MAE 0325 - aula 04

Tendência e Sazonalidade

 $\{Z_t, t = 1, ..., N\}$: observações de uma série temporal.

Um modelo de decomposição consiste em escrever Z_t como uma soma de <mark>3 componentes não-observáveis</mark>:

$$Z_t = T_t + S_t + a_t, \tag{1}$$

T_t: tendência;

St: sazonalidade;

 a_t : componente aleatória, de média zero e variância constante $\sigma_a{}^2$.

Se {a_t} for um ruído branco, então

$$E(a_t a_s) = 0, \, s \neq t;$$

ou

tomando {at} como um processo estacionário.

{Z_t} será uma séries não estacionária.

Interesse:

estimar S_t e construir a séries livre de sazonalidade, ou sazonalmente ajustada:

$$Z_t^{SA} = Z_t - \hat{S}_t$$

As componentes T_t e S_t são, em geral, bastante relacionadas e a influência da tendência sobre a componente sazonal pode ser muito forte, por duas razões:

- a) métodos de estimação de S_t podem ser bastante afetados se não levarmos em conta a tendência;
- b) a especificação de S_t depende da especificação de T_t.

Por isso, não poderemos isolar uma das componentes sem tentar isolar a outra. Estimando-se T_t e S_t e subtraindo de Z_t obteremos uma estimativa da componente aleatória a_t .

Tendência

Inicialmente vamos supor que a componente sazonal S_t não esteja presente. O modelo:

$$Z_t = T_t + a_t$$

 a_t : ruído branco, de média zero e variância constante $\sigma_a{}^2$ Há vários métodos para estimar T_t . Os mais utilizados:

- a) ajustar uma função do tempo, como um polinômio, uma exponencial ou outra função suave de t;
- b) suavizar (ou filtrar) os valores da série ao redor de um ponto, para estimar a tendência naquele ponto;
- c) suavizar os valores da série através de sucessivos ajustes de retas de mínimos quadrados ponderados ("lowess").

Estimando-se a tendência por meio de \hat{T}_t , podemos obter a série ajustada para tendência ou livre de tendência,

$$Y_t = Z_t - \hat{T}_t.$$

Um procedimento que é também utilizado para eliminar a tendência de uma série é aquele de tomar diferenças. Normalmente para séries econômicas, por exemplo, a primeira diferença já é estacionária:

$$\Delta Z_t = Z_t - Z_{t-1}$$

Tendência polinomial

$$T_t = \beta_0 + \beta_1 t + \dots + \beta_m t^m, \tag{3.4}$$

m: grau do polinômio. m << N.

estimar β_i usando o métodos de MQ:

$$f(\beta_0, \dots, \beta_m) = \sum_{t=1}^{N} (Z_t - \beta_0 - \beta_1 t - \dots - \beta_m t^m)^2,$$
 (3.5)

Exemplo 3.1. Na Tabela 3.1, apresentamos parte dos dados da série Energia. São 24 observações, referentes aos anos 1977 e 1978 e arredondadas. Notamos que, para este período, um polinômio de primeiro grau é adequado para representar T_t .

Tabela 3.1: Série Energia - Consumo de Energia Elétrica no Espírito Santo, jan./1977 a dez./1978

\overline{t}	Z_t	t	Z_t
1	84,6	13	100,3
2	89,9	14	118,1
3	81,9	15	116,5
4	95,4	16	134,2
5	91,2	17	134,7
6	89,8	18	144,8
7	89,7	19	144,4
8	97,9	20	159,2
9	103,4	21	168,2
10	107,6	22	175,2
11	120,4	23	174,5
12	109,6	24	173,7

Fonte: Série Energia

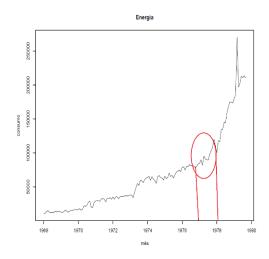


Figura 1.11: Série de consumo de energia elétrica no Espírito Santo.

O modelo (3.4) reduz-se a

$$Z_t = \beta_0 + \beta_1 t + a_t \tag{3.6}$$

e minimizando a soma dos quadrados dos resíduos obtemos

$$\hat{\beta}_0 = \overline{Z} - \hat{\beta}_1 \overline{t}, \tag{3.7}$$

$$\hat{\beta}_{1} = \frac{\sum_{t=1}^{N} t Z_{t} - \left[\left(\sum_{t=1}^{N} t \right) \left(\sum_{t=1}^{N} Z_{t} \right) \right] / N}{\sum_{t=1}^{N} t^{2} - \left(\sum_{t=1}^{N} t \right)^{2} / N}$$
(3.8)

sendo

$$\overline{Z} = \frac{1}{N} \sum_{t=1}^{N} Z_t$$

a média amostral das N=24 observações e

$$\overline{t} = \frac{1}{N} \sum_{t=1}^{N} t.$$

Levando em conta que

$$\sum_{t=1}^{N} t = \frac{N(N+1)}{2} = 300, \quad \sum_{t=1}^{N} Z_t = 2.905, 2, \quad \overline{Z} = 121, 05, \quad \overline{t} = 12, 5,$$

$$\sum_{t=1}^{N} t^2 = \frac{N(N+1)(2N+1)}{6} = 4.900, \quad \sum_{t=1}^{N} t Z_t = 41.188, 6,$$

obtemos

$$\hat{\beta}_0 = 68,076, \quad \hat{\beta}_1 = 4,238.$$

Logo, um estimador de T_t é

$$\hat{T}_t = 68,076 + 4,238t. \tag{3.9}$$

Utilizando o modelo (3.9) podemos prever valores futuros da série. Na Tabela 3.2, temos os valores reais e previstos para janeiro, fevereiro, março e abril de 1979. Observe que o valor para março de 1979 é bastante atípico e o erro de previsão, neste caso, é grande.

De modo geral, o valor previsto h passos à frente, dadas as observações até o instante t = N, é $\hat{Z}_N(h)$, e o erro de previsão correspondente é

$$e_N(h) = Z_{N+h} - \hat{Z}_N(h).$$
 (3.10)

Por sua vez,

$$\hat{Z}_N(h) = \hat{T}_{N+h},$$
 (3.11)

para h = 1, 2, 3, ...

Previsão:

Tabela 3.2: Valores reais e previstos para a Série Energia, janeiro a março de 1979.

\overline{h}	Z_t	$\hat{Z}_N(h)$	erro de previsão
			$(e_N(h))$
1	179,8	174,0	5,8
2	185,8	178,3	7,5
3	270,3	182,5	87,8
4	196,9	186,7	10,2

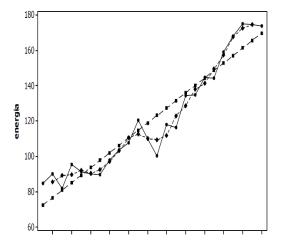


Figura 3.1: Gráfico de Z_t (linha cheia), Z_t^* (linha pontilhada) e \hat{T}_t (linha tracejada).