteers, 4
male and 3 female, 36 to 75 yeas-old, were se-
lected as controls for fMRI disease studies. They
performed a simple motor task: self-paced finger
tapping movement of dominant hand. The whole
dataset have been acquired in the Radiology Insti-
tute of Clinical Hospital from University of S Paulo
Medical School, in a 1.5T Signa LX scanner (GE,
Milwaukee, USA), equipped with 23 mT/m gradi-
ents and echo-planar capability, with a head coil. The
functional acquisitions were based on a 2D gradient
eco EPI, TR 2000 / 3000ms, TE 40ms, FA 90, band-
width 64 kHz, FOV 20cm, 64 x 64 pixels, 7 mm thick
slices with 0.7mm gap between each of the 15 axial
slices oriented according to the bicomissural plane.
A total of 104 volumes were acquired (the first 4
were discarded later for T1 saturation effects).

Each block run consisted of 5 cycles with two
epochs each (30 seconds of active movements and 30
seconds of rest) in response to a visual cue. In event
related runs (10 trials), the subject was instructed to
perform the task only once, in response to a verbal
command, with an inter-stimulus interval of 20 sec-
onds. The runs lasted 5min12sec for block runs (TR
3000 ms) and 3min8sec for event related runs (TR
2000 ms). The fundamental frequency of changes
between the baseline and activation was 0.05TR for
block design and 0.1TR for event-related.

The images were preprocessed consid-
ering motion realignment, slice time cor-
rection, and spatial normalization (SPM2,
http://www.fil.ion.ucl.ac.uk/spm/ ) to the stereotatic
space of Talairach and Tornoux[29], allowing multi
subject analysis. The BOLD signal was detrended

(polinomial of order 2) and also pre-whitened
considering an AR(1) model in order to remove
autocorrelation from the data [21, 33]. Note that this
filter does not change the periodicity of the signal.
Hence, 3D-brain activation maps were obtained
considering the multisubject periodicity test.

Figure 6: Block design: multi-slice activation
maps (radiological notation).

According to block design activation map (Fig-
ures 6 and 7, voxel p-value=10−4), we found more
activated clusters in left primary sensorimotor cortex
(SM1), followed by right SM1, and supplementary
motor area (SMA). Smaller clusters were located in
right cerebellar hemisphere (CER), and left inferior
frontal and medial parietal secondary somatisensory
areas (S2). In event related maps (Figures 9 and 10,
voxel p-value=10−9) there was a large number of ac-
tivation clusters in left SM1, SMA, right CER, and
left superior temporal gyrus. This pattern of activa-
tion was also found in classical fMRI motor studies
with finger tapping, with is a simple task but with
motor and sensory components [2, 15].

The primary motor cortex (M1, BA4) is located
in the lateral pre-central gyrus and according to its
somatotopic organization [25], hand is represented
in the upper lateral segment. Its main function is to
execute movements with the contralateral extremity
muscles [22]. The primary sensitive cortex S1, BA
3a/b, BA 1 e BA 2) is posterior to M1, in the ante-
rior boundary of post-central gyrus and paracentral
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Figure 7: Block design: 3D-view activation
maps.
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Figure 8: Block Design: Subjects mean time se-
ries corresponding to an active voxel in primary
motor area and its periodogram.

lobule [22]. What we called SM1 comprises both
primary motor and sensory area. In both designs, we
had consistent activation in the SM1 contralateral to
the movement. This was the main finding and highly
correlated to the sensorymotor circuitry.

In block design we also found smaller clusters in
the SM1 ipsilateral to the movement. The commu-
nication of hemispheres information is thought to be
responsible for a reduction of the oxygenation, and
consequently BOLD effect in this area, probably in
order to give priority to the motor learning in the
contralateral SM1 [16, 30, 1]. In our new method
of analysis, the signal of BOLD change is not con-
sidered, just its periodicity along time, justifying the
found activation.

The SMA (medial BA 6 aa) is located in the me-
dial aspect of anterior paracentral lobule and supe-
rior frontal gyrus. It is related to the process of
movement initiation, connecting moto-neurons, with
a programming function [22]. It is activation in mo-
tor fMRI paradigm had already been established, and
the extension of activation is related to the complex-
ity of the task [26, 14]. We found this area activated
in both paradigms, but with larger extension in the
event related, what was expected since each move-
ment required an individual programming, while in
block design, only the first movement required, the
following ones were automatically performed.

The cerebellum, in the posterior fossa, is a com-
plex connectivity station, with holes in motor, so-
matosensory and cognitive tasks [27], with motor
emphasis in the temporal and spatial extremity ad-
justment [34]. Activation in the anterior cerebellar
hemisphere ipsilateral to the movement, similar to
the ones found in this study, had been demonstrated
with PET [9] and fMRI [1]. Also we found more
cerebellar activation in event related than block de-
sign.

The S2 comprises the somatosensory association
cortices: intramodal (anterior BA 7) in the superior
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parietal lobule, and multimodal (posterior BA 7) in
the pre-cuneus [22]. Some clusters were activated in
these areas with block design, suggesting more sen-
sory activity related to repetitive movements.

Finally, event related group map, we identify ac-
tivation in left superior temporal gyrus, probably re-
lated to auditory task command [8]. In block group
we found minimum amount of activation in medial
occipital areas, probably related to visual command
[7]. Figures 11 and 14 present the average time series
of all subjects corresponding to an active voxel in
primary motor area, respectively for block and event
related designs.

Figure 9: Event-related: multi-slice activation
maps (radiological notation).

5 Conclusion

Recently, the number of neuroscientific studies
based on fMRI has been increasing fast. How-
ever, the quality of results relies on the choice of
haemodynamic response function (HRF). In this pa-
per, we propose a frequency domain multisubject ap-
proach, which is based solely in stimulus periodici-
ties, avoiding subjective specification of HRF. The
performance and usefulness of the new approach is
evaluated by computing intensive simulations. We
also present applications to fMRI datasets involving
motor paradigm.

Figure 10: Event-related: 3D-view activation
maps.
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Figure 11: Event-related: Subjects mean time
series corresponding to an active voxel in pri-
mary motor area and its periodogram.
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