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Regressao em Séries Temporais - dominio de tempo

2.2 Classical Regression in the Time Series Context

We begin our discussion of linear regression in the time series context by
assuming some output or dependent time series, say, x;, for t = 1,....n,
15 being influenced by a collection of possible inputs or independent series,
SAY, 241, Z¢2-- -+ 2g, Where we first regard the inputs as fixed and known.
This assumption, necessary for applying conventional linear regression, will
be relaxed later on. We express this relation through the linear regression
model

Ty = Bz + Fazep + - 4 B2y + Wy, (2.1)

where 3y, 82,...,3; are unknown fixed regression coefficients, and {w;} is
a random error or noise process consisting of independent and identically
distributed (iid) normal variables with mean zero and variance o2; we will
relax the 11d assumption later. )

Example 2.1 Estimating a Linear Trend

Consider the global temperature data, say x,, shown in Figures 1.2 and 2.1.
As discussed in Example 1.2, there 1s an apparent upward trend in the series
that has been used to argue the global warming hypothesis. We might use
simple linear regression to estimate that trend by fitting the model

re = 1 4 Bat +uwy, t = 1880, 1857, ... ,2000.

7 = —11.2 + .006¢
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Fig. 2.1. Global temperature deviations shown in Figure 1.2 with fitted linear trend
line.

The linear model deseribed by (2.1) above can be conveniently written in
a more general notation by defining the column vectors 2, = (241, 202, ..., 2g)’
and f = (5. 52,....0;)', where ' denotes transpose, so (2.1) can be written
in the alternate form

Ty = ﬁJE; + Wy, [22)

where w; ~ iid N(0, o2 ). It is natural to consider estimating the unknown
coethcient vector B by minimizing the error sum of squares

i3 m
'5?=wa = [z — =), (2.3)
t=1 t=1
with respect to 5y, fa,..., 8. Minimizing ¢} yields the ordinary least squares

estimator of f. This minimization can be accomplished by differentiating (2.3)
with respect to the vector B or by using the properties of projections. In the
notation above, this procedure gives the normal equations

(;:Zfﬁ;) g = gzm. (2.4)



The notation can be simplified by defining Z = [21|22| --- | 2,]" as the
n % g matrix composed of the n samples of the input variables, the ob-

served n x 1 vector £ = (xy,22,...,2,)" and the n x 1 vector of errors
w = (wi,wa,...,wy)". In this case, model (2.2) may be written as
r=78+w. (2.5)

The normal equations, (2.4), can now be written as
(2'Z)B=Z'z (2.6)

and the solution N
B= {Z’Z)_l,Z’:r: (2.7)

when the matrix Z'Z is nonsingular. The minimized error sum of squares
(2.3), denoted SSE, can be written as

SSE = Zn:(mt _Bz)?
t=1
= (z - ZB)'(z — ZB) (2.8)

~
—z'z - 7'z
=Y LT VAV A )
to give some useful versions for later reference. The ordinary least squares

estimators are unbiased, i.e., B {B] = B, and have the smallest variance within
the class of linear unbiased estimators.



If the errorg w; are normally distributed, E is also the maximum likelihood
estimator for B and is normally distributed with

—1
cov(B (Z z:z, ) =02(Z2'Z)' = 020, (2.9)

where

=(Z'Z)! (2.10)

is a convenient notation for later equations. An unbiased estimator for the
variance o2 is
SSE

= MSE = : (2.11)

n—q
where MSE denotes the mean squa.red error, which is contrasted with the
maumu_m likelihood estimator o, = SSE /n. Under the normal assumption,

s2 is distributed proportionally to a chi-squared random variable with n — g
degrees of freedom, denoted by 2 _ ¢+ @nd independently of 5. It follows that

_(Bi-B)
S PN o

has the t-distribution with n — g degrees of freedom; ¢;; denotes the i-th
diagonal element of (', as defined in (2.10).

t (2.12)



Various competing models are of interest to isolate or select the best subset
of independent variables. Suppose a proposed model specifies that only a
subset|r < g independent|variables, say, z¢.» = (2¢1, 2¢2, . .., 2¢r)" is influencing
the dependent variable x;. The reduced model is

r=70, +w (2.13)
where 8. = (31, B2, .. ., B) is a subset of coefficients of the original g variables
and Z, = [Z1.r| -+ |Zn:e]" I8 the n x r matrix of inputs. The null hypothesis
in this case is Hy: 3,41 = --- = B; = 0. We can test the reduced model (2.13)

against the full model (2.2) by comparing the error sums of squares under the
two models using the F'-statistic

_ (SSE, —SSE)/(q—)

Fyrng= SSE i —a) (2.14)

which has the central F-distribution with g — r and n — g degrees of freedom
when (2.13) is the correct model. Note that SSE.. is the error sum of squares
under the reduced model (2.13) and it can be computed by replacing Z with
Zy in (2.8). The statistic, which follows from applying the likelihood ratio
criterion, has the improvement per number of parameters added in the nu-
merator compared with the error sum of squares under the full model in the
denominator. The information involved in the test procedure is often summa-
rized in an Analysis of Variance (ANOVA) table as given in Table 2.1 for this
particular case. The difference in the numerator is often called the regression
sum of squares

Table 2.1. Analysis of Variance for Regression

Source df Sum of Squares Mean Square
Ztrtls---212tqg G—r SSR=S5SE,.—SSE MSR=S5SR/(g—r)
Error n—q SSE MSE = SSE/(n —q)

Total n—r SSE,




In terms of Table 2.1, it is conventional to write the F-statistic (2.14) as
the ratio of the two mean squares, obtaining

MSR

MSE’ (2.15)

Fq—f-.ﬂ—q =

where MSR, the mean squared regression, is the numerator of (2.14). A special
case of interest is r = 1 and 2;; =1, when the model in (2.13) becomes

Ty = B + wy,

and we may measure the proportion of variation accounted for by the other
variables using

SSE, — SSE
R? = 2.16
SSE, ’ (2.16)
where the residual sum of squares under the reduced model
SSEy =) (2 — %)%, (2.17)

t=1

in this case is just the sum of squared deviations from the mean Z. The mea-
sure K2 is also the squared multiple correlation between z; and the variables

Zt2y ZtFy e - -y Ttg-



Critério de selecao

Suppose we consider a normal regression model with k coefficients
and denote the maximum likelihood estimator for the variance as

SSE;

52 = -, (2.18)

where SSE; denotes the residual sum of squares under the model with k
regression coefficients. Then, Akaike (1969, 1973, 1974) suggested measuring
the goodness of fit for this particular model by balancing the error of the fit
against the number of parameters in the model; we define the following.!

Definition 2.1 Akaike’s Information Criterion (AIC)

AIC = log 52+ 228

(2.19)

where 33 is given by (2.18) and k is the number of parameters in the model.

Definition 2.2 AIC, Bias Corrected (AICc)

n+k

AlICc =log 57 + —
n—k—2

(2.20)

where 52 is given by (2.18), k is the number of parameters in the model, and

n is the sample size.

We may also derive a correction term based on Bayesian arguments, as in
Schwarz (1978), which leads to the following.

Definition 2.3 Bayesian Information Criterion (BIC)

L, kl
BIC = log 32 4+ —2" (2.21)
T

using the same notation as in Definition 2.2.



BIC is also called the Schwarz Information Criterion (SIC); see also Ris-
sanen (1978) for an approach yielding the same statistic based on a minimum
description length argument. Various simulation studies have tended to ver-
ify that BIC does well at getting the correct order in large samples, whereas

AlICc tends to be superior in smaller samples where the relative number of

parameters is large; see McQuarrie and Tsai (1998) for detailed comparisons.
In fitting regression models, two measures that have been used in the past are
adjusted R-squared, which is essentially s2,, and Mallows Cp, Mallows (1973),
which we do not consider in this context.

Example 2.2 Pollution, Temperature and Mortality

The data shown in Figure 2.2 are extracted series from a study by Shumway
et al. (1988) of the possible effects of temperature and pollution on weekly
mortality in Los Angeles County. Note the strong seasonal components in all
of the series, corresponding to winter-summer variations and the downward
trend in the cardiovascular mortality over the 10-year period.

A scatterplot matrix, shown in Figure 2.3, indicates a possible linear rela-
tion between mortality and the pollutant particulates and a possible relation
to temperature. Note the curvilinear shape of the temperature mortality
curve, indicating that higher temperatures as well as lower temperatures
are assoclated with increases in cardiovascular mortality.

Based on the scatterplot matrix, we entertain, tentatively, four models
where M; denotes cardiovascular mortality, 77 denotes temperature and F;
denotes the particulate levels. They are
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Fig. 2.2, Average weekly cardiovascular mortality (top), temperature [middle)
and particulate pollution (bottom) in Los Angeles County. There are 508 speday
smoothed averages obtained by filtering daily values over the 10 year period 1970-
1979,
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Fig. 2.3. Seatterplot matrix showing plausible relations between mortality, temper-
ature, and pollution.



My = By + Bat 4+ wy (2.22)
My = Sy + Bat + Ba(Ty — T.) + uy (2.23)
My =1+ Fat + Ba(Ti —T.) + 84Ty — T.)* + wy (2.24)
M = B+ Bat + Ba(Ty = T.) 4 Bu(Ti = T)* + s P + wy (2.25)
where we adjust temperature for its mean, T. = 74.6, to avoid scaling prob-
lems. It is clear that (2.22) is a trend only model, (2.23) is linear temperature,
(2.24) 1s curvilinear temperature and (2.25) is curvilinear temperature and

pollution. We summarize some of the statistics given for this particular case

in Table 2.2. The values of R? were computed by noting that SSE, = 50, 687
using (2.17).

Table 2.2. Summary Statistics for Mortality Models

Model E SSE df MSE R® AIC BIC
(2.22) 2 40020 506 T79.0 .21 5.38 5.40
(2.23) 3 31,413 505 622 .38 5.14 5.17
(2.24) 4 27985 504 555 .45 5.03 507
(2.25) 5 20508 503 408 .60 4.72 477

We note that each model does substantially better than the one before
it and that the model including temperature, temperature squared, and
particulates does the best, accounting for some 60% of the variability and
with the best value for AIC and BIC (because of the large sample size, AIC

and AICc are nearly the same). Note that one can compare any two models
using the residual sums of squares and (2.14). Hence, a model with only
trend could be compared to the full model using g = 5,r = 2, n = 508, so

(40,020 — 20,508)/3
B 20, 508/503

— 160,

FS,EE.']-



which exceeds Fj 5o5(.001) = 5.51. We obtain the best prediction model,

M = 81.59 — 027 g0zt — 473 (032 (Tt — 74.6)
+ J']ESI:.DDS] {Tﬁ — ?-iﬁ:lﬂ + .EEE{_mg]Pt,

for mortality, where the standard errors, computed from (2.9)-(2.11), are
given in parentheses. As expected, a negative trend i1s present in time as
well as a negative coefficient for adjusted temperature. The quadratic effect
of temperature can clearly be seen in the scatterplots of Figure 2.3. Pollution
welghts positively and can be interpreted as the incremental contribution to
daily deaths per unmit of particulate pollution. It would still be essential to
check the residuals w; = M; — Eﬂ for autocorrelation (of which there is a
substantial amount), but we defer this question to to §5.6 when we discuss
regression with correlated errors.

Example 2.3 Regression With Lagged Variables
In Example 1.25, we discovered that the Southern Oscillation Index (SOT)

measured at time ¢ — 6 months 1s associated with the Recruitment series at
time t, indicating that the SOI leads the Recruitment series by six months.
Although there is evidence that the relationship is not linear (this is dis-
cussed further in Example 2.7), we may consider the following regression,

Ry =3, + 825, ¢+ wy, (2.26)

where H; denotes Hecruitment for month ¢ and S;_; denotes SOI six months
prior. Assuming the w,; sequence is white, the fitted model 1s

Ry = 65.70 — 44.285 75,S; s (2.27)

with 7, = 22.5 on 445 degrees of freedom. This result indicates the strong
predictive ability of SOI for Recruitment six months in advance. Of course,
it 1s still essential to check the the model assumptions, but again we defer
this until later.



Exploratory Data Analysis

In general, it is necessary for time series data to be stationary, so
averaging lagged products over time will be a sensible thing to do.

With time series data, it is the dependence between the values of
the series that is important to measure; we must, at least, be able to

estimate autocorrelations with precision.

It would be difficult to measure that dependence if the dependence
structure is not regular or is changing at every time point. Hence, to
achieve any meaningful statistical analysis of time series data, it will
be crucial that, if nothing else, the mean and the autocovariance

functions satisfy the conditions of stationarity

Often, this is not the case, and we will mention some methods for
playing down the effects of nonstationarity so the stationary
properties of the series may be studied.



Examples:

m —
g
=
]
Z
o o _|
m -
n
£
£
[1+]
w
£
g -
(1]
=3
]

= T T I T I

1860 18965 1870 1975 1980
Time

Fig. 1.1. Johnson & Johnson quarterly earnings per share, 84 quarters, 1960-1 to
1980-TV.

Example 2.4 Detrending Global Temperature
Here we suppose the model is of the form of (2.28),

Ty = pg + Yy,

where, as we suggested in the analysis of the global temperature data pre-
sented in Example 2.1, a straight line might be a reasonable model for the
trend, i.e.,

Ly = .3] + .32 t.

In that example, we estimated the trend using ordinary least squares® and
found

fi, = —11.2 + .006¢.



where w; is white noise and is independent of y;. If the appropriate model is
(2.28), then differencing the data, x;, yields a stationary process; that is,

Ty — Tp—1 = (e + ye) — (pe—1 + Ye—1) (2.31)
=04+ wi+ Y — Yi-1.

It is easy to show 2y = ¥ — y¢_1 18 stationary using footnote 3 of Chapter 1
on page 20. That 1s, because y; 1s stationary,

'"J’z{h:' = cc:v[zi_,_h,zt} = cc-v{th — Vith—1:Yt — yt—l}
= 2yy(h) —yy(h +1) —yy(h - 1)

is independent of time; we leave it as an exercise (Problem 2.7) to show that
xy — ¢ in (2.31) 1s stationary.

In Example 1.11 and the corresponding Figure 1.10 we saw that a random
walk might also be a good model for trend. That 1s, rather than modeling
trend as fixed (as in Example 2.4), we might model trend as a stochastic
component using the random walk with drift model,

fhe =0 4+ py_q + wy, (2.30)
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Fig. 1.2, Yearly average global temperature deviations [ 1880-2009) in degrees centi-
grade.
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Fig. 2.4. Detrended (top) and differenced (bottom) global temperature series. The
original data are shown in Figures 1.2 and 2.1.
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Definition 2.4 We define the backshift operator by
Bxy =z,
and extend it to powers B2z, = B(Bz:) = Bry_, = x¢_2, and so on. Thus,

Bfry =z _4. (2.33)

It is clear that we may then rewrite (2.32) as
Vr; = (1 - B)z,, (2.34)

and we may extend the notion further. For example, the second difference
becomes

Vir, = (1 — B)’r, = (1 - 2B + B*)x,
=a— 2ri + T2

by the linearity of the operator. To check, just take the difference of the first
difference V (Vi) = V(ze — 1) = (3¢ — Te1) — (7021 — Te—2).

Definition 2.5 Differences of order d are defined as
Vi =(1-B), (2.35)

where we may erpand the operator [1—_-5']d algebraically to evaluate for higher
integer values of d. When d = 1, we drop it from the notation.

Often, obvious @berrations are present that can contribute nonstationary
as well as nonlinear behavior in observed time series. In such cases, transfor-
mations may be useful to equalize the variability over the length of a single
series. A particularly useful transformation 1s

yr = log x4, (2.36)

which tends to suppress larger fluctuations that oceur over portions of the
series where the underlying values are larger. Other possibilities are power
transformations in the Box—Cox family of the form

@ -1/ Ao,
o= {lngxg A=0. (2.37)

Methods for choosing the power A are available (see Johnson and Wichern,
1992, §4.7) but we do not pursue them here. Often, transformations are also
used to improve the approximation to normality or to improve linearity in
predicting the value of one series from another.



varve

150
I

T T T T T T T
0 100 200 300 400 s00 600

logi{varve)

T T T T T T T
0 100 200 300 400 s00 600

Fig. 2.6. Glacial varve thicknesses (top) from Massachusetts for n = 634 years
compared with log transformed thicknesses (bottom).

Example 2.6 Paleoclimatic Glacial Varves
Melting glaciers deposit yearly layers of sand and silt during the spring
melting seasons, which can be reconstructed yearly over a period ranging
from the time deglaciation began in New England (about 12,600 years ago)
to the time it ended (about 6,000 years ago). Such sedimentary deposits,
called varves, can be used as proxies for paleoclimatic parameters, such as
temperature, because, in a warm year, more sand and silt are deposited
from the receding glacier. Figure 2.6 shows the thicknesses of the yearly
varves collected from one location in Massachusetts for 634 years, beginning
11,834 years ago. For further information, see Shumway and Verosub (1992).
Because the variation in thicknesses increases in proportion to the amount
deposited, a logarithmic transformation could remove the nonstationarity
observable in the vanance as a function of time. Figure 2.6 shows the original
and transformed varves, and it is clear that this improvement has occurred.



Example 2.7 Scatterplot Matrices, SOI and Recruitment
To check for nonlinear relations of this form, it is convenient to display a
lagged scatterplot matrix, as in Figure 2.7, that displays values of the SOI,
Si, on the vertical axis plotted against S;_p on the horizontal axis. The
sample autocorrelations are displayed in the upper right-hand corner and
superimposed on the scatterplots are locally weighted scatterplot smoothing
(lowess) lines that can be used to help discover any nonlinearities. We discuss
smoothing in the next section, but for now, think of lowess as a robust
method for fitting nonlinear regression.
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Fig. 1.14. Sample ACFs of the 50I series (top) and of the Recruitment series
(middle), and the sample CCF of the two series (bottom); negative lags indicate
SOI leads Recruitment. The lag axes are in terms of seasons (12 months).
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The values in the upper right corner are the sample cross-correlations and the lines
are a lowess fit.

Figure 2.8 shows a fairly strong nonlinear relationship between Recruit-
ment, i;, and the SOI series at S; 5. 5; 5,5 _7.5;_g, Indicating the SOI
series tends to lead the Recruitment series and the coefficients are negative,
implying that increases in the SOI lead to decreases in the Recruitment. The

nonlinearity observed in the scatterplots (with the help of the superimposed
lowess fits) indicate that the behavior between Recruitment and the SOT is
different for positive values of SOI than for negative values of SOL.



Example 2.8 Using Regression to Discover a Signal in Noise
In Example 1.12, we generated n = 500 observations from the model

ry = Acos(2mwt + @) + wy, (2.38)
where w = 1/50, 4 = 2, ¢ = .bm, and o, = 5; the data are shown on
the bottom panel of Figure 1.11 on page 16. At this point we assume the
frequency of oscillation w = 1/50 is known, but 4 and ¢ are unknown

parameters. In this case the parameters appear in (2.38) in a nonlinear way,
so we use a trigonometric identity? and write

Acos(2mwt + @) = 5, cos(2rwt) + B sin(2mwt),

where 3 = Acos(¢) and 3; = —Asin(¢). Now the model (2.38) can he
written in the usual linear regression form given by (no intercept term is
needed here)

xy = [ cos(2mt/50) + B2 sin(2mt/50) + wy. (2.39)

Using linear regression on the generated data, the fitted model is

Ty = —.T1 3p) cos(2mt/50) — 2.55 4 sin(2wt /50) (2.40)
with @, = 4.68, where the values in parentheses are the standard er-
rors. We note the actual values of the coefficients for this example are
f1 = 2cos(.br) = —.62 and B3 = —2sin(.br) = —1.90. Because the pa-

rameter estimates are significant and close to the actual values, it is clear
that we are able to detect the signal in the noise using regression, even
though the signal appears to be obscured by the noise in the bottom panel
of Figure 1.11. Figure 2.9 shows data generated by (2.38) with the fitted
line, (2.40), superimposed.
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Fig. 1.11. Cosine wave with period 50 points (top panel) compared with the cosine
wave contaminated with additive white Gaussian noise, o, = 1 (middle panel) and
ow =5 (bottom panel); see (1.5).
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Fig. 2.9. Data generated by (2.38) [dashed line] with the fitted [solid] line, (2.40),

superimposed.



