Spectral Analysis and Filtering

Cyclical Behavior and Periodicity
As in (1.5), we consider the periodic process
x; = Acos(2mwt + @) (4.1)

for t =0,£1, X2, ..., where w 1s a frequency index, defined in cycles per unit
time with A determining the height or amplitude of the function and ¢, called
the phase, determining the start point of the cosine function. We can introduce
random variation in this time series by allowing the amplitude and phase to
vary randomly.

xy = U, cos(2nwt) + Uy sin(2mwt), (4.2)

Wl‘lEI‘E|U[ = Acosg and U = —A4 Ein{t’la.re often taken to be normally dis-
tributed random variables. In this case, the amplitude is 14 = U + L'zz|
and the phase is|~:.15 = tan—! {—U;;J.-"Uljl From these facts we can show that if,
and only if, in (41), A and @ are independent random variables, where A%
is chi-squared with 2 degrees of freedom, and ¢ is uniformly distributed on
(—m,m), then U} and U3 are independent, standard normal random variables

Consider a generalization of (4.2) that allows mixtures of periodic series
with multiple frequencies and amplitudes,

g
Ty = Z [y cos(2mwyt) 4+ Uy, sin(2mw,t)] (4.3)
k=1
where Upy, Uz, for £ = 1,2, ..., q, are independent zero-mean random wvari-

ables with variances o;, and the wy. are distinct frequencies. Notice that (4.3)
exhibits the process as a sum of independent components, with variance o}
for frequency wy.. Using the independence of the I's and the trig identity in
footnote 1, it is easy to show” (Problem 4.3) that the autocovariance function
of the process is

¥(h) =) of cos(2mwih), (4.4)
k=1

and we note the autocovariance function 1s the sum of periodic components
with weights proportional to the variances o;. Hence, x; is a mean-zero sta-
tionary processes with variance

? For example, for x; in (4.2) we have cov(zyp. ¢) = -cr?{ouslzﬂirwlt-l—h]}cos{ﬂirwt}+
sin(2mw[t + h]) sin(2rwt) } = o cos(2mwh), noting that cov(Uy, Us) = 0.



1(0) = E@}) = Y of.

k=1

(4.5)

which exhibits the overall variance as a sum of variances of each of the com-

ponent parts.

Example 4.1 A Periodic Series

Figure 4.1 shows an example of the mixture (4.3) with g = 3 constructed in
100, we generated three series

the following way. First, fort =1,...,

Ty = 2c0s8(2mt 6,/100) + 3 sin(27t 6/100)
Ty = deos(2mt 10/100) + 5sin(2xt 10,/100)
Ty3 = Goos(2mt 40/100) 4 7 sin( 2wt 40/100)

These three series are displayed in Figure 4.1 along with the corresponding
frequencies and squared amplitudes. For example, the squared amplitude of
T4 is A = 22 + 3% = 13. Hence, the maximum and minimum values that

x4y will attain are ++/13 = +3.61.
Finally, we constructed

Ty =T + Tez + Ten

w=6/100 A" =13

w=10/100 A®=41
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Fig. 4.1. Periodic components and their sum as described in Example 4.1.



Example 4.2 The Scaled Periodogram for Example 4.1

periodogram

In §2.3, Example 2.9, we introduced the periodogram as a way to discover
the periodic components of a time series. Recall that the scaled periodogram

is given by

P(j/n) = (% z.‘l.'t cos[i’.rrtj,"n)) + (%z:rtsin[ﬂﬂtj;’n}) . (4.6)

=1

and it may be regarded as a measure of the squared correlation of the data
with sinusoids oscillating at a frequency of w; = j/n, or j cycles in n time
points. Recall that we are basically computing the regression of the data
on the sinusoids varying at the fundamental frequencies, j/n. As discussed
in Example 2.9, the periodogram may be computed quickly using the fast
Fourier transform (FFT), and there is no need to run repeated regressions.

The scaled periodogram of the data, z;, simulated in Example 4.1 is shown
in Figure 4.2, and it clearly identifies the three components i1, Teo. and x4
of x;. Note that

P(j/n)=P1-j/n), j=01,....n-1,

so there is a mirroring effect at the folding frequency of 1/2; consequently,
the periodogram is typically not plotted for frequencies higher than the fold-
ing frequency. In addition, note that the heights of the scaled periodogram
shown in the figure are

P(6/100) =13, P(10/100) =41, P(40/100) = 85,
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Fig. 4.2, Periodogram of the data generated in Example 4.1,



Another fact that may be of use in understanding the periodogram is that

for any time series sample x,,...,T,, where n is odd, we may write, eractly
(n—1)/2
Ty =ag+ Y [a;cos(2mtj/n) +b;sin(2nt j/n)], (4.7)
j=1
fort = 1,...,n and suitably chosen coefficients. If n is even, the representation

(4.7) can be modified by summing to (n/2 — 1) and adding an additional
component given by an o cos(2mt1/2) = an2(—1)". The crucial point here
is that (4.7) is exact for any sample. Hence (4.3) may be thought of as an
approximation to (4.7), the idea being that many of the coefficients in (4.7)
may be close to zero. Recall from Example 2.9 that

P(j/n) = a3 + b, (4.8)

The Spectral Density

Example 4.3 A Periodic Stationary Process

Consider a periodic stationary random process given by (4.2), with a fixed
frequency wy, say,

T = Uy cos(2mwpt) + Us sin(2mwot ),

where U7 and U; are independent zero-mean random variables with equal
variance . The mumber of time periods needed for the above series to
complete one cycle is exactly 1/wg, and the process makes exactly wp cycles
per point for t =0, +1,+2, .. .. It is easily shown that?

2 o’ —2miwgh o’ Zmiwgh
v(h) = o cos(2mwgh) = Ee + —e

1/2 ]
— f Ezrwhd}?{w]
—-1/2

? Some identities may be helpful here: e = cos(a) + isin(a) and consequently,
cos(a) = (€ 4+ e **)/2 and sin(a) = (" — e ) /2i.



using a Riemann-Stieltjes integration, where F(w) is the function defined

by

0 w < —wp,
Flw)=400%/2 —wy<w<wy,
ol w > wy.

The function F(w) behaves like a cumulative distribution function for a
discrete random variable, except that F(oc) = 02 = var(z;) instead of one.
In fact, F(w) is a cumulative distribution function, not of probabilities,
but rather of variances associated with the frequency wp in an analysis of
variance, with F'{oo) being the total variance of the process z;. Hence, we
term F(w) the spectral distribution function.

Theorem C.1 in Appendix C states that a representation such as the one
given in Example 4.3 always exists for a stationary process. In particular, if
x; 1s stationary with autocovariance y(h) = E[(z;+n — pt)(x¢ — p)], then there
exists a unique monotonically increasing function F(w), called the spectral
distribution function, that is bounded, with F(—oc) = F(—1/2) = 0, and
F(oc) = F(1/2) = ~(0) such that

1,2
v(h) = f_ 2Tk dF (1), (4.9)

1/2

A more important situation we use repeatedly 1s the one covered by The-
orem C.3, where it is shown that, subject to absolute summahility of the au-
tocovariance, the spectral distribution function is absolutely continuous with
dF(w) = f(w) dw, and the representation (4.9) becomes the motivation for
the property given helow.

Property 4.2 The Spectral Density
If the autocovariance function, y(h), of a stationary process satisfies

> (k)] < ce, (4.10)

h=—oc
then it has the representation
/2
~(h) = f >k f(o) dw h=0,+1,+2,... (4.11)
—1/2
as the inverse transform of the spectral density, which has the representation

O

flw)= Y y(h)e®™" _1/2<w<1/2. (4.12)

h=—oo



This spectral density is the analogue of the probability density function;
the fact that ~(h) is non-negative definite ensures

flw)=0

for all w (see Appendix C, Theorem C.3 for details). It follows immediately
from (4.12) that

flw)=f(—w) and flw)=f(1-w),

verifying the spectral density is an even function of period one. Because of
the evenness, we will typically only plot f(w) for w > 0. In addition, putting
h =0in (4.11) yields

1/2
7(0) = var(z,) = o flw) duw,

which expresses the total variance as the integrated spectral density over all of
the frequencies. We show later on, that a linear filter can isolate the variance
in certain frequency intervals or bands.

We note that the autocovariance function, v(h), in (4.11) and the spectral
density, f(w), in (4.12) are Fourier transform pairs. In particular, this means
that if f(w) and g(w) are two spectral densities for which

1/2 _ 1/2 _
V7(h) = flw)e ™t duw = f glw)e®™ " dw = ,(h)  (4.13)
—1/2 —1/2

for all h =0,41,42, ..., then

flw) = glw). (4.14)



Example 4.4 White Noise Series

Az a simple example, consider the theoretical power spectrum of a sequence
of uncorrelated random variables, wy, with variance o2, A simulated set
of data is displayed in the top of Figure 1.8. Because the autocovariance
function was computed in Example 1.16 as v,(h) = o3 for h = 0, and zero,
otherwise, it follows from (4.12), that

fulw) = og

for —1/2 < w = 1/2. Hence the process contains equal power at all fre-
quencies. This property is seen in the realization, which seems to contain all
different frequencies in a roughly equal mix. In fact, the name white noise
comes from the analogy to white light, which contains all frequencies in the
color spectrum at the same level of intensity. Figure 4.3 shows a plot of the
white noise spectrum for o3, = 1.
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If r; i=s ARMA, its spectral density can be obtained explicitly using the
fact that it i= a linear process, i.e., r, = Zm:c, Yy, where Z;‘;u | < oo,
In the following property, we exhibit the i'q:rrm of the spectral density of an
ABRMA model. The proof of the property follows directly from the proof of a
more general result, Property 4.7 given on page 222, by using the additional
fact that o{z) = #{z)/d(z); recall Property 3.1.

Property 4.3 The Spectral Density of ARMA
If vy is ARMA(p.q), ¢(B)xy = 8(B)wy, its spectral density is given by

(4.15)
where ¢(z) =1 -3 5_; dz® and 8(z) = 1+ Y 1_, frz".

Example 4.5 Moving Average
As an example of a series that does not have an equal mix of frequencies,
we consider a moving average model. Specifically, consider the MA(1) model
given hy
Ty = wp + Dwy_q.
A sample realization is shown in the top of Figure 3.2 and we note that the

series has less of the higher or faster frequencies. The spectral density will
verify this observation.



The autocovariance function is displayed in Example 3.4 on page 90, and
for this particular example, we have

v(0) = (14 5203 = 1.2502; ~(+1) = 5o2; ~(xh)=0for h = 1.

Substituting this directly into the definition given in (4.12), we have

flw)= )" A(h)e ™" = g3 [1.25+ 5 (7™ + ™))
h=—00

= a5, [1.25 + cos(2mw)] .

(4.16)

We can also compute the spectral density using Property 4.3, which states
that for an MA, f(w) = oo, |#(e~2™%)|2. Because #(z) = 1 + .5z, we have

|H|:E—2:|Tﬂ|.'}|2 — |1 + -EE‘—ETI'!ullE — |:1 a -EE—EI’H-'J.':I[I + -EEEJT'EI:J}
=195+ .5 [E—E?I'Eu.l a EEE'J.'}

which leads to agreement with (4.16).
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Example 4.6 A Second-Order Autoregressive Series

We now consider the spectrum of an AR(2) series of the form

Ty — P1Te_1 — PoTp_o = Wy,

for the special case ¢y = 1 and ¢o = —.9. Figure 1.9 on page 14 shows a
sample realization of such a process for oy, = 1. We note the data exhibit a

strong periodic component that makes a cycle about every six points.
To use Property 4.3, note that #(z) =1, ¢(z) =1 — z + .92 and
[ﬁ{e—h’!u} 2 _ {1 o E—Enr..: + _Q.E_-_‘d“i“'}(]_ o EEJT'EL-.' + _Ele'inl*'}
— E.El o l_g{ezﬁﬁ' + E—EII'J.'II + _g(eiﬂ'hr.l 1 E—d]ThrJ}I
= 2.81 — 3.8 cos( 2mw) + 1.8 cos(4dmw).

Using this result in (4.15), we have that the spectral density of x; is

T

T 28138 cos(2rw) + 1.8 cos(dmw)

frlw)

Autoregression

oo o1 02 0.3 o4 os



The spectral density can also be obtained from first principles, without
having to use Property 4.3. Because wy = r¢y—r; 1+ 970 in this example,
we have

Yw(h) = cov(weyn, we)
= cov(Tepn — Tepn—1 + O pp_a, T — 1 + O2_a)
= 2.8172(h) — 1.9pv2(h +1) + % (h — 1)] + 9[yx(h + 2) + 7a(h — 2)]

Now, substituting the spectral representation (4.11) for (k) in the above
equation yields

12
Yw(h)= f 1ﬁ[z.:sl — 1.9(e¥™ o7 ¢ g™ 4 g |2 WA £ ()dw
12
=f jJ'”3[2.81 — 3.8 cos(2ww) + 1.8 msl[aifrw]]eﬂ“”hfz ) dear.

If the spectrum of the white noise process, wy, is gy(w), the uniqueness of
the Fourier transform allows us to identify

gw(w) = [2.81 — 3.8 cos(2mw) + 1.8 cos(4mw)] friw).

But, as we have already seen, guw(w) = oy, from which we deduce that

2

= Tw
f2(w) 2.81 — 3.8 cos(27w) + 1.8 cos(4mw)

iz the spectrum of the autoregressive series.



