Inferência para Várias Populações

Como vimos no Capítulo 1, uma das preocupações de um estatístico ao analisar um conjunto de dados é criar modelos que explicitem estruturas do fenómeno sob observação, as quais frequentemente estão misturadas com variações acidentais ou aleatórias. A identificação dessas estruturas permite conhecer melhor o fenómeno, bem como fazer afirmações sobre possíveis comportamentos.

Portanto, uma estratégia conveniente de análise é supor que cada observação seja formada por duas partes, como vimos em (1.1) do Capítulo 1:

Aqui, a primeira componente incorpora o conhecimento que o pesquisador tem sobre o fenômeno e é usualmente expressa por uma função matemática, com parâmetros desconhecidos. A segunda parte, a aleatória (ou não previsível), representa aquilo que o pesquisador não pode controlar e para a qual são impostas algumas suposições, como, por exemplo, que ela obedeça a algum modelo probabilístico específico, que, por sua vez, também contém parâmetros desconhecidos.

Dentro desse cenário, o trabalho do estatístico passa a ser o de estimar os parâmetros desconhecidos das duas partes do modelo, baseado em amostras observadas.

Neste capítulo iremos investigar um modelo simples, chamado de *análise de variância com um fator.*

A situação geral pode ser descrita como segue. Temos uma população P de unidades experimentais (indivíduos, animais, empresas etc.), para a qual temos uma v.a. Y de interesse.

Suponha, agora, que possamos classificar as unidades dessa população segundo *níveis* de um *fator*. Por exemplo, o fator pode ser o sexo, com dois níveis, arbitrariamente denotados por I: sexo masculino e 2: sexo feminino. A v.a. *Y* pode ser a altura de cada indivíduo.

Genericamente podemos ter I níveis para esse fator. A população fica, então, dividida em I subpopulações (ou estratos), P1, ..., PI, cada uma representada por um nível i do fator, i = 1, 2, ..., I. No exemplo citado teríamos duas subpopulações: a dos indivíduos do sexo masculino e a dos indivíduos do sexo feminino.

Figura 15.1: Formas da distribuição de y para os diversos níveis do fator.

Para cada nível i, observamos a v.a. Y em n_i unidades experimentais selecionadas ao acaso da subpopulação correspondente, ou seja, teremos uma amostra $(y_{i_1}, ..., y_{in_i})$ dessa subpopulação. No exemplo citado acima, temos i=1, 2, ou seja, dois níveis para o fator sexo. Extraímos uma amostra de tamanho n_1 de P_1 : pessoas do sexo masculino, $(y_{11}, ..., y_{1n_1})$, e uma amostra de tamanho n_2 de P_2 : pessoas do sexo feminino, $(y_{21}, ..., y_{2n_2})$. Essas amostras são independentes.

P,

(c)

Ρ,

Fator

Suponha que $E(Y) = \mu$ para a população toda, ou seja, a *média global* da v.a. Y para P. Suponha, também, que $E(Y|P_i) = \mu_i$, i = 1, ..., I, ou seja, as médias da v.a. Y para as subpopulações sejam μ_1 , ..., μ_T No nosso exemplo, μ é a média das alturas da população de todos os indivíduos, μ_1 é a média das alturas dos homens, e μ_2 é a média das alturas das mulheres.

O objetivo é estimar μ_i , i=1,...,I e testar hipóteses sobre essas médias. Uma hipótese de interesse é

$$H_0$$
: $\mu_1 = \mu_2 = \dots = \mu_I = \mu$, (15.2)

contra a alternativa

$$H_1$$
: $\mu_i \neq \mu_j$, para algum par (i, j) . (15.3)

Um modelo conveniente para descrever essa situação é

$$y_{ij} = \mu_i + e_{ij}$$
 $i = 1, ..., I, j = 1, ..., n_i,$ (15.4)

para o qual supomos que e_{ij} são v.a. independentes, de média zero e variância σ_e^2 , desconhecida, por exemplo. Podemos adicionar a hipótese de que esses "erros" sejam normais, ou seja,

$$e_{ii} \sim N(0, \sigma_e^2), \tag{15.5}$$

para $i = 1, 2, ..., I, j = 1, 2, ..., n_i$

Exemplo 15. 1. Um psicólogo está investigando a relação entre o tempo que um indivíduo leva para reagir a um estímulo visual (Y) e alguns fatores, como sexo (W), idade (X) e acuidade visual (Z), medida em porcentagem). Na Tabela 15.1 temos os tempos para n=20 indivíduos (valores da v.a. Y). O fator sexo tem dois níveis: i=1: sexo masculino (H) e i=2: sexo feminino (M), com $n_1=n_2=10$. O fator idade tem cinco níveis: i=1: indivíduos com 20 anos de idade, i=2: indivíduos com 25 anos etc., i=5: indivíduos com 40 anos. Aqui, $n_1=\ldots=n_s=4$. A acuidade visual, como porcentagem

Exemplo 15. l. Um psicólogo está investigando a relação entre o tempo que um indivíduo leva para reagir a um estímulo visual (Y) e alguns fatores, como sexo (W), idade (X) e acuidade visual (Z), medida em porcentagem). Na Tabela 15.1 temos os tempos para n=20 indivíduos (valores da v.a. Y). O fator sexo tem dois níveis: i=1: sexo masculino (H) e i=2: sexo feminino (M), com $n_1=n_2=10$. O fator idade tem cinco níveis: i=1: indivíduos com 20 anos de idade, i=2: indivíduos com 25 anos etc., i=5: indivíduos com 40 anos. Aqui, $n_1=\ldots=n_5=4$. A acuidade visual, como porcentagem

da visão completa, também gera cinco níveis: i=1: indivíduos com 100% de visão, i=2: indivíduos com 90% de visão, e assim por diante. Não foi possível controlar essa variável a priori como as outras duas, já que ela exige exames oftalmológicos para sua mensuração. Daí o desbalanceamento dos tamanhos observados: $n_1 = 2$, n_2 , $n_3 = 5$, $n_4 = 2$ e $n_5 = 1$. Fatores desse tipo são chamados de co-fatores.

Assim, para o fator sexo, teremos o modelo (15.4) com i = 1, 2, j = 1, 2, 3, ..., 10, e para o fator idade, o mesmo modelo com i = 1, 2, ..., 5, j = 1, 2, 3, 4.

Tabela 15.1: Tempos de reação a um estímulo (Y) e acuidade visual (Z) de 20 indivíduos, segundo o sexo (W) e a idade (X).

Indivíduo	Υ	w	х	Z
1	96	Н	20	90
2	92	M	20	100
3	106	Н	20	80
4	100	M	20	90
5	98	M	25	100
6	104	н	25	90
7	110	н	25	80
8	101	M	25	90
9	116	M	30	70
10	106	н	30	90
11	109	н	30	90
12	100	M	30	80
13	112	M	35	90
14	105	M	35	80
15	118	н	35	70
16	108	Н	35	90
17	113	M	40	90
18	112	м	40	90
19	127	н	40	60
20	117	н	40	80

Exemplo 15.2. Uma escola analisa seu curso por meio de um questionário com 50 questões sobre diversos aspectos de interesse. Cada pergunta tem uma resposta, numa escala de 1 a 5 (v.a. Y), onde a maior nota significa melhor desempenho. Na última avaliação usou-se uma amostra de alunos de cada período, e os resultados estão na Tabela 15.2. Aqui, o fator é período, com três níveis: i=1: manhā, i=2: tarde e i=3: noite; temos $n_1=7$, $n_2=6$ e $n_3=8$.

Tabela 15.2: Avaliação de um curso segundo o período.

Período					
Manhã	Tarde	Noile			
4,2	2,7	4,6			
4,0	2,4	3,9			
3,1	2,4	3,8			
27	2,4 2,2	37			
2,3	1,9	3,6			
3,3	1,8	3,5			
4,1		3,4			
		2.8			

Exemplo 15.3. Num experimento sobre a eficácia de regimes para emagrecer, homens, todos pesando cerca de 100 kg e de biotipos semelhantes, são submetidos a três regimes. Após um mês, verifica-se a perda de peso de cada indivíduo, obtendo-se os valores da Tabela 15.3.

Tabela 15.3: Perdas de peso de indivíduos submetidos a três regimes.

	Regime	
1	2	3
11,8	7,4	10,5
10,5	97	11,2
12,5	8,2	11,8
12,3	7,2	13,1
15,5	8,6	
11,4	7,1	14,0 9,8

Aqui, o fator é regime, com I=3 níveis e cada regime é indexado por; i=1, 2, 3. A v.a. Y é a perda de peso depois de um mês. $E(Y)=\mu$ é a perda de peso global dos 18 homens, μ_i é a perda média de peso para o regime i. As amostras têm todas o mesmo tamanho $n_1=n_2=n_3=6$.

15.2 Modelo para Duas Subpopulações

Inicialmente, consideremos o caso em que temos um fator com dois níveis, como no Exemplo 15.1, com o fator sexo. Ou seja, queremos avaliar o efeito do sexo do indivíduo sobre o seu tempo de reação ao estímulo. Temos, então, o modelo

$$y_{ij} = \mu_i + e_{ij}$$
, (15.6)

onde

 μ_i = efeito comum a todos os elementos do nível i = 1, 2;

 e_{ii} = efeito aleatório, não-controlado, do j-ésimo indivíduo do nível i,

 y_{ii} = tempo de reação ao estímulo do j-ésimo indivíduo do nível i.

15.2.1 Suposições

É necessário introduzir suposições sobre os erros e_{ij} a fim de fazer inferências sobre μ_1 e μ_2 . Iremos admitir que:

- (i) $e_{ii} \sim N(0, \sigma_{e}^{2})$, para todos $i = 1, 2 \text{ e } j = 1, 2, ..., n_{i}$
- (ii) E(e_{ij} e_{ik}) = 0, para j ≠ k e i = 1, 2, indicando independência entre observações dentro de cada subpopulação.
- (iii) E(e_{1j} e_{2k}) = 0, para todo j e k, indicando independência entre observações das duas subpopulações.

Com essas suposições, temos duas amostras aleatórias simples, independentes entre si, retiradas das duas subpopulações $N(\mu_1, \sigma_{\sigma}^2)$ e $N(\mu_2, \sigma_{\sigma}^2)$.

Queremos testar a hipótese

$$H_0: \mu_1 = \mu_2$$

contra a alternativa

$$H_1$$
: $\mu_1 \neq \mu_2$.

Como já salientamos acima, esse teste pode ser conduzido com os métodos do Capítulo 13, mas o objetivo aqui é introduzir a metodologia da análise de variância, com um caso simples. A extensão para mais de dois níveis será estudada na seção 15.3.

Note que estamos supondo que as variâncias residuais dos níveis 1 e 2 são iguais, ou seja,

$$Var(e_{1j}) = Var(e_{2j}) = \sigma_e^2$$
, para todo $j = 1, ..., n_i$. (15.7)

Essa é a propriedade conhecida como homoscedasticidade, isto é, estamos admitindo que a variabilidade residual é a mesma para os dois níveis (ou que P_1 e P_2 têm a mesma variabilidade segundo a v.a. Y). Note também que

$$E(y_{ij}) = \mu_i, \quad Var(y_{ij}) = Var(e_{ij}) = \sigma^2 e.$$
 (15.8)