MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 3

Professor: Pedro Morettin

Exercício 1

(a) A hipótese nula H_{0} é de que a média de vendas μ permanece inalterada, enquanto que a hipótese alternativa H_{1} é de que houve melhora nas vendas, i.e.:

$$
\begin{aligned}
& H_{0}: \mu=320 \\
& H_{1}: \mu>320
\end{aligned}
$$

(b) Neste teste a estatística considerada é a média amostral \bar{X}. A região crítica do teste é: $R C=\{\bar{X} \geqslant k\}$, em que k é tal que $P(\bar{X} \geqslant k \mid \mu=320)=0,05$. Ou seja, estamos fixando a probabilidade de erro tipo I em 5%.
Sob H_{0}, temos que $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$ para n suficientemente grande (aproximação normal). Neste caso, e . Assim, sob 0 temos que:

Assim, e rejeitamos, se
(c) Para calcular o nível descritivo do teste temos calcular a probabilidade de se observar valores mais extremos do que o encontrado na amostra, supondo que a hipótese nula seja verdadeira:

Assim, temos que o valor-p é de $3,04 \%$, sendo menor que o nível de significância do teste . Com isso, rejeitamos . Logo, há evidências de que as vendas melhoraram. Chegaríamos a mesma conclusão usando o valor de encontrado na letra (b), uma vez que

Exercício 2

(a) A hipótese nula é de que a proporção de pares defeituosos continua em 10%, enquanto que a hipótese alternativa é de que houve piora, i.e:
(b) Neste teste a estatística considerada é a proporção amostral . A região crítica do teste é: , em que é tal que . Ou seja, estamos fixando a probabilidade de erro tipo I em 9%.
Sob , temos que - para suficientemente grande (aproximação normal). Neste caso, . Assim, sob temos que:

Assim, e rejeitamos , se
(c) As remessas cujas proporções são $25 \%, 16 \%, 24 \%$ e 21% devem ser rejeitadas, uma vez que há evidências de que o processo piorou.

Exercício 3

A região crítica do teste é:
, em que
. Ou seja, estamos querendo encontrar a probabilidade de erro tipo I dada esta região crítica, sendo que agora \quad, ou seja,
\qquad
Assim, para esta região crítica temos um nível de significância para o teste de 14,6\%.

Exercício 4

(a) A hipótese nula é de que a altura média continua em até 8,5 , enquanto que a hipótese alternativa é de aumentou, i.e:

Neste teste a estatística considerada é a média amostral . A região crítica do teste é: , em que é tal que . Ou seja, estamos fixando a probabilidade de erro tipo I em 5%.
Sob , temos que - para suficientemente grande (aproximação normal). Neste caso, e . Assim, sob temos que:

Assim, e rejeitamos , se
(b) Sim, rejeitamos a hipótese nula, uma vez que , concluindo que há evidências do aumento na altura média, dado este valor de .
(c) A função poder do teste é definida como sendo:
sendo o parâmetro a ser testado e a estatística do teste. Neste teste específico, temos que desenhar o gráfico de:
para diferentes valores de , sendo

(d) Queremos saber a probabilidade de não rejeitar () dado um certo valor para , ou seja, queremos saber . Usando os valores para a função poder do teste obtidos e colocados em um gráfico na letra (c), temos que essas probabilidades são aproximadamente e respectivamente: (i) 0,558 ; (ii) 0,088 e (iii) 0 . Note que quanto maior a média populacional, menor é a chance de não detectar uma melhora na altura média.

Exercício 5

A hipótese nula é de que a proporção de pessoas que achou a pílula de açúcar (placebo) mais eficiente do que o medicamento é menor ou igual a 50%, enquanto que a hipótese alternativa é de que esta proporção é maior que 50%, i.e:

Neste teste a estatística considerada é a proporção amostral . A região crítica do teste é: , em que é tal que . Ou seja, estamos fixando a probabilidade de erro tipo I em 5%.

Sob , temos que - para suficientemente grande (aproximação normal). Neste caso, . Assim, sob temos que:

Assim, logo rejeitamos
e rejeitamos , se . No caso,
. Temos evidência, portanto, para a favor da afirmação do psiquiatra.

Exercício 6

Neste caso, queremos testar:

Sabemos que , e , sendo a variância amostral. Neste caso, a variância populacional é desconhecida, portanto, usamos a seguinte estatística de teste:

Usando a tabela da distribuição t de Student com 35 graus de liberdade, temos:

Assim, , e a região crítica do teste é . Como , rejeitamos, concluindo que há evidências para dizer que o conteúdo médio líquido é menor que 225 ml .

Exercício 7

(a) Denotando por o consumo de gasolina em km/l, a hipótese a ser testada é:

Em particular, se é verdadeira,
deste teste é do tipo
e
. A região crítica . Assim, a probabilidade do erro tipo I é:

Portanto, temos - Como , não rejeitamos a este nível de significância.
(b) A probabilidade de erro tipo II é a probabilidade de não rejeitar , enquanto é falsa, i.e.:

Exercício 8

Neste caso, queremos testar:

Sabemos que , e , sendo a variância amostral. Neste caso, a variância populacional é desconhecida, portanto, usamos a seguinte estatística de teste:
\qquad

Usando a tabela da distribuição t de Student com 7 graus de liberdade, temos:

Assim,
, e a região crítica do teste é
. Como , rejeitamos , concluindo que há evidências para dizer que houve aumento da produtividade com o novo fertilizante.

Exercício 9

Neste caso, queremos testar:

Sob , a resistência dos cabos denotada por crítica deste teste é do tipo 2%, temos que:

Assim, e e . Como , rejeitamos . Temos evidência, portanto, que a resistência média é diferente de 13 Kgf.

Exercício 10

Neste caso, queremos testar:

Sabemos que , e sendo a variância amostral. Neste caso, a variância populacional é desconhecida, portanto, usamos a seguinte estatística de teste:

Usando a tabela da distribuição t de Student com 15 graus de liberdade, temos:

Assim, rejeitamos, concluindo que há evidências para dizer que houve melhora no processo a este nível de significância.

O IC para , considerando é:
em que
Substituindo pelos valores de , e , temos que o

Exercício 11

(a) Usando a região crítica do enunciado, temos que:

Usando a aproximação normal, sob , - e temos que:

Assim, o nível de significância ou probabilidade de erro tipo I
(b) Temos que calcular a probabilidade de , dado que é verdadeira:

Usando a aproximação normal, sob \quad - e temos que:

Assim, a probabilidade de erro tipo II
(c) Para que teríamos que ter:
ou ainda

O valor aproximado de que satisfaz a equação acima é , ou seja, Neste caso,

Exercício 12

Queremos testar:

A estatística considerada é a média amostral . A região crítica do teste é: , em que é tal que
. Ou seja, estamos fixando a probabilidade de erro tipo I em .
Conforme enunciado,
e
. Logo, , uma vez que

Também foi enunciado que
. Note que esta equivale à probabilidade de erro tipo II. Temos, assim, que o poder do teste é

Conforme já visto, sabemos que , sob , e sob . Assim, temos duas equações com 2 incógnitas: n e k:

| $[-$ | |
| :--- | :--- | :--- |
-	-
-	-
-	

Segue que:
\qquad
Resolvendo o sistema, temos que
e

