
UNIVERSIDADE FEDERAL DE SANTA CATARINA
CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA PURA E APLICADA

Carlos Eduardo Leal de Castro

Optimal rotations for overhang reduction

Florianópolis
2020

Carlos Eduardo Leal de Castro

Optimal rotations for overhang reduction

Dissertação de mestrado apresentada para o Pro-
grama de Pós-Graduação em Matemática Pura e
Aplicada da Universidade Federal de Santa Cata-
rina, para a obtenção do grau de Mestre em
Matemática Pura e Aplicada.
Orientador: Prof. Dr. Leonardo Koller Sacht.

Florianópolis
2020

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Castro, Carlos Eduardo Leal de
 Optimal rotations for overhang reduction / Carlos
Eduardo Leal de Castro ; orientador, Leonardo Koller
Sacht, 2020.
 100 p.

 Dissertação (mestrado) - Universidade Federal de Santa
Catarina, Centro de Ciências Físicas e Matemáticas,
Programa de Pós-Graduação em Matemática Pura e Aplicada,
Florianópolis, 2020.

 Inclui referências.

 1. Matemática Pura e Aplicada. 2. impressão 3D. 3.
rotações. 4. partes em suspensão. 5. otimização. I. Sacht,
Leonardo Koller. II. Universidade Federal de Santa
Catarina. Programa de Pós-Graduação em Matemática Pura e
Aplicada. III. Título.

Carlos Eduardo Leal de Castro

Optimal rotations for overhang reduction

O presente trabalho em nı́vel de mestrado foi avaliado e aprovado por banca examinadora

composta pelos seguintes membros:

Prof. Luiz Carlos Pacheco Rodrigues Velho, Dr.
Instituto de Matemática Pura e Aplicada

Prof. Fermin Sinforiano Viloche Bazán, Dr.
Universidade Federal de Santa Catarina

Prof. Jorge Douglas Massayuki Kondo, Dr.
Universidade Federal de Santa Catarina

Certificamos que esta é a versão original e final do trabalho de conclusão que foi julgado

adequado para obtenção do tı́tulo de mestre em Matemática Pura e Aplicada.

Coordenador do Programa de
Pós-Graduação

Prof. Leonardo Koller Sacht, Dr.
Orientador

Florianópolis, 18 de fevereiro de 2020

This work is dedicated to my mother, my wife, my broth-
ers and Tobias.

ACKNOWLEDGMENTS

I would like to give special thanks to my wife Maı́ra Sevegnani and my mother Tania

Leal for always supporting me in my choices and desires and my dad José Castro for inspiration,

peace and illumination. Without you I would not have been able to get here. I would like to

thank my brothers João Vitor Leal, Tina Castro, Marcos Castro, my little dog Tobias and my

favorite couple Claudinei Sevegnani and Anderson Marcos.

I am very grateful to my advisor, Professor Leonardo Koller Sacht, for guiding me

in my studies during the last years and for his friendship and kindness that helped me with

problems inside and outside the university. Thank you for introducing me to this research area

and your inner world. I am grateful to Professor Marianna Ravara Vago for always being willing

to listen to me and help me with my problems. Every math department needs a professor like

her. Also, I would like to thank Professor Jorge Massayuki Kondo, for his patience in teaching

me how to use a 3D printer and letting us use it for our research and experiments.

I would like to thank all my colleagues for making my master studies more pleas-

ant: Ben-hur Eidt,Victor Espinoza, Daniella Losso, Juan Carlos, Hêrnán Agamez, Everton

Boos, Marina Geremia, Rafaela Filippozzi, Welington Grossmann, Mateus Oliveira, Gabriel

Schafaschek, Gabriel Michels, Helena Günther, Jean Gengnagel, Sabrina Vigano, Carlos Caldei-

ra, Leandro Correa, Maritza Camilli, Lucas Dodl, Talles Faria and Javier Alfonso. I am always

grateful to my music and childhood friends Alexandre Nano, Leandro Pessoa, Danilo Caribé,

João Amaro, Cláudio Colares, Frederico Viana, Gutto Leal, Thiago Carvalho, Lucas Azevedo

Lobo, Teago Oliveira, Leonardo Brandão, Felipe Dieder, Igor Andrade and my home/team/pas-

sion: Bahia.

I would like to thank Professors Fermin Bazán, Eliezer Batista, Ivan Pontual, Vinı́cius

Albani, Douglas Gonçalves, Paulo Carvalho, Antônio Leitão, Maicon Marques, Celso Dória,

Melissa Weber, José Pinho, Martin Weilandt, Licio Bezerra, Carmem Gimenez for their classes

and teachings. Also, I am grateful to the mathematics department staff Elisa Amaral, Érica

Flores, Eduardo Krukoski, Eduardo Bastos and everyone who keeps this department fully func-

tioning.

I am grateful to “Universidade Federal de Santa Catarina” (UFSC) for support and

necessary structure for my studies, to “Fundação de Amparo à Pesquisa e Inovação do Estado

de Santa Catarina” (FAPESC) and to “Coordenação de Aperfeiçoamento de Pessoal de Nı́vel

Superior” (CAPES) for the financial support.

RESUMO

A impressão 3D está ganhando espaço em diversas áreas pelo mundo, sendo utilizada

na construção civil, criação de maquetes e modelos, materiais educacionais e para a saúde,

como na impressão de partes do corpo para auxı́lio em cirurgias. Quando a impressora ne-

cessita imprimir uma superfı́cie em 3D, algumas de suas partes podem estar suspensas no ar,

necessitando de suporte para uma melhor impressão. Esses suportes são destacados do objeto e

são descartados, gerando um desperdı́cio de material e dinheiro. Este trabalho propõe uma nova

abordagem para o problema de impressão de suportes em superfı́cies 3D baseado no campo de

vetores normais à superfı́cie, que busca de uma orientação global para a superfı́cie, de modo

que, após rotacionar a superfı́cie na orientação encontrada, sua impressão gere o mı́nimo de

suporte possı́vel.

Palavras-chave: impressão 3D, normais, suporte, partes em suspensão, otimização.

RESUMO EXPANDIDO

Introdução

A impressão 3D vem ganhando espaço em diversas áreas ao redor do mundo. Por

conta de sua versatilidade, ela pode ser usada tanto da indústria, para criação de protótipos e

produção em série, quanto na arquitetura, no desenvolvimento de maquetes, entre outras áreas

como construção civil, indústrias aeroespaciais, experimentos em fı́sica, instrumentos educa-

cionais, bem como peças delicadas, como réplicas de órgãos humanos e próteses,

Quando imprimimos um sólido em uma impressora 3D, algumas de suas partes podem

estar suspensas no ar e precisam de suporte para imprimir com mais perfeição. Esses suportes

são destacados e descartados, levando a um desperdı́cio de material, tempo de impressão e

dinheiro.

Nós propomos um modelo matemático para o problema de suportes em impressão

3D, encontrando uma rotação global ótima para a superfı́cie e minimizando, assim, o volume

de suporte necessário para imprimir este objeto.

Objetivos

Esta dissertação de mestrado tem os seguintes objetivos:

• Estudar e entender o problema de suportes para impressão 3D

• Analisar os conceitos matemáticos e referencias principais para o problema

• Modelagem do problema de suportes para impressão 3D

• Implementação e avaliação do método proposto

Metodologia

Em nosso trabalho, nós analisamos a geometria da superfı́cie e a conectamos com o

problema de suportes em uma impressão 3D.

Após entendermos o problema de suportes para impressão 3D, foi apresentada todas

técnicas necessárias para lidar com o problema. A bibliografia necessária para uma completa

análise dos conceitos apresentados aqui estão disponı́veis na seção de referências.

Com a revisão dos conceitos matemáticos, desenvolvemos um modelo matemático

que trabalha o problema de suportes para reduzir a necessidade e a quantidade de suportes em

uma impressão 3D.

Os conceitos matemáticos e o modelo desenvolvido nos permite criar estratégias para

encontrar uma rotação global que reduz a quantidade de suporte e tempo de impressão. Nós,

então, comparamos nossos resultados com outros métodos desenvolvidos anteriormente.

Resultados e discussão

Nós desenvolvemos um método que encontra uma rotação global ótima para as su-

perfı́cies de modo que esse reposicionamento é impresso com menos volume de suporte e tempo

de impressão menor, comparado com uma posição usual da superfı́cie e métodos desenvolvidos

anteriormente.

Considerações finais

A impressão 3D é um tema de pesquisa com grande potencial. Acreditamos que o

trabalho desenvolvido nessa dissertação tem espaço para resultados ainda melhores, como de-

senvolvimento de todos os códigos em linguagem de programação robusta (C/C++), funções

mais fáceis de manipular computacionalmente, o desenvolvimento de método de optimização

global mais eficientes e diretos, além de estratégias que, combinadas com o método desen-

volvido neste trabalho, possam gerar ainda mais economia de material e tempo de impressão.

Palavras-chave: impressão 3D, normais, suporte, partes em suspensão, otimização.

ABSTRACT

3D printing is gaining ground in many areas around the world, being used in con-

struction, modeling and mockups, educational purposes and for health research, as well as in

the printing of body parts for surgery assistance. When the printer needs to print a 3D surface,

some of the parts may be suspended in the air, requiring support for better printing. These sup-

ports are detached from the object and are discarded, generating waste of material and money.

This thesis proposes a new approach for this problem of 3D surface printing based on the nor-

mal field of surfaces, which seeks a global surface orientation, so that, after rotating the surface

by the obtained orientation, its printing generates as less support as possible.

Keywords: 3D printing, normal field, support, overhang, optimization.

List of Figures
1.1.1 A plastic filament (a) is horizontally heated by a controlled nozzle (b), allowing

the template (c) to be printed over the horizontal platform (e), that moves on the

vertical direction. Some sloping parts of the template need supports (d) to be

printed. 17

1.1.2 This solid has parts that need support to print correctly. So the printer will build

some structures to hold this parts while it is printed. 18

2.1.1 The transformation T applied on vector w returns a vector T (w) that also be-

longs to {u}⊥ (a) and applied on a vector x returns a vector T (x) that keeps the

angle β between u (b). 29

2.1.2 Rotating u around the x-axis by an angle θx (resulting in the vector u′) also

rotates its yz-projection pyz by the same angle θx, taking it to the z−axis (left).

The length of projection of u into the yz-plane pyz and its y and z coordinates

form a right triangle (right). 30

2.1.3 Rotating u′ around the y-axis by an angle−θy results in the vector u′′ (left). The

length u′, the x-coordinate of u and the length of yz-projection, that was rotated

into the z-axis, form a right triangle (right). 31

2.2.1 The vector x and its coordinates with {u,w,(u×w)}⊂R3 basis before (left) and

after (right) applied rotation matrix R. Notice that R preserves the coordinate

α1u and rotate α2w and α3(u×w) around u by an angle θ 34

2.3.1 Parametric surface. 41

2.3.2 Example of a parametric cone that opens along the z-axis and its domain. . . . 41

2.3.3 Examples of triangulated surfaces. All these surfaces are available on Libigl

website (JACOBSON et. al., 2018). 42

2.3.4 In this example, the l-th row of triangle mesh matrix F stores the row positions

of the vertex vi,v j and vk of the vertex matrix F . This face, on the matrix, is

represented by Fl = (i, j,k). 42

2.3.5 Triangular base prism. 43

2.3.6 Associated to this surface, we have the vertex matrix V and its triangle mesh

matrix F . We can associate one normal vector for each triangle on mesh, as

defined in definition 2.3.3. 44

11

LIST OF FIGURES 12

3.0.1 Camel surface from Libigl (JACOBSON et al., 2018) in the initial position (left)

and after θ =
π

3
z-axis rotation (right). The red area of both surfaces are those

that need support to print. Notice that the support area does not change after

this z−axis rotation. 46

3.1.1 This two normals n1 and n2 of the bunny surface have different angles. The

normal vector n1 is within the angle range of the printer. The normal vector n2

is in an overhanging part and will need a support to print correctly. 47

3.1.2 Lion surface from Libigl (JACOBSON et al., 2018) with 0% infill (left) and

30% infill(right). The parts of the surface such that normal angles are above

the support angle threshold θ will also need some support to be printed, if the

printer infill is set to 0%. 47

3.1.3 The equation (3.1.1) measure the angle between the normal n(f) ∈ N of a

triangle f ∈F on mesh and the vertical direction e3 = (0 0 1)T 48

3.1.4 The surfaces Camel, Horse, Bunny, Knight, Max, Cow and Arm were cho-

sen from Libigl (JACOBSON et al., 2018) library and heart (ADOREZOOEY,

2015) and skull (AELLIS43, 2014) are available on SketchFab (DENOYEL,

PINSON, PASSET, 2012) website. 50

3.1.5 Horse surface at the initial embedding (a) and after rotation (b). Knight at the

initial embedding (c) and after rotation (d). 50

3.1.6 This graph represents the value (in a gradient color) of sum of max in equation

3.1.2 for every discretized x-axis and y-axis rotation of horse-quad.obj surface. 51

3.1.7 Horse quad.obj on the initial vertex position (left) and after rotation (center-left).

The same surface on the initial position on the printing simulator (center-right)

and after rotation (right). In yellow, the software indicates the solid that we want

to print and in green the overhang supports. 51

3.1.8 Surface decimated-max.obj on the initial vertex position (top-left) and after ro-

tation (top-center-left). The same surface on the initial position on the printing

simulator (top-center-right) and after rotation (top-right). In yellow, the soft-

ware indicates the solid that we want to print and in green the overhang sup-

ports. The bottom figure is a photo of the same surface after printed. On the

bottom-left, the surface is at the initial vertex positions and on the bottom-right,

the surface is positioned after rotation. 53

LIST OF FIGURES 13

3.1.9 Surface Bunny.obj at the initial vertex position (a) and after rotation (b). In

yellow, the software indicates the solid that we want to print and in green the

overhang supports. With Slic3r sorftare we can observe that the objective func-

tion 3.1.3 returns an orientation of this object with more support than initial

position. 53

3.2.1 As the normal vector n(f) approaches the xy-plane, the value of its z-coordinate

will approach zero. Note that the sequence in the image {nzk}k={1,2,3} ⊂ R of

z-coordinate values on z-axis is such that nzk→ 0 if the sequence of rotation on

n(f) leads to the xy-plane. 55

3.2.2 The difference between the surface normal vector n(f) (in wine) and its xy-

Projection is a vector with zeros on x and y coordinates and z-coordinate normal

vector value on itself. Observe that, the closer to the xy plane is the surface

normal, the closer to zero is the difference norm. Consequently, this triangle

mesh face is as vertical as possible. 56

3.2.3 Surface cow.obj at the initial vertex position (a) and after rotation (b) minimiz-

ing the objective function 3.1.3. Even getting less overhanging parts, this objec-

tive function does not consider the surface area and height of support, which, in

this case, causes the amount of support to be larger than desired. 57

3.3.1 Comparison of layered surface parts with its model surface, leading to a stair-

case effect. Zooming in and considering that the difference between layers

forms a triangle, we can analyse the height h of this triangle, the thickness zt of

the layer and the angle θ between them to minimize the staircase effect. We can

see in the figure on the left that the more vertical the surface is, the less it suffers

from a staircase effect. This figure was based on the figures in (ALEXANDER;

ALLEN; DUTTA, 1998). 58

3.3.2 In this vertical cut of a 3D object, we can see that the surface can be divided

in three parts. Unsupported faces: parts of object that do not need external

support to print; supported faces: parts of object that need external support

underneath them to print; and support faces: parts of object that are touched

from above by the support structure. This figure was created based on figures in

(ALEXANDER; ALLEN; DUTTA, 1998). 60

3.4.1 2D graph of function value variation in equation 3.2.4 applied to bunny.obj Li-

bigl surface. 61

3.4.2 Surfaces at the initial vertex position (top) and after applied a global rotation

that minimizes equation 3.2.4 (bottom). Camel, Cow and Max (human head)

are surfaces available on Libigl (JACOBSON et al., 2018) and heart (ADORE-

ZOOEY, 2015) and skull (AELLIS43, 2014) are Sketch Fab surfaces. 62

3.4.3 Libigl surface bunny.obj on the initial position (a) and after rotation (b). On 3D

print sorftware (Sklic3r), the same surface on the initial position (c) and after

rotation (d). Also, in figures (c) and (d), the software indicates the surface in

yellow and the overhang supports in green. 62

3.4.4 Libigl surface cow.obj after rotation using our method (a) and Alexander’s

method (b). As we can see, these results using our method generate less support

for overhanging parts of surface then Alexander’s method. 64

3.4.5 decimated-knight.obj surface after rotation using our method (a) and Alexan-

der’s method (b). As we can be seen, the result using our method generates

more overhanging parts area (in brown) than Alexander’s method. 64

4.2.1 Objective function 4.0.3 3D graph applied on Knight Libigl (JACOBSON et al.,

2018) surface. 81

4.2.2 Knight surface from Libigl (JACOBSON et al., 2018) after global rotation on

tests performed on section 3.4 (left) and after finding a local minimum using

fmincon Matlab function with a chosen initial point (right). The teal surface

on the left would be printed in 136 minutes with 3g of material loss (support

that would be wasted) and the pink surface on the right would be printed in 149

minutes with 5g of material loss. 81

4.2.3 Dividing the angle ranges on the restrictions of equation 4.0.3 and taking the

central point of each set, we got multiple start point of our algorithm. 82

4.2.4 Surfaces on initial position (top) and after optimal rotation (bottom). Knight,

Horse, Bunny and Arm are surfaces available on Libigl (JACOBSON et al., 2018). 83

4.2.5 Graph of randomly chosen starting points (R.C.S.P.) strategy applied on Knight

Libigl surface, with 100 starting points. Each black spot on graphic is an ini-

tial point that the algorithm choose randomly as the start point to minimization

problem. 83

List of Tables
3.1.1 All these surfaces present a smaller sum in function 3.1.2 with an x-axis and

y-axis angle rotation. The surfaces Camel, Horse, Bunny, Knight, Max, Cow

and Arm were chosen from Libigl (JACOBSON et al., 2018) library and heart

(ADOREZOOEY, 2015) and skull (AELLIS43, 2014) have a Creative Com-

mons Attribution and are freely available surfaces on the SketchFab website.

All these surfaces can be seen in figure 3.1.4. 49

3.1.2 All these surfaces present a smaller printint time, weight and length of mate-

rial after applied a global rotation that minimizes overhang parts. The surfaces

Camel, Horse, Bunny, Knight, Max, Cow and Arm were chosen from Libigl

(JACOBSON et al., 2018) library and heart (ADOREZOOEY, 2015) and skull

(AELLIS43, 2014) are from Sketch Fab website. 52

3.1.3 All these surfaces present a higher printing time after applied a global rotation

that minimizes overhang parts, according to the objective function (3.1.3). On

first row of this table, Arm is the only surface tested that is reducing the amount

of support, but does not reduce printing time. These surfaces were chosen from

Libigl (JACOBSON et al., 2018). 54

3.4.1 All tested surfaces present a smaller printint time, weight and length of mate-

rial after applied a global rotation that minimizes equation 3.2.4. The surfaces

Arm, Camel, Horse, Bunny, Knight, Max and Cow were chosen from the Libigl

(JACOBSON et al., 2018) library and heart (ADOREZOOEY, 2015) and skull

(AELLIS43, 2014) are Sketch Fab surfaces. 63

4.1.1 Execution time of the algorithm that finds the smallest value of the function

3.2.4, for each surface tested. |F | is the number of triangular faces of each mesh. 69

4.2.1 This table presents the run time of both strategies to seek the global minimum

point and the tests presented in section 3.4. On multiple constraint division

(M.C.D.) strategy, we divide the angle intervals into smaller with h =
π

4
spac-

ing on both axes, having 32 different initial points. On randomly chosen starting

point (R.C.S.P.) strategy, we collect 32 random points as start point of our algo-

rithm. On tests presented in section 3.4 we run 65341 angles combination and

select the one with the lower objective function value. 84

Contents
1 Introduction 17

1.1 3D Printing support - overview . 17
1.2 Related work . 18
1.3 Goals and contributions . 19
1.4 Structure of the thesis . 19

2 Preliminary concepts: rigid transformations and SO(3) space 21
2.1 Linear and rigid transformations . 21
2.2 The rotation space SO(3) and generalized Euler sequences 32
2.3 Spatial surfaces and their representations . 40

2.3.1 Triangle mesh representation . 41

3 Objective function 45
3.1 Surface normal angle analysis . 47

3.1.1 Initial results . 49
3.1.2 Problems in paradise . 52

3.2 Surface normal “Least squares” . 55
3.2.1 Support volume . 57

3.3 Alexander’s method . 58
3.4 Tests and method comparison . 61

4 Optimization method 66
4.1 The Matlab function fmincon and its optimization theory 69

4.1.1 Finite-difference approximation . 70
4.1.2 Local and global minima and descent directions 71
4.1.3 Barrier penalty method . 73
4.1.4 The BFGS method . 75

4.2 Optimization Results . 81

5 Conclusion 84
5.1 Review . 84
5.2 Future work . 85

References 87

A Source codes 90
A.1 Main functions . 90

A.1.1 print3Dopt grid.m . 90
A.1.2 print3Dopt rand.m . 92
A.1.3 print3Dopt.m . 95

A.2 Auxiliary functions . 97
A.2.1 rotatexy.m . 97
A.2.2 normalsurf.m . 99
A.2.3 areatsurf.m . 99

1 INTRODUCTION 17

1 Introduction

1.1 3D Printing support - overview

The 3D printing process is gaining space in many areas around the world. Its versa-

tility can be used to print artistic objects, architectural mock ups, civil constructions, aerospace

models, parts of physics experiments, educational instruments, as well as delicate objects as

prostheses and real representations of human organs.

When we need to print some 3D solid in a 3D printer, some parts of this solid may be

suspended in the air and need support for a better print. However, these supports are detached

from the final surface and will not be reused, leading to a waste of material, time and money.

Currently, the most affordable 3D printers use a printing technology known as fused

deposition modeling (FDM). This printing process, as shown in figure 1.1.1, melts a type of

polymer, that solidifies on the moving platform, or on the surface itself, printing the desired

solid with cross-sectional layers, from bottom to top.

Some parts of the solid need support because they are suspended in the air, which can

damage the object or generate wrong prints. These parts are called overhangs.

b)

a)

c)

d)

e)

Figure 1.1.1: A plastic filament (a) is horizontally heated by a controlled nozzle (b), allowing the
template (c) to be printed over the horizontal platform (e), that moves on the vertical direction.
Some sloping parts of the template need supports (d) to be printed.

To avoid overhangs, the 3D printers print columns to support the parts of this solid

1 INTRODUCTION 18

that have no material underneath them, otherwise the material would be melted and fall on the

platform. This extra material must be removed from the solid, leading to a waste of material,

time and money. As we can see represented in figure 1.1.2, the solid has overhanging parts that

Figure 1.1.2: This solid has parts that need support to print correctly. So the printer will build
some structures to hold this parts while it is printed.

need support to print correctly.

However, some overhangs are tolerable. Each printer has a limiting angle to tolerate

these overhangs. Given an angle θ , the printer only prints an overhang support if the part of the

solid that will be printed forms an angle with the horizontal plane less than θ .

We propose a formulation for the overhang problem based on the normal field of

a surface and an optimization method to find a global rotation of a surface that minimizes

overhanging parts that cannot be printed without supports. This global rotation does not change

the surface since the printed object can be derotated in the real world after printing.

1.2 Related work

During the last years, the problem of reducing overhangs from a surface has been

extensively studied and some partial solutions have been proposed.

Some of these solutions (HU et al, 2014), (YAO et al, 2015), (KARASIK; FATTAL;

WERMAN, 2019) partition the surface into smaller parts such that each subpart has little or no

overhangs. These methods introduce junction lines between the different parts that are clearly

visible after printing. Our method does not suffer from this limitation since we search for a

global solution for the whole input surface.

1 INTRODUCTION 19

In (VANEK; GALICIA; BENES, 2014) the authors propose to change the geometry

of the supports to minimize the waste of material. We, instead, propose a general solution that

is optimal, in a sense, for most supports generated by common 3D printing software. Other

approach to the problem was proposed by (DAI et al, 2014), where the authors design new

printing hardware to eliminate overhangs. Our current solution is purely based on software.

Other methods (ZHANG et al, 2015), (MARTÍNEZ et al, 2015), (WANG; ZANNI;

KOBBELT, 2016), propose altering the surface to improve the final quality of the printed piece.

These improvements can lead to overhang reduction. On the other hand, we directly formulate

the overhanging problem and find a specific solution for it.

1.3 Goals and contributions

This thesis has the following goals:

• Study and understand the 3D printing overhang problem: In our work, we analyze a

given surface and connect this analysis with the overhang problem of 3D printing, which

is necessary to understand the difficulties and challenges of the problem.

• Analyze the mathematical concepts and main references of the problem: After un-

derstanding the overhang problem, we discuss all necessary techniques related to this

problem. The bibliography needed for a complete problem analysis is explained in this

thesis and additional texts are available in the references section.

• Model the 3D printing overhang problem: With the mathematical concepts available,

we develop a mathematical model that treats the overhang problem to reduce the need

and amount of support for 3D printing.

• Test and evaluate the proposed method: The mathematical concepts and the model

developed allow us to create a strategy to find the global rotation that reduces the amount

of support. We then compare our results with other methods.

1.4 Structure of the thesis

In chapter 2, we present in section 2.1 some initial concepts of orthogonal and rigid

transformations.These concepts help us to understand an axial rotation and the rotation space

SO(3) that we detail in section 2.2, presenting some results about the representation of elements

1 INTRODUCTION 20

in this space with well known matrices. In the last part of this chapter, we introduce in section

2.3 the mathematical representation of 3D surfaces and some of their useful elements.

Chapter 3 presents the development of the objective function that we are going to

work in this thesis. In section 3.1, using the normal field of a surface we develop an objective

function that takes under consideration the angle of each normal vector on the surface. After we

identify some problems with the previous representation of the objective function, in section 3.2

we develop a new function that considers the length of z-coordinate on each normal angle of the

surface as a way of measuring the need for 3D printing support of a surface. In section 3.3, we

study the method developed by (ALEXANDER, ALLEN, DUTTA, 1998), that minimizes the

staircase effect in the manufacture of objects, to maximize surface accuracy. Finally, in section

3.4 we performed some tests to compare our results with initial positions of surfaces and the

positions found after applying Alexander’s method.

Chapter 4 begins with a reformulation of objective function developed in the previous

chapter to better understand how to apply an optimization method to solve the problem. Section

4.1 presents the concepts behind the Matlab function fmincon and some results that guaran-

tee correctness of the function and section 4.2 shows the results of solving the minimization

problem using this function with different initial point strategies.

Finally, chapter 5 has a quick review of this thesis in section 5.1 and the future work

in section 5.2 that can be developed from what was discussed here.

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 21

2 Preliminary concepts: rigid transformations and SO(3) space

All objects we are working with in this thesis are 3D surfaces. So, we need to define

and remember some properties of these elements, for a better analysis of all steps that we will

take here. For more details of what we approach in this section, please refer to (BOTSCH et al.,

2010), (CARMO, 2006) and (GOMES; VELHO; SOUSA, 2012).

As we will see during this work, some operations that we will apply to surfaces should

not change their shape. So, we need to introduce here the important concepts of operators that

preserve distances and angles. In addition, all vector norms used in this work will be the norm

induced by the usual inner-product of Rn.

2.1 Linear and rigid transformations

Definition 2.1.1. A linear operator T is an operator such that

1. the domain D(T) of T is a vector space and the range R(T) lies on a vector space over

the same field and

2. ∀x,y ∈D(T) and scalars α,β ,

T (αx+βy) = αT (x)+βT (y).

Example 2.1.1. k-Differentiation: Let C k[a,b] (a,b ∈R) be the vector space of functions that

are at least k times differentiable and define the operator Tk by setting

Tk(x(t)) = x(k)(t), ∀t ∈ [a,b]⊂R.

For a better background of the operations that we will approach in this work, we need

to understand the concept of bounded operators. Later, we will talk specifically about a special

case of bounded operator: rigid transformations. The main definition and properties of normed

spaces and bounded operators can be found in (KREYSZIG, 1978).

Before we approach rigid transformations, we must talk about a special type of bounded

operators: orthogonal transformations. In order to find a better position of a surface for 3D

printing support reduction, we will be looking for an orthogonal transformations that does this.

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 22

Definition 2.1.2. In an inner-product space X, two vectors x,y ∈ X are said to be orthogonal if

〈x,y〉= 0.

It is important to remember that, using the definition of inner-product in a real vector

space X , we can measure the smallest angle between two vectors x,y ∈ X , ‖x‖ 6= 0 and ‖y‖ 6= 0.

This angle is defined to be the number θ ∈ [0,π] such that

cos(θ) =
〈x,y〉
‖x‖‖y‖

.

Definition 2.1.3. Given a real inner-product X, the set B = {u1,u2, . . . ,un},ui ∈ X , i = 1, . . . ,n,

is called an orthonormal set if

〈ui,u j〉=


1, when i = j

0, when i 6= j
.

Definition 2.1.4. An n×n matrix is orthogonal if its columns are orthonormal.

Proposition 2.1.1. If A ∈Rn×n is an orthogonal matrix, then AT A = In×n.

Proof. Since A is a orthogonal matrix, by definition, its columns are orthonormal. So, if

A = [a1 a2 . . . an]

with ai ∈Rn each column of A, for i = 1, . . .n, we have

AT A =



aT
1

aT
2

...

aT
n


[a1 a2 . . . an] =



aT
1 a1 aT

1 a2 · · · aT
1 an

aT
2 a1 aT

2 a2 · · · aT
2 an

...
...

...
...

aT
n a1 aT

n a2 · · · aT
n an


.

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 23

Since aT
i a j =


1, if i = j

0, if i 6= j
, we then have

AT A =



aT
1 a1 aT

1 a2 · · · aT
1 an

aT
2 a1 aT

2 a2 · · · aT
2 an

...
...

...
...

aT
n a1 aT

n a2 · · · aT
n an


=



1 0 · · · 0

0 1 · · · 0

...
...

...
...

0 0 · · · 1


= In×n.

�

Definition 2.1.5. A linear transformation T : Rn −→ Rn is called orthogonal if it preserves

norms of vectors, i.e.,

‖T (x)‖= ‖x‖, ∀x ∈Rn.

Proposition 2.1.2. Let T : Rn −→ Rn be an orthogonal transformation. Then 〈T (x),T (y)〉 =

〈x,y〉, for any x,y ∈Rn.

Proof. Since T is an orthogonal transformation, for any x,y ∈Rn we have ‖T (x+ y)‖2 = ‖x+

y‖2. Expanding this equality, we have:

‖T (x)‖2 +2〈T (x),T (y)〉+‖T (y)‖2 = ‖x‖2 +2〈x,y〉+‖y‖2.

Using the fact that T is orthogonal, ‖T (x)‖= ‖x‖,∀x ∈Rn, we have:

‖T (x)‖2 +2〈T (x),T (y)〉+‖T (y)‖2 = ‖x‖2 +2〈T (x),T (y)〉+‖y‖2 = ‖x‖2 +2〈x,y〉+‖y‖2.

Then, subtracting ‖x‖2 and ‖y‖2 from both sides of equality and dividing by 2, we

obtain

〈T (x),T (y)〉= 〈x,y〉.

�

Theorem 2.1.1. Let T :Rn −→Rn be a linear transformation and A a matrix such that T (x) =

Ax, ∀x ∈ Rn. Then T is orhogonal if and only if A is orthogonal.

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 24

Proof. (⇒) Suppose that T : Rn −→ Rn is an orthogonal transformation. Then, we have that

‖T (x)‖= ‖x‖,∀x ∈Rn.

Since T (x) = Ax, for a matrix A ∈ Rn×n and for all x ∈ Rn, for an orthonormal basis

{e1,e2, . . . ,en} of Rn, ‖T (ei)‖= ‖ei‖ and the columns of A are [T (e1) T (e2) . . . T (en)].

Notice that:

〈T (ei),T (ei)〉= ‖T (ei)‖2 = ‖ei‖2 = 1.

Besides that, using proposition 2.1.2 for i 6= j,

〈T (ei),T (e j)〉= 〈ei,e j〉= 0.

So, the matrix A is orthogonal.

(⇐) Suppose that the matrix A ∈ Rn×n asscoaited to the linear transformation T is

orthogonal. So, we have that the columns of A are orthonormal and:

|T (x)‖2 = ‖Ax‖2 = (Ax)T Ax = xT AT A︸︷︷︸
In×n

x = xT x = ‖x‖2.

Therefore, ‖T (x)‖= ‖x‖ and T is an orthogonal transformation. �

Next example has a hint to what we are seeking for at this beginning of work. To

be able to find a better position to reduce support in 3D printing, all we need is to find an

embedding of the surface in space that has less overhanging parts that require support. To do

this, we need to consider some rotation matrices in R3.

Example 2.1.2.

Rotation matrices in R3: A vector u ∈ R3 can be rotated couterclockwise through an angle

θ around a coordinate axis by means of multiplication R · u ∈ R3 in which R ∈ Rn×n is an

appropriate orthogonal matrix as described below.

• Rotation around the x-Axis

Rx =


1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)



2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 25

• Rotation around the y-Axis

Ry =


cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)


• Rotation around the z-Axis

Rz =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


Observe that, if u = (ux uy uz)

T :

‖Rxu‖ =

∥∥∥∥∥∥∥∥∥∥∥∥


1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)




ux

uy

uz



∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥∥


ux

cos(θ)uy− sin(θ)uz

sin(θ)uy + cos(θ)uz



∥∥∥∥∥∥∥∥∥∥∥∥
= (u2

x +(cos(θ)uy− sin(θ)uz)
2 +(sin(θ)uy + cos(θ)uz)

2)
1
2

= (u2
x + cos2(θ)u2

y−2cos(θ)sin(θ)uyuz + sin2(θ)u2
z + sin2(θ)u2

y+

+2sin(θ)cos(θ)uyuz + cos2(θ)u2
z)

1
2

= (u2
x +(cos2(θ)+ sin2(θ))︸ ︷︷ ︸

=1

u2
y +(cos2(θ)+ sin2(θ))︸ ︷︷ ︸

=1

u2
z)

1
2

= (u2
x +u2

y +u2
z)

1
2 = ‖u‖

Therefore ‖Rxu‖= ‖u‖, Rx is an orthogonal matrix and, by theorem 2.1.1, Rx can be

the matrix associated with an orthogonal transformation. Similarly, we can prove that Ry and

Rz are orthogonal matrices and also can be the matrices associated with orthogonal transfor-

mations.

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 26

Lemma 2.1.1. Let n ∈N and R1,R2, . . . ,Rn ∈ Rn×n. If R1,R2, . . .Rn are orthogonal then R =

RnRn−1 · · ·R2R1 is orthogonal.

Proof. To prove that R = RnRn−1 · · ·R2R1 is orthogonal we only need to prove that RT R = In×n.

Since Ri, i = 1, . . .n are orthogonal, we have that RT
i Ri = In×n, with i = 1, . . . ,n.

Then,

RT R = (RnRn−1 · · ·R2R1)
T (RnRn−1 · · ·R2R1) = RT

1 RT
2 · · ·RT

n−1 RT
n Rn︸ ︷︷ ︸
In×n

Rn−1 · · ·R2R1

= RT
1 RT

2 · · ·RT
n−1Rn−1︸ ︷︷ ︸

In×n

· · ·R2R1

...

= RT
1 R1 = In×n

�

As mentioned before, we need to find a transformation that changes the position of

a surface but does not change its shape. So, we will introduce now the concept of rigid trans-

formations. These functions only change the positions of objects, leaving their shape and size

unchanged.

Definition 2.1.6. Consider a normed space A , T : A−→ A a rigid transformation and x,y ∈ A.

A transformation is called rigid if and only if it preserves

1. Distances between points, i.e,

‖T (x− y)‖= ‖x− y‖;

2. Angles between vectors, i.e.,

〈T (x),T (y)〉= 〈x,y〉.

Also, a ridid transformation T :Rn−→Rn, where T (x) = Ax with A∈Rn×n, is called

orientation-preserving if det(A)> 0.

A simple lemma is required to prove a theorem that has an important role in this work.

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 27

Lemma 2.1.2 (Eigenvalue of a matrix). Let A = (ai j) ∈ Rn×n. Then A has at least one eigen-

value.

Proof. Given λ ∈ C, x ∈Rn,x 6= 0 and consider the equation

Ax = λx. (2.1.1)

Equation 2.1.1 can be written as

Ax−λx = 0⇒ (A−λ In×n)x = 0. (2.1.2)

If det(A−λ In×n) 6= 0, the system in equation 2.1.2 would have no solution because

A−λ In×n would be singular and (A−λ In×n)x = 0⇔ x = 0.

So, det(A−λ In×n) must be zero in order to 2.1.2 have a solution x 6= 0. This leads to

the characteristic equation

det(A−λ In×n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11−λ a12 · · · a1n

a21 a22−λ · · · a2n

...
...

...
...

an1 an2 · · · ann−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

and gives us a polynomial in λ of degree n.

Therefore, by the fundamental theorem of algebra, there exists at least one λ ∈ C

eigenvalue. �

Observation 2.1.1. Note that, when the matrix A belongs to R3×3, it has at least one real

eigenvalue.

Indeed, when we set its characteristic equation

det(A−λ I3×3) =

∣∣∣∣∣∣∣∣∣∣∣∣

a11−λ a12 a13

a21 a22−λ a23

a31 a32 a33−λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

we have the characteristic polynomial of matrix A, p(λ) = det(A−λ I3×3) and it is a degree 3

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 28

polynomial. When we expand the determinant, we have that the leading term of the character-

istic polynomial of A is −λ
3, i.e.,

p(λ) =−λ
3 + lowerterms.

But, note that, if we increase λ to a sufficiently big value, and decrease λ to a suffi-

ciently small value, or yet,

lim
λ→∞

p(λ) =−∞,

lim
λ→−∞

p(λ) = ∞,

the intermediate value theorem guarantee that ∃λ ∗ ∈ R such that p(λ ∗) = 0. Therefore, A ∈

R3×3 has at least one real eigenvalue.

We now generalize the idea of rotation by an angle around an arbitrary axis:

Definition 2.1.7. Given any vector u∈R3, ‖u‖= 1 and an angle θ ∈ (−π,π]. An axial rotation

is a rigid orientation-preserving transformation T : R3 −→ R3 that rotates any vector x ∈

R3,x 6= (0 0 0)T around u by an angle θ .

Theorem 2.1.2. Every orientation-preserving linear rigid transformation in 3D is an axial

rotation.

Proof. Let T :R3 −→R3 be an orientation-preserving linear rigid transformation, and then

‖T (x)‖= ‖x‖,∀x ∈R3,

and consider λ ∈R a real eigenvalue of T associated to the eigenvector u ∈R3,‖u‖= 1. Since

λ is an eigenvalue of T , we have T (u) = λu and applying the norm to both sides of the equality,

‖T (u)‖= ‖λu‖= |λ |‖u‖.

Since ‖T (x)‖= ‖x‖,∀x ∈R3, it also applies to u and matching both equations, we have

‖u‖= |λ |‖u‖⇒ |λ |= 1⇒ λ =±1 (since λ ∈R).

If λ = 1, then T (u) = u and, using proposition 2.1.2, we have that T preserves angles

(and inner product). So, for any w ∈ R3∩{u}⊥ (e.g. any vector in plane of all vectors in R3

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 29

that w⊥ u),

〈T (w),T (u)〉= 〈w,u〉= 0.

Also, given any vector x ∈R3, we have that

〈u,x〉= ‖x‖‖u‖cos(β) = ‖x‖cos(β),

with β the smallest angle between u and x. Note that, as T (u)= u and T preserves inner product,

we have that

〈u,x〉= 〈T (u),T (x)〉= 〈u,T (x)〉.

Then 〈u,x〉= 〈u,T (x)〉.

It means that T keeps vectors in the orthogonal plane of u and preserves the angle

between x and u, as we can see on figure 2.1.1. Therefore, as any vector x ∈ R3,x 6= 0, can be

Figure 2.1.1: The transformation T applied on vector w returns a vector T (w) that also belongs
to {u}⊥ (a) and applied on a vector x returns a vector T (x) that keeps the angle β between u (b).

written as a linear combination of u and its projection in {u}⊥ and the transformation T rotates

any vector in {u}⊥ by an angle θ , we have that T must be a rotation around the u-axis by an

angle θ .

if λ = −1, T (u) = −u and then using inner product preservation, we have that T

takes the R3 ∩{u}⊥ plane into itself but reverses orientation on this plane. Then, as T is an

orientation-preserving transformation, we have that T can not have λ =−1 as its eigenvalue.

Analyzing the cases with λ = ±1, we have that T must be a rotation around u-axis

and given the arbitrariness of the choice of T , we conclude that all orientation-preserving linear

rigid transformation in 3D is an axial rotation. �

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 30

We will show how to construct the generic axial rotation matrix by an angle θ around

an axis u. This construction is important and will help us to understand the space SO(3) of all

rotations in R3.

Consider any vector u ∈ R3,u = (ux uy uz)
T , with ‖u‖ = 1. The first step to find the

general rotation Ru(θ) is to rotate u around x−axis by an angle θx ∈ R so that u is mapped to

the xz− plane, resulting on the vector u′ (figure 2.1.2). Note that the projection pyz of u on the

yz− plane will also be rotated by the angle θx and is mapped to the z− axis, as we can see in

figure 2.1.2. We can also see that the length of this projection is

‖pyz‖=
√

u2
y +u2

z .

Figure 2.1.2: Rotating u around the x-axis by an angle θx (resulting in the vector u′) also rotates
its yz-projection pyz by the same angle θx, taking it to the z−axis (left). The length of projection
of u into the yz-plane pyz and its y and z coordinates form a right triangle (right).

So, since

sin(θx) =
uy

pyz
and cos(θx) =

uz

pyz
,

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 31

we have the rotation matrix around the x−axis:

Rx(θx) =


1 0 0

0
uz

pyz
−

uy

pyz

0
uy

pyz

uz

pyz


.

Now, we will rotate u′ around the y− axis by an angle −θy ∈ R to map its to the

z−axis, as shown in figure 2.1.3. Remember that ‖u′‖ = 1 and as we initially rotate u around

x−axis and map it to the xz− plane, we have that the new rotation angle satisfies

sin(θy) =
ux

‖u‖
= ux and cos(θy) =

pyz

‖u‖
= pyz

and the new rotation matrix around y−axis is

Ry(−θy) =


pyz 0 −ux

0 1 0

ux 0 pyz

 .

Figure 2.1.3: Rotating u′ around the y-axis by an angle −θy results in the vector u′′ (left). The
length u′, the x-coordinate of u and the length of yz-projection, that was rotated into the z-axis,
form a right triangle (right).

Now, with u on the z− axis (represented by u′′ in figure 2.1.3), we can rotate by the

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 32

initial angle θ around z−axis and reverse all steps that we did before, constructing the rotation

matrix around an arbitrary axis as

Ru(θ) = R−1
x (θx)R−1

y (−θy)Rz(θ)Ry(−θy)Rx(θx),

and getting the result:

Ru(θ) =


u2

x(1− cos(θ))+ cos(θ) uxuy(1− cos(θ))+uz sin(θ) uxuz(1− cos(θ))−uy sin(θ)

uxuy(1− cos(θ))−uz sin(θ) u2
y(1− cos(θ))+ cos(θ) uyuz(1− cos(θ))+ux sin(θ)

uxuz(1− cos(θ))+uy sin(θ) uyuz(1− cos(θ))−ux sin(θ) u2
z (1− cos(θ))+ cos(θ)

.

(2.1.3)

Observation 2.1.2. Notice that we can write the equation 2.1.3 as

Ru(θ) =


u2

x(1− cos(θ))+ cos(θ) uxuy(1− cos(θ))+uz sin(θ) uxuz(1− cos(θ))−uy sin(θ)

uxuy(1− cos(θ))−uz sin(θ) u2
y(1− cos(θ))+ cos(θ) uyuz(1− cos(θ))+ux sin(θ)

uxuz(1− cos(θ))+uy sin(θ) uyuz(1− cos(θ))−ux sin(θ) u2
z (1− cos(θ))+ cos(θ)



=


cos(θ) 0 0

0 cos(θ) 0

0 0 cos(θ)


︸ ︷︷ ︸

=cos(θ)I3×3

+(1− cos(θ))


u2

x uxuy uxuz

uxuy u2
y uyuz

uxuz uyuz u2
z


︸ ︷︷ ︸

=uuT

−sin(θ)


0 −uz uy

uz 0 −ux

−uy ux 0


︸ ︷︷ ︸

=:U

= cos(θ)I3×3 +(1− cos(θ))uuT − sin(θ)U.

(2.1.4)

This way of writing the equation 2.1.3 will help us with the main theorem on the next section.

2.2 The rotation space SO(3) and generalized Euler sequences

Before we move on to the objective functions we are going to work with, let us un-

derstand the space where the solution of the first objective of this work lives, the space of all

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 33

rotations in R3.

Definition 2.2.1. The set that describes all rotations in 3D is given by:

SO(3) = {R ∈R3×3 | RT R = I3×3,det(R) = 1}

Theorem 2.2.1 (Euler’s Rotational Theorem). Given any R ∈ SO(3), ∃u ∈R3,‖u‖= 1 and an

angle θ ∈ (−π,π] such that R = Ru(θ), as in 2.1.3.

Proof. To prove this theorem, given any R∈ SO(3), if we find a vector u∈R3 such that Ru = u,

we will have found a vector that is invariant by R and thus we will be able to finding the axis of

rotation (hence the angle).

By definition of SO(3) and orthogonal transformations, RT = R−1 and using determi-

nant properties det(AB) = det(A)det(B) and det(−A) = (−1)n det(A),∀A,B ∈ Rn×n, we have

that:

det(R− I3×3) = det
(
(R− I3×3)

T
)
= det

(
RT − I3×3

)
= det

(
RT −RT R

)
= det

(
RT (I3×3−R)

)
= det

(
−RT (R− I3×3)

)
= det

(
−RT

)
det(R− I3×3) =−det

(
RT
)

det(R− I3×3)

= −det(R− I3×3) .

Thus, det(R− I3×3) =−det(R− I3×3) and this is only possible if det(R− I3×3) = 0.

Then (R− I3×3) is singular, N (R− I3×3) 6= /0 and there exists at least one u ∈ R3 such that

u ∈N (R− I3×3) and (R− I3×3)u = 0. So,

(R− I3×3)u = 0⇔ Ru = u.

Notice that, for any vector w ∈ {u}⊥, we have that

0 = 〈u,w〉= 〈Ru,w〉.

Then, R takes the {u}⊥ into itself and ∃θ ∈ R that R rotates any vector in {u}⊥ around u-axis

(see figure 2.1.1 (a)). Also, given any x∈R3,x 6= 0 and w∈{u}⊥, we have that {u,w,(u×w)}⊂

R3 forms a basis to R3. So, we can write x as x = α1u+α2w+α3(u×w),αi ∈R, i = {1,2,3}

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 34

and we have that

Rx = R(α1u+α2w+α3(u×w)) = α1Ru+α2Rw+α3R(u×w)

= α1u+R(α2w+α3(u×w)).

So, R preserves α1u and keeps α2w and α3(u×w) on {u}⊥. As R also preserves the angle

between α2w and α3(u×w), we have that R rotates those around u by an angle θ , as we can see

on figure 2.2.1.

Figure 2.2.1: The vector x and its coordinates with {u,w,(u×w)} ⊂R3 basis before (left) and
after (right) applied rotation matrix R. Notice that R preserves the coordinate α1u and rotate
α2w and α3(u×w) around u by an angle θ .

Since 〈u,x〉= 〈Ru,Rx〉= 〈u,Rx〉 and ‖Rx‖= ‖x‖, we have that R preserves the angle

between u and x. So, given the arbitrariness of the choice of x and R and the fact that R rotates

any vector in {u}⊥ around u by an angle θ ∈ R, we have that R is a rotation around u by the

angle θ and R = Ru(θ).

�

Theorem 2.2.1 will have an important role on the proof of the next theorem.

Definition 2.2.2. Consider three axis u1,u2,u3 ∈ R3,‖ui‖ = 1, i = 1,2,3, such that uT
1 u2 =

uT
2 u3 = 0. Then, a generalized Euler sequence is given by

Ru3(θ3)Ru2(θ2)Ru1(θ1) ∈ SO(3),

for θ1,θ2,θ3 ∈R and Rui(θi) ∈ SO(3), i = 1,2,3.

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 35

Theorem 2.2.2. Consider three axis u1,u2,u3 ∈ R3,‖ui‖ = 1,ui = (ux
i uy

i uz
i)

T , i = 1,2,3, and

let α ∈ (−π,π] be the unique angle such that

uT
1 u2 = uT

2 u3 = 0, sin(α) = uT
3 U1u2 and cos(α) = uT

3 u1,

where

U1 =


0 −uz

1 uy
1

uz
1 0 −ux

1

−uy
1 ux

1 0

 .

Then, for any R∈ SO(3), there exists (θ1,θ2,θ3)∈ (−π,π]×[−α,π−α]×(−π,π] and (θ1,θ2,θ3)∈

(−π,π]× [−π−α,−α]× (−π,π] such that

R = Ru3(θ3)Ru2(θ2)Ru1(θ1).

Proof. To prove this theorem, we have to show that the transformations

1. Ru3(θ3)Ru2(θ2)Ru1(θ1) : (−π,π]× [−α,π−α]× (−π,π]−→ SO(3) and

2. Ru3(θ3)Ru2(θ2)Ru1(θ1) : (−π,π]× [−π−α,−α]× (−π,π]−→ SO(3)

are surjective.

So, let any R ∈ SO(3). Let us build a generalized Euler sequence such that R =

Ru3(θ3)Ru2(θ2)Ru1(θ1).

• Finding θ1 ∈ (−π,π]:

Suppose for the moment that given any R ∈ SO(3), we have three axes ui ∈ R3,‖u1‖ = 1 and

three angles θi ∈ R with i = 1,2,3 such that R = Ru3(θ3)Ru2(θ2)Ru1(θ1). If we transpose this

equation, we have RT = RT
u1
(θ1)RT

u2
(θ2)RT

u3
(θ3). So, multiplying both sides by uT

2 Ru1(θ1) on

the left and by u3 on the right, we have:

uT
2 Ru1(θ1)RT u3 = uT

2 Ru1(θ1)RT
u1
(θ1)︸ ︷︷ ︸

I3×3

RT
u2
(θ2)RT

u3
(θ3)u3

= uT
2 RT

u2
(θ2)RT

u3
(θ3)u3

=
(
Ru2(θ2)u2

)T RT
u3
(θ3)u3.

.

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 36

Using equation 2.1.3 for Ru(θ), any u ∈R3,‖u‖= 1 and any θ ∈R, notice that:

Ru(θ)u =

=


u3

x(1− cos(θ))+ux cos(θ)+uxu2
y(1− cos(θ))+uyuz sin(θ)+uxu2

z (1− cos(θ))−uyuz sin(θ)

u2
xuy(1− cos(θ))−uxuz sin(θ)+u3

y(1− cos(θ))+uy cos(θ)+uyu2
z (1− cos(θ))+uxuz sin(θ)

u2
xuz(1− cos(θ))+uxuy sin(θ)+u2

yuz(1− cos(θ))−uxuy sin(θ)+u3
z (1− cos(θ))+uz cos(θ)



=


u3

x−u3
x cos(θ)+ux cos(θ)+uxu2

y−uxu2
y cos(θ)+uyuz sin(θ)+uxu2

z −uxu2
z cos(θ)−uyuz sin(θ)

u2
xuy−u2

xuy cos(θ)−uxuz sin(θ)+u3
y−u3

y cos(θ)+uy cos(θ)+uyu2
z −uyu2

z cos(θ)+uxuz sin(θ)

u2
xuz−u2

xuz cos(θ)+uxuy sin(θ)+u2
yuz−u2

yuz cos(θ)−uxuy sin(θ)+u3
z −u3

z cos(θ)+uz cos(θ)



=


ux(u2

x−u2
x cos(θ)+ cos(θ)+u2

y−u2
y cos(θ))+u2

z −u2
z cos(θ))

uy(u2
x−u2

x cos(θ))+u2
y−u2

y cos(θ))+ cos(θ)+u2
z −u2

z cos(θ))

uz(u2
x−u2

x cos(θ)+u2
y−u2

y cos(θ)+u2
z −u2

z cos(θ)+ cos(θ))



=



ux

(
1+ cos(θ)(−u2

x +1−u2
y−u2

z)
)

uy

(
1+ cos(θ)(−u2

x +1−u2
y−u2

z)
)

uz

1+ cos(θ)(−u2
x +1−u2

y−u2
z)︸ ︷︷ ︸

=0




=


ux

uy

uz

= u

So, Ru(θ)u = u for any u ∈R3,‖u‖= 1 and θ ∈R.

Also, notice that, since Ru(θ)u= u and RT
u (θ)Ru(θ)= I3×3 then, multiplying Ru(θ)u=

u on the left by RT
u (θ) we obtain

RT
u (θ)Ru(θ)︸ ︷︷ ︸

I3×3

u = RT
u (θ)u⇒ RT

u (θ)u = u,

and then u is invariant by RT
u (θ)Ru(θ) and Ru(θ).

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 37

Therefore, we have

uT
2 Ru1(θ1)RT u3 = uT

2 Ru1(θ1)RT
u1
(θ1)︸ ︷︷ ︸

I3×3

RT
u2
(θ2)RT

u3
(θ3)u3

= uT
2 RT

u2
(θ2)RT

u3
(θ3)u3

=
(
Ru2(θ2)u2

)T︸ ︷︷ ︸
=uT

2

RT
u3
(θ3)u3︸ ︷︷ ︸
=u3

.

= uT
2 u3 = 0

. (2.2.1)

Writing the matrix Ru1(θ1) = cos(θ1)I3×3+(1−cos(θ1))u1uT
1 − sin(θ1)U1, we have:

uT
2

(
cos(θ1)I3×3 +(1− cos(θ1))u1uT

1 − sin(θ1)U1

)
RT u3 = 0 ⇔

⇔ cos(θ1)uT
2 RT u3 +(1− cos(θ1))uT

2 u1︸︷︷︸
=0

uT
1 RT u3− sin(θ1)uT

2 U1RT u3 = 0 ⇔

⇔ cos(θ1)uT
2 RT u3 = sin(θ1)uT

2 U1RT u3.

So, we have four cases to analyse:

1. If uT
2 RT u3 6= 0 and uT

2 U1RT u3 6= 0, it is impossible to have cos(θ1) = 0 (if cos(θ1) = 0,

we would have sin(θ1) = 0 = cos(θ1), and this could not happen). So, we have:

tan(θ1) =
uT

2 RT u3

uT
2 U1RT u3

6= 0

and it is possible to find an angle θ1 ∈
(
−π,−π

2

)
∪
(
−π

2
,0
)
∪
(

0,
π

2

)
∪
(

π

2
,π

)
, that

satisfies this equation.

2. If uT
2 RT u3 = 0 and uT

2 U1RT u3 6= 0, we have that sin(θ1) = 0 and this is only possible if

θ1 =−π , θ1 = 0 or θ1 = π .

3. If uT
2 RT u3 6= 0 and uT

2 U1RT u3 = 0, we have that cos(θ1) = 0 and this is only possible if

θ1 =−
π

2
and θ1 =

π

2
.

4. If uT
2 RT u3 = uT

2 U1RT u3 = 0, we can choose any angle θ1 ∈ (−π,π].

Therefore, in all cases we can find a solution for the equation above.

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 38

• Finding θ2 ∈ [α−π,α] and θ2 ∈ [α,π +α] :

Let θ1 ∈ (−π,π] and consider a vector w ∈R3 such that

w = Ru1(θ1)RT u3.

Since u1⊥ u2 and U2u1 represents the croos product between u2 and u1, {u1,U2u1,u2}

is an orthonormal basis forR3. So, since we have uT
2 u3 = 0, it follows that u3 ∈ span{u1,U2u1}.

Notice that, by the trigonometric identity sin(α)2 + cos(α)2 = 1, we have that

1 = sin(α)2 + cos(α)2 = sin(α)sin(α)+ cos(α)cos(α)

Then, taking an α ∈ (−π,π] such that

sin(α) = uT
3 U1u2 and cos(α) = uT

3 u1

we have

1 = sin(α)2 + cos(α)2

= sin(α)sin(α)+ cos(α)cos(α)

= sin(α)uT
3 U1u2 + cos(α)uT

3 u1

= uT
3
(
sin(α)U1u2 + cos(α)u1

)
.

Then, as ‖u3‖2 = uT
3 u3 = 1, we have that u3 = sin(α)U1u2+cos(α)u1. From equation

2.1.4, we have

RT
u2
(α) = cos(α)I3×3 +(1− cos(α))u2uT

2 + sin(α)U2.

Multiplying on the right by u1, we have

RT
u2
(α)u1 = cos(α)u1 +(1− cos(α))u2 uT

2 u1︸︷︷︸
=0

+sin(α)U2u1

= cos(α)u1 + sin(α)U2u1

= u3.

Notice that ‖w‖ = ‖Ru1(θ1)RT u3‖ = 1 and u2 ⊥ w by equation 2.2.1. Since u2 ⊥ w,

we have that w ∈ span{u1,U2u1}. So, just as we did for u3 before, taking an angle γ ∈ (−π,π]

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 39

that

sin(γ) = wTU1u2 and cos(γ) = uT
3 u1,

we can write w as

w = cos(γ)u1 + sin(γ)U2u1 = RT
u2
(γ)u1.

Setting θ2 = γ−α we have

Ru2(θ2)w = Ru2(γ−α)RT
u2
(γ)u1

= Ru2(−α)u1 = RT
u2
(α)u1 = u3

Therefore, we have that

u3 = Ru2(θ2)w = Ru2(θ2)Ru1(θ1)RT u3.

We have shown that it always possible to find θ1 ∈ (−π,π] and θ2 ∈ [−α,π −α] if

(θ2 +α) ∈ [0,π] or θ2 ∈ [−π−α,−α] if (θ2 +α) ∈ [−π,0] such that

u3 = Ru2(θ2)Ru1(θ1)RT u3.

Now, let us find θ3.

• Finding θ3 ∈ (−π,π]:

Since Ru2(θ2)Ru1(θ1)RT ∈ SO(3) and u3 = Ru2(θ2)Ru1(θ1)RT u3, using the same con-

struction on theorem 2.2.1, ∃θ3 ∈ (−π,π] such that

Ru3(−θ3) = Ru2(θ2)Ru1(θ1)RT .

So, multiplying both sides of the equality by R on the right and RT
u3
(−θ3) on the left, we have

RT
u3
(−θ3)Ru3(−θ3)︸ ︷︷ ︸

I3×3

R = RT
u3
(−θ3)Ru2(θ2)Ru1(θ1)RT R︸︷︷︸

I3×3

⇔

⇔ R = RT
u3
(−θ3)Ru2(θ2)Ru1(θ1).

Since RT
u3
(−θ3)=Ru3(θ3) we were able to find θ1 ∈ (−π,π],θ2 ∈ [−α,π−α] or θ2 ∈

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 40

[−π−α,−α] and θ3 ∈ (−π,π] such that

R = Ru3(θ3)Ru2(θ2)Ru1(θ1).

�

2.3 Spatial surfaces and their representations

Since the most relevant 3D objects in our work are 3D surfaces, we need to understand

the concept of surfaces. We can define a topological surface as a subset S ⊂ R3 that is locally

homeomorphic to an open set of the Euclidian planeR2, e.g., ∀x ∈ S, existis U ⊂ S and V ⊂R2,

U,V open sets and x ∈U such that ∃Φ : V −→U that has the following properties:

• Φ is a bijection

• Φ is continuous and

• Φ
−1 is continuous.

There are two ways to describe a surface: parametric and implicit.

Definition 2.3.1. A Parametric surface S is described by a transformation f : U ⊂R2 −→R3

f (u,v) =


f1(u,v)

f2(u,v)

f3(u,v)


with fi : U ⊂R2 −→R, i = {1,2,3}, as illustrated in figure 2.3.1.

.

Example 2.3.1. Consider the function f : [0,1]× [0,2π]−→R3 given by

f (u,v) =


ucos(v)

usin(v)

u

 .

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 41

Figure 2.3.1: Parametric surface.

The function f is the parametric representation of a cone that opens along the z-axis, as can be

seen in figure 2.3.2.

Figure 2.3.2: Example of a parametric cone that opens along the z-axis and its domain.

2.3.1 Triangle mesh representation

A 2D triangulation of a region in space is a collection F = { fi} of triangles, in which,

given two different triangles fi, f j, i 6= j in the triangulation F such that fi∩ f j 6= /0, we have

fi∩ f j is a commom vertex or fi∩ f j is a commom edge.

Since we are interested to work with 3D objects, the concept of 2D triangulation is

fundamental to help us to develop our work in the computer. Using the idea of triangulation,

we can define a triangulated surface.

Definition 2.3.2. A Triangulated Surface is a triangulation of the space that covers a given

surface partly or totally, as ilustrated on figure 2.3.3.

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 42

Figure 2.3.3: Examples of triangulated surfaces. All these surfaces are available on Libigl
website (JACOBSON et. al., 2018).

To better analyze our solid in the computer, we need to remember some properties of

surfaces and their discretizations. This analysis will help us to understand a different way to

compare surface angles and the threshold angles for overhangs.

A solid can be represented in the computer by its vertex matrix V ∈ Rn×3, V =

{v1,v2, . . . ,vn}, where n = |V | is the number of vertices of the surface, in which each vertex

vi ∈R1×3 has the x-, y-, z- coordinates of the vertex i = 1, . . . ,n. A way (BOTSCH et al, 2010)

to represent a surface mesh is storing the set of vertex indices on a matrix F ∈Rm×3, m = |F |,

that represents the connection between the vertices and originates the triangular faces, i.e., the

matrix F has in each row the indices of rows of V that, together, form a triangle mesh. In

figure 2.3.4, we can see an example of an individual triangle mesh and its vertices.

vi

vj
vk

Fl

Figure 2.3.4: In this example, the l-th row of triangle mesh matrix F stores the row positions
of the vertex vi,v j and vk of the vertex matrix F . This face, on the matrix, is represented by
Fl = (i, j,k).

Example 2.3.2. Consider the triangular base prism surface in figure 2.3.5.

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 43

Figure 2.3.5: Triangular base prism.

Its vertex and face matrices V ∈R6×3 and F ∈R8×3 are

V =



−1.27 0 0

0 −1.3 0

0 0 0

0.48 −1.15 1.22

−0.69 −0.4 0.82

0.6 −1.63 0.93



and F =



1 2 3

1 2 6

1 5 6

1 3 4

1 4 5

2 3 6

3 4 6

4 5 6



.

Using the triangle mesh representation of a triangulated surface, we can define a cru-

cial element of our analysis.

Definition 2.3.3. Given a vertex matrix V ∈ Rn×3,n = |V | and a triangle f = (i, j,k) of its

triangle mesh F ∈Rm×3, the normal vector of the triangle f is

n(f) =
(v j− vi)∧ (vk− vi)

‖(v j− vi)∧ (vk− vi)‖
, (2.3.1)

where ∧ :R3 −→R3 is the Euclidean cross product.

2 PRELIMINARY CONCEPTS: RIGID TRANSFORMATIONS AND SO(3) SPACE 44

vi

vj

vk

nijk

Figure 2.3.6: Associated to this surface, we have the vertex matrix V and its triangle mesh
matrix F . We can associate one normal vector for each triangle on mesh, as defined in definition
2.3.3.

Each triangle in the mesh has a normal vector associated, as shown in figure 2.3.6 and

the set of all normal vectors in a triangle mesh is called by Normal Field. We can organize them

in the matrix of normals N ∈Rm×3.

3 OBJECTIVE FUNCTION 45

3 Objective function

Our purpose here is to find an embedding of the surface that minimizes the amount of

support in a 3D printing process. These supports are worthless and, after printing the object, the

printing user will detach them and throw them away, leading to a waste of material and money.

With that in mind, we seek to find a transformation of a surface that does not change

distances and angles. So what we are looking for is a rigid transformation, as in definition 2.1.6.

Also, we saw in theorem 2.1.2 that every orientation-preserving linear rigid transformation

is an axial rotation and, finally, with theorem 2.2.2, we can represent any rotation on SO(3)

with a generalized Euler sequence, given by a matrix product of three axial rotation matrices,

respecting the conditions of the same theorem.

Notice that, if we choose the canonical basis inR3, e1 =(1 0 0)T ,e2 =(0 1 0)T and e3 =

(0 0 1)T as the three axes of the generalized Euler sequence, according to theorem 2.2.2, we

have to cosider an angle α ∈ (−π,π] such that

uT
1 u2 = uT

2 u3 = 0, sin(α) = uT
3 U1u2 and cos(α) = uT

3 u1,

to be able to represent any rotation on SO(3) with these three axes. Since eT
1 e2 = eT

2 e3 = 0 and

cos(α) = eT
3 e1 = 0 let us analize the sin condition to find α:

sin(α) = eT
3 E1e2 =

(
0 0 1

)


0 0 0

0 0 1

0 1 0




0

1

0



=

(
0 0 1

)


0

0

1

= 1.

We have that α ∈ (−π,π] is an angle that cos(α) = 0, sin(α) = 1⇒ α =
π

2
.

So, by the theorem 2.2.2, for any R ∈ SO(3), we can find

(θ1,θ2,θ3) ∈ (−π,π]×
[
−π

2
,
π

2

]
× (−π,π]

3 OBJECTIVE FUNCTION 46

that R= Re3(θ3)Re2(θ2)Re1(θ1). But, for our purpose of minimizing overhang support in the 3D

printing process, we have to note the following: given any surface V ∈ R|V |×3 and any vertex

v ∈ V ,v = (x y z)T , if we rotate V by any angle θ ∈ (−π,π] around e3, we have that

Re3(θ)v =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1




x

y

z

=


cos(θ)x− sin(θ)y

sin(θ)x+ cos(θ)y

z

 .

So, the z− axis rotation does not change the value of z− coordinate and, if the surface needs

to print a support, this particular rotation will not change the need for this support. On figure

3.0.1, we can see the Camel surface on initial position and after z−axis rotation.

Figure 3.0.1: Camel surface from Libigl (JACOBSON et al., 2018) in the initial position (left)
and after θ =

π

3
z-axis rotation (right). The red area of both surfaces are those that need support

to print. Notice that the support area does not change after this z−axis rotation.

Therefore, we only need to find a rotation R=Re2(θ2)Re1(θ1), with (θ1,θ2)∈ (−π,π]×[
−π

2
,
π

2

]
that, applied to a surface, finds an orientation that reduces the ammount of support.

In (VANEK; GALICIA; BENES, 2014), before building the overhang support pro-

posed by them, they use the results of (ALEXANDER; ALLEN; DUTTA, 1998) to find a better

orientation for the tested surfaces. As we will see in this section, our method provides a surface

orientation that results in a lower amount of support volume and printing time.

3 OBJECTIVE FUNCTION 47

3.1 Surface normal angle analysis

We can analyze overhanging parts of the solid that is going to be printed using the

normal field of its surface, as illustrated in figure 3.1.1: the faces that have normals belonging

to the white region of the sphere on the right can be printed without supports and the ones that

have normals in the green region need supports to be printed.

Figure 3.1.1: This two normals n1 and n2 of the bunny surface have different angles. The normal
vector n1 is within the angle range of the printer. The normal vector n2 is in an overhanging part
and will need a support to print correctly.

At the moment of printing, the user can choose the amount of surface infill, ranging

from 0% to 100%. In our work we consider 0% infill, which corresponds to the worst possible

case in terms of support needed for printing, as we can see on figure 3.1.2. So the parts of the

surface that have normal vector pointing upwards will also be considered in the problem.

Figure 3.1.2: Lion surface from Libigl (JACOBSON et al., 2018) with 0% infill (left) and
30% infill(right). The parts of the surface such that normal angles are above the support angle
threshold θ will also need some support to be printed, if the printer infill is set to 0%.

3 OBJECTIVE FUNCTION 48

Given a triangle mesh matrix F we can find the angle of the normal of each triangle

f ∈F with the vertical direction, defining the function α : F −→R,

α(f) = arccos
(

n(f)T e3

)
, (3.1.1)

where e3 is the unit vector e3 = (0,0,1)T and n(f) ∈ R3 is the (unit) normal vector of triangle

f , as you can be seen in figure 3.1.3. So, given the normal field N , the angle of each normal

e3

n(f)

α(f)

Figure 3.1.3: The equation (3.1.1) measure the angle between the normal n(f)∈N of a triangle
f ∈F on mesh and the vertical direction e3 = (0 0 1)T .

and the printer limit angle θ for overhang, we can measure the residual error of each normal

angle and the threshold angle and sum over all triangle of the mesh:

∑
f∈F

max

{∣∣∣∣α(f)− π

2

∣∣∣∣−θ ,0

}
. (3.1.2)

Since we want to find a rotation R ∈ SO(3) that when applied to the surface normal

field minimizes the sum in equation 3.1.2, we want to obtain the solution for

min
R ∑

f∈F
max

{∣∣∣∣α(R · f)− π

2

∣∣∣∣−θ ,0

}

s.t. R ∈ SO(3)

. (3.1.3)

3 OBJECTIVE FUNCTION 49

3.1.1 Initial results

The libraries we are working with are Libigl (JACOBSON et al., 2018) (C++) and

gptoolbox (JACOBSON et. al., 2018) (Matlab). Our main job will be to analyze the surface

to be printed and return new vertex positions V to be printed with minimal overhang support.

Initially, we are seeking for a global rotation of the surface that, given the normal field of the

surface, finds a new normal field that minimizes the overhanging parts of the surface. To make

the tests more reliable, we preprocessed all surfaces in our tests to be centered at the origin.

Using some surfaces available in Libigl and some freely available surfaces on Sketch

Fab website (DENOYEL, PINSON, PASSET, 2012), we were able to perform some tests to

evaluate if it is possible to find rotated surfaces with normal fields that solve the problem (3.1.3).

Initial results show that for every libgl surface tested we find an x-axis and y-axis angle rotation

that minimize the value of function (3.1.2), as can be seen in table 3.1.1.

Surface(.obj) x-axis
angle

y-axis
angle Initial Minim

camel b 136o −2o 235.29 150.19

horse quad −60o −30o 565.53 215.28

bunny 124o 46o 812.80 346.33

decimated-knight −92o 30o 120.44 43.18

decimated-max 64o −10o 1.0517 ·103 431.93

cow 112o 42o 883.05 266.99

arm −100o 54o 2.1418 ·103 409.98

heart −128o 50o 1.5740 ·103 831.86

skull −32o 14o 295.14 268.10

Table 3.1.1: All these surfaces present a smaller sum in function 3.1.2 with an x-axis and y-axis
angle rotation. The surfaces Camel, Horse, Bunny, Knight, Max, Cow and Arm were chosen
from Libigl (JACOBSON et al., 2018) library and heart (ADOREZOOEY, 2015) and skull
(AELLIS43, 2014) have a Creative Commons Attribution and are freely available surfaces on
the SketchFab website. All these surfaces can be seen in figure 3.1.4.

These tests were done in MATLAB, using some of gptoolbox functions to read the

vertex matrix V and triangle mesh matrix F of each surface file (.obj extension). Using these

matrices, we can calculate the sum in (3.1.2) and test for all possible x-axis and y-axis angle

combination with a ∆θ =
π

180
step for both variables. We also show in figure 3.1.6 2D graphs

that show the variation of function value (3.1.2) on these combinations.

3 OBJECTIVE FUNCTION 50

Figure 3.1.4: The surfaces Camel, Horse, Bunny, Knight, Max, Cow and Arm were chosen
from Libigl (JACOBSON et al., 2018) library and heart (ADOREZOOEY, 2015) and skull
(AELLIS43, 2014) are available on SketchFab (DENOYEL, PINSON, PASSET, 2012) website.

As we can see in figure 3.1.6, the rotation of x-axis and y-axis, and its combination,

generates regions of minimal value of equation (3.1.2) and has a periodicity, what indicates

more than one minimizer. The minimal value in equation (3.1.3), rotation result of cow.obj

and decimated-knight.obj found with our initial tests can be seen in figure 3.1.5. Both results

(a) (b) (c) (d)

Figure 3.1.5: Horse surface at the initial embedding (a) and after rotation (b). Knight at the
initial embedding (c) and after rotation (d).

show that small rotations applied to the surfaces can lead to normal fields that result in less

overhanging parts.

3D printing software, such as Ultimaker Cura (ELSERMAN, BRUIJN, WIJNIA,

2011), SLic3r (RANELLUCCI, LENOX, 2011), and others, allow us to simulate solids be-

ing printed and their overhang supports. So, we can validate our tests before printing them.

With these 3D printer softwares, we can simulate, and then measure the time of each print on

3 OBJECTIVE FUNCTION 51

Figure 3.1.6: This graph represents the value (in a gradient color) of sum of max in equation
3.1.2 for every discretized x-axis and y-axis rotation of horse-quad.obj surface.

a 3D printer, as well as the total weight and length of material used to print the surfaces. Some

results are shown on table 3.1.2.

We can also see in figures 3.1.7 and 3.1.8 that the vertex positions that result in the

minimal value of equation (3.1.2) generate less supports for overhanging parts. Figure 3.1.8

also shows physical prints of the input and output surfaces.

Figure 3.1.7: Horse quad.obj on the initial vertex position (left) and after rotation (center-left).
The same surface on the initial position on the printing simulator (center-right) and after rotation
(right). In yellow, the software indicates the solid that we want to print and in green the overhang
supports.

3 OBJECTIVE FUNCTION 52

Surface Material
Usual

orientation
New

orientation

Human skull

Length

Weight

Time

5.38m

16g

1h51min

4.53m

14g

1h44min

Horse

Length

Weight

Time

6.09m

18g

2h06min

5.41m

16g

2h04min

Max

Length

Weight

Time

10.05m

30g

3h08min

7.47m

22g

2h36min

Human heart

Length

Weight

Time

13.14m

39g

4h37min

11.39m

34g

4h20min

Knight

Length

Weight

Time

5.79m

17g

2h17min

5.62m

16g

2h11min

Table 3.1.2: All these surfaces present a smaller printint time, weight and length of material after
applied a global rotation that minimizes overhang parts. The surfaces Camel, Horse, Bunny,
Knight, Max, Cow and Arm were chosen from Libigl (JACOBSON et al., 2018) library and
heart (ADOREZOOEY, 2015) and skull (AELLIS43, 2014) are from Sketch Fab website.

3.1.2 Problems in paradise

As we saw before, table 3.1.1 illustrates that with the objective function 3.1.3 we

are be able to find rotation angles and a minimal value of the function for all surfaces tested.

But, the bad news is that when we put the results on a printing software, we could find some

surfaces that, after rotation by the minimizer of the function, needed more support than the

initial positions. Also, we could find some surfaces that this objective function minimizes the

amount of support printed, but does not reduce the printing time. We can see in table 3.1.3 that

the proposed objective function 3.1.3 does not minimize the amount of support printed for some

surfaces. We can see in figure 3.1.9 an example of surface for which the amount of support is

not minimized.

Besides that, in order to obtain the actual optimal rotation (instead of looping over a

finite set of angles), we want to use an optimization method that uses a descent direction to find

3 OBJECTIVE FUNCTION 53

Figure 3.1.8: Surface decimated-max.obj on the initial vertex position (top-left) and after rota-
tion (top-center-left). The same surface on the initial position on the printing simulator (top-
center-right) and after rotation (top-right). In yellow, the software indicates the solid that we
want to print and in green the overhang supports. The bottom figure is a photo of the same
surface after printed. On the bottom-left, the surface is at the initial vertex positions and on the
bottom-right, the surface is positioned after rotation.

Figure 3.1.9: Surface Bunny.obj at the initial vertex position (a) and after rotation (b). In yellow,
the software indicates the solid that we want to print and in green the overhang supports. With
Slic3r sorftare we can observe that the objective function 3.1.3 returns an orientation of this
object with more support than initial position.

3 OBJECTIVE FUNCTION 54

Surface Material
Usual

orientation
New

orientation

Arm

Length

Weight

Time

1.86m

6g

39min

1.23m

4g

54min

Bunny

Length

Weight

Time

7.85m

23g

2h41min

8.78m

26g

3h01min

Camel

Length

Weight

Time

6.04m

18g

2h10min

6.65m

20g

2h24min

Cow

Length

Weight

Time

7.16m

21g

2h31min

8.35m

25g

2h50min

Table 3.1.3: All these surfaces present a higher printing time after applied a global rotation
that minimizes overhang parts, according to the objective function (3.1.3). On first row of this
table, Arm is the only surface tested that is reducing the amount of support, but does not reduce
printing time. These surfaces were chosen from Libigl (JACOBSON et al., 2018).

this minimizer. So, even if the level curves of figure 3.1.6 show that the objective function 3.1.3

seems to be smooth enough to find a gradient vector, inner functions of 3.1.3 such as max(·)

and | · | will make the gradient impossible to calculate. We can see this difficulty when we take

derivatives of equation 3.1.3 and differentiate α(u) = arccos(u) function, that is

d
du

α(u) =
d
du

[
arccos(u)

]
=
−1√
1−u

u′.

In equation 3.1.1, we see that if u = n(f)T e3→ 1 (i.e. the normal vector of some face f ∈F

of surface approaches to z-axis), we have that
−1√
1−u

→−∞, leading us to further problems in

its differentiability and perhaps an approximation of gradient calculation.

3 OBJECTIVE FUNCTION 55

3.2 Surface normal “Least squares”

We propose here to continue analyzing overhanging parts of our printing solid using

its normal field. Consider the “xy-Projection function”

Pro jxy : R3 −→ R3

(x y z)T 7−→ (x y 0)T

that maps a vector in R3 into its projection on xy-plane. Given a triangle face f ∈F and its

normal n(f) ∈N ⊂R3, composing the normal function and “xy-Projection function” we have

Pro jxy ◦n : F −→ R3 −→ R3

f 7−→ n(f) :=
(
nx ny nz

)T 7−→
(
nx ny 0

)T
. (3.2.1)

Analysing figure 3.1.1, we can see that the more surface normals are within the white

region of the angle cone, the less we have surface overhang, and consequently, the object will

need less support to print correctly. Taking this into consideration, if we rotate any normal

surface vector in any direction so that it approaches the xy-plane, this vector will enter the

support-free white zone (see figure 3.1.1) and its z-coordinate (nz) will approach zero, as we

can see in figure 3.2.1.

xy-plane

z

0xy-plane

z

0 xy-plane

z

0

n(f)

Figure 3.2.1: As the normal vector n(f) approaches the xy-plane, the value of its z-coordinate
will approach zero. Note that the sequence in the image {nzk}k={1,2,3} ⊂ R of z-coordinate
values on z-axis is such that nzk→ 0 if the sequence of rotation on n(f) leads to the xy-plane.

So, for any surface and its normal field N , if we define an objective function that

searches for a surface orientation such that its normal vectors are as horizontal as possible (i.e.

find an embedding of the surface with the z-coordinates of the normal vectors as close to zero

3 OBJECTIVE FUNCTION 56

as possible), we will find an embedding for the surface that minimizes its overhanging parts.

Therefore, given a triangle mesh face f ∈F of the surface, its normal vector (n f
x n f

y n f
y)=

n(f) ∈N and the normal xy-Projection function Pro jxy(n(f)) ∈R3, taking the difference be-

tween them, we have

n(f)−Pro jxy(n(f)) =


n f

x

n f
y

n f
z

−


n f
x

n f
y

0

=


0

0

n f
z

 ,

(see figure 3.2.2 for an illustration). Taking the norm of this result, squaring it and summing

Figure 3.2.2: The difference between the surface normal vector n(f) (in wine) and its xy-
Projection is a vector with zeros on x and y coordinates and z-coordinate normal vector value
on itself. Observe that, the closer to the xy plane is the surface normal, the closer to zero is the
difference norm. Consequently, this triangle mesh face is as vertical as possible.

over all triangles of the mesh, we get

∑
f∈F
‖n(f)−Pro jxy(n(f))‖2. (3.2.2)

We want to find a rotation R ∈ SO(3) applied to the surface that minimizes the sum in

equation 3.2.2. We then obtain the following optimization problem:

min
R ∑

f∈F
‖R ·n(f)−Pro jxy(R ·n(f))‖2

s.t. R ∈ SO(3)

. (3.2.3)

3 OBJECTIVE FUNCTION 57

3.2.1 Support volume

Some tests using the objective function 3.1.3 reveal that, even getting less overhanging

parts on all surfaces tested, there are some other factors to be considered. Looking at figure

3.2.3, we observe that the rotation procedure (b) positioned overhanging parts higher than in

the initial position (a). This will create taller overhang support in the printing procedure and,

eventually, more support volume and material waste.

(a) (b)

Figure 3.2.3: Surface cow.obj at the initial vertex position (a) and after rotation (b) minimizing
the objective function 3.1.3. Even getting less overhanging parts, this objective function does
not consider the surface area and height of support, which, in this case, causes the amount of
support to be larger than desired.

Another thing that we have to consider is that the objective function 3.1.3 and the new

function 3.2.3 are analyzing only the normal vector of each triangle on the surface mesh and

does not consider whether the triangle has huge or small area.

This means that, for each triangle in equation 3.2.3, we need to multiply the norm

by a “weight” that takes into account the average height of triangle vertices and its area. We

have to see that the triangle height will change when the rotation matrix R ∈ R3×3 is applied,

but the area of each triangle will not change with this transformation (see the definition of rigid

transformation on section 2.1). So, the equation we want to minimize will be

min
R ∑

f∈F

[
eT

3

(
R · 1

3
(
v f1 + v f2 + v f3

))
−minV

z

]
·A f · ‖R ·n(f)−Pro jxy(R ·n(f))‖2,

s.t. R ∈ SO(3)
(3.2.4)

3 OBJECTIVE FUNCTION 58

where e3 = (0 0 1)T , v f 1,v f 2,v f 3 ∈R3, A f are vertices and area of triangle f ∈F , respectively,

and minV
z ∈R is the minimal value of all z-coordinates of the vertices of V . Since the barycenter

of the surface is positioned at (0 0 0)T , some parts of the surface are below the xy-plane of R3.

So, to be able to calculate the real height of each triangle, we need to compensate this error of

positioning adding the value of minV
z .

Note that this weight parameter that we have proposed is close to the volume of the

support to be printed. To be exactly the volume of the support, we have to consider some

other factors, such as the shape of support, if the support will intersect the surface (and then the

support is not printed from the platform base, but from some part of the surface itself) and if this

part of surface really needs a support. Here, what we are doing is to consider that all triangle

faces of surface mesh needs some kind of support to print and searching for an orientation that

minimizes this “maximal need for support”.

3.3 Alexander’s method

Before creating their support structures, (VANEK; GALICIA; BENNES, 2014) states

that the simplest way to reduce the need for supports is to find an orientation for the surfaces

using (ALEXANDER; ALLEN; DUTTA, 1998) method.

Layers of material

Model surface

zt

hθ

Figure 3.3.1: Comparison of layered surface parts with its model surface, leading to a staircase
effect. Zooming in and considering that the difference between layers forms a triangle, we can
analyse the height h of this triangle, the thickness zt of the layer and the angle θ between them
to minimize the staircase effect. We can see in the figure on the left that the more vertical the
surface is, the less it suffers from a staircase effect. This figure was based on the figures in
(ALEXANDER; ALLEN; DUTTA, 1998).

The main objective of this method is to minimize the staircase effect, as shown in

3 OBJECTIVE FUNCTION 59

figure 3.3.1, to maximize surface accuracy, and thus the surface must be oriented as vertically

as possible.

So, if we look at the triangle formed by the thickness of layer zt , the height h and the

angle θ between them, we have that

h f ac =


zt |cos(θ)|, if |cos(θ)| 6= 1

0, if |cos(θ)|= 1
. (3.3.1)

Considering the normal vector to the surface n̂ ∈ R3,‖n̂‖ = 1 and the build direction

b̂ ∈R3,‖b̂‖= 1, we have that

|cos(θ)|= |〈n̂, b̂〉|. (3.3.2)

Plugging 3.3.2 into 3.3.1, we have

h f ac = zt |〈n̂, b̂〉| (3.3.3)

for |cos(θ)| 6= 1.

Since 3D objects have multiple polygonal faces, the value of equation 3.3.3 has to be

weighted. So, for each face, this method multiplies its face area A f ac into the objective function,

getting

h f ac = A f ac

(
zt |〈n̂, b̂〉|

)
. (3.3.4)

Also, this method considers three types of faces on the surface: unsupported faces,

faces that need support and faces touched from above by the support structure, as illustrated

in figure 3.3.2. Taking this into consideration, the method uses two ways to apply different

weights to different types of faces.

For faces that need support to print, it is assumed that when supports touch the surface,

they add some additional inaccuracy and equation 3.3.3 is increased by an amount R ∈ R+,

getting

h f acs = A f ac

(
zt |〈n̂, b̂〉|+R

)
. (3.3.5)

For faces that are touched by support from above, a piece of support structure is

projected to those faces. So, to determine the contact area of this structure and supposing that

it is a prism with a rectangular basis with sides of length p and q, given e1,e2 ∈R3 unit vectors

in x and y directions, respectively, b̂ the vector parallel to the build direction and n̂ the normal

3 OBJECTIVE FUNCTION 60

Support

Surface touched

from above

Unsupported faces

Supported faces

Figure 3.3.2: In this vertical cut of a 3D object, we can see that the surface can be divided
in three parts. Unsupported faces: parts of object that do not need external support to print;
supported faces: parts of object that need external support underneath them to print; and support
faces: parts of object that are touched from above by the support structure. This figure was
created based on figures in (ALEXANDER; ALLEN; DUTTA, 1998).

vector of face, we calculate the ray that defines the support doing

x̃ = pe1,

b̃x =−

(
〈n̂, x̃〉
〈n̂, b̂〉

)
,

x = x̃+ b̃x

and simillary for ỹ, b̃y and y. So, the area of contact of support structure is Apro j = |x× y| and

they calculate the area following the condition

Apro j =


|x× y|, if Apro j ≤ A f ac

A f ac, otherwise.

So, to increase the value of function to faces that is touched by the support from above, the

weight condition in those cases are given by

h f acab = RApro j. (3.3.6)

Finally, taking the results of equations 3.3.4, 3.3.5 and 3.3.6 and summing over all

3 OBJECTIVE FUNCTION 61

faces of surface, we obtain the objective function of Alexander’s method:

min
N

N−Nsup

∑
i=1

Ai

(
zt |〈n̂i, b̂〉|

)
+

Nsup

∑
i=1

Ai

(
zt |〈n̂i, b̂〉|+R

)
+

Nrays

∑
i=1

RApro j, (3.3.7)

where N is the normal field of surface, N is the total number of polygonal faces, Nsup

is the number of faces that need support underneath them and Nrays is the number of faces that

are touched by support from above.

3.4 Tests and method comparison

These tests were also done on MATLAB, using some of gptoolbox functions (JA-

COBSON et. al., 2018). Also, using the vertices matrix V , triangle mesh matrix F of some

Libigl (JACOBSON et. al., 2018) surfaces and freely available SketchFab website surfaces,

we could calculate the sum in 3.2.4 and test for rotation matrix around x and y axis, and their

combinations, with a step of ∆θ =
π

180
for both axis.

Figure 3.4.1 shows a 2D graph that illustrates the variation of the function value in

equation 3.2.4. This graph shows that our new objective function 3.2.4 has regions with function

minimal value. The results of finding a minimal value of function in equation 3.2.4 in some

Figure 3.4.1: 2D graph of function value variation in equation 3.2.4 applied to bunny.obj Libigl
surface.

3 OBJECTIVE FUNCTION 62

surfaces can be seen in figure 3.4.2.

Figure 3.4.2: Surfaces at the initial vertex position (top) and after applied a global rotation that
minimizes equation 3.2.4 (bottom). Camel, Cow and Max (human head) are surfaces available
on Libigl (JACOBSON et al., 2018) and heart (ADOREZOOEY, 2015) and skull (AELLIS43,
2014) are Sketch Fab surfaces.

Using Ultimaker Cura 3D printing software we can simulate and visualize our tests

and obtain the length of polymer that we need to print the solid, as well as the weight and time

of printing.

We can also see that the surface bunny.obj in figure 3.4.3 with 3D printing software

(Slic3r) generates less support for overhangs after rotation then at the initial position.

(a) (b) c) (d)

Figure 3.4.3: Libigl surface bunny.obj on the initial position (a) and after rotation (b). On 3D
print sorftware (Sklic3r), the same surface on the initial position (c) and after rotation (d). Also,
in figures (c) and (d), the software indicates the surface in yellow and the overhang supports in
green.

As the solid, in any orientation, has the same weight and need of polymer to print, the

difference between this data will show us the residual material to print, i.e. the less weight and

length of material the print has, the less support the 3D object need to print. As we can see in

table 3.4.1, all surfaces tested present less length, weight and printing time after applied global

rotation that minimizes equation 3.2.4.

3 OBJECTIVE FUNCTION 63

In table 3.4.1, we can also compare the results obtained using our equation 3.2.4 with

the results obtained using Alexander’s method (ALEXANDER; ALLEN; DUTTA, 1998) and

their equation 3.3.7.

Surface Material Usual
orientation

Our
orientation

Alexander’s
orientation

Arm
Length
Weight
Time

4.82m
14g

1h40min

3.32m
10g

1h16min

4.14m
12g

1h45min

Human skull
Length
Weight
Time

5.11m
15g

1h48min

4.30m
13g

1h40min

5.60m
17g

1h52min

Horse
Length
Weight
Time

5.80m
17g

2h03min

3.51m
10g

1h33min

6.39m
19g

2h12min

Max
Length
Weight
Time

9.47m
28g

3h03min

6.43m
19g

2h15min

6.46m
19g

2h15min

Human heart
Length
Weight
Time

12.85m
38g

4h34min

10.74m
32g

4h10min

11.31m
34g

4h21min

Knight
Length
Weight
Time

5.57m
17g

2h14min

4.09m
12g

1h42min

5.65m
17g

2h18min

Bunny
Length
Weight
Time

7.52m
22g

2h38min

7.10m
21g

2h30min

8.63m
26g

2h54min

Camel
Length
Weight
Time

5.81m
17g

2h08min

3.88m
12g

1h34min

5.79m
17g

2h10min

Cow
Length
Weight
Time

6.86m
20g

2h28min

4.65m
14g

2h04min

6.73m
20g

2h24min

Table 3.4.1: All tested surfaces present a smaller printint time, weight and length of material

after applied a global rotation that minimizes equation 3.2.4. The surfaces Arm, Camel, Horse,

Bunny, Knight, Max and Cow were chosen from the Libigl (JACOBSON et al., 2018) library

and heart (ADOREZOOEY, 2015) and skull (AELLIS43, 2014) are Sketch Fab surfaces.

Alexander’s method depends on the layer thickness zt , the contact area of support

structure, that has rectangular basis with sides of length p and q and a penalty value R for parts

of surfaces that need support. So, putting zt , p,q = 0.1cm and R = 10, we were able to test this

method and compare the results with ours, using the same surfaces that we used before.

As we can see in table 3.4.1, our method presents better length, weight of material

and printing time if we compare with Alexander method in all surfaces tested except Max, that

3 OBJECTIVE FUNCTION 64

(a) (b)

Figure 3.4.4: Libigl surface cow.obj after rotation using our method (a) and Alexander’s method
(b). As we can see, these results using our method generate less support for overhanging parts
of surface then Alexander’s method.

(a) (b)

Figure 3.4.5: decimated-knight.obj surface after rotation using our method (a) and Alexander’s
method (b). As we can be seen, the result using our method generates more overhanging parts
area (in brown) than Alexander’s method.

presents the same result. In figure 3.4.4 we can make a visual comparison between ours and

Alexander’s results.

Although our results reduce the amount of support and printing time, in comparison

with Alexander’s method, their results reduce the contact area of support. In figure 3.4.5 the area

that needs support of the Knight surface is painted in brown. However, while this may seem like

3 OBJECTIVE FUNCTION 65

a bad aspect of our method, there are several post-processing methods that completely eliminate

artefacts caused by the support, such as the one developed in (HOUCK et al., 2019).

4 OPTIMIZATION METHOD 66

4 Optimization method

Before we study and apply an optimization method, let us expand our objective func-

tion to see what method we can use. We want to minimize

min
R ∑

f∈F

[
eT

3

(
R · 1

3
(
v f1 + v f2 + v f3

))
−minV

z

]
·A f · ‖R ·n(f)−Pro jxy(R ·n(f))‖2,

s.t. R ∈ SO(3)

Let us consider n(f)=


n fx

n fy

n fz

, v f1 =


x f1

y f1

z f1

, v f2 =


x f2

y f2

z f2

, v f3 =


x f3

y f3

z f3

, e3 =


0

0

1

.

Consider also that the matrix R ∈ SO(3) that we are looking for is a product of Euclidian axis

rotation matrices Re1(θ1) and Re2(θ2), as shown in section 3. So, we are looking for a matrix

R = Re2(θ2)Re1(θ1), with (θ1,θ2) ∈ (−π,π]×
[
−π

2
,
π

2

]
.

Next, since Euclidian axis rotation matrices Re1(θ1) and Re2(θ2) have the expressions

Re1(θ1) =


1 0 0

0 cos(θ1) −sin(θ1)

0 sin(θ1) cos(θ1)


and

Re2(θ2) =


cos(θ2) 0 sin(θ2)

0 1 0

−sin(θ2) 0 cos(θ2)

 .

The matrix that we are looking for is

R = Re2(θ2)Re1(θ1) =


cos(θ2) sin(θ1)sin(θ2) cos(θ1)sin(θ2)

0 cos(θ1) −sin(θ1)

−sin(θ2) sin(θ1)cos(θ2) cos(θ1)cos(θ2)

 . (4.0.1)

4 OPTIMIZATION METHOD 67

Applying matrix (4.0.1) to the normal vector n(f) we have

R ·n(f) =


cos(θ2) sin(θ1)sin(θ2) cos(θ1)sin(θ2)

0 cos(θ1) −sin(θ1)

−sin(θ2) sin(θ1)cos(θ2) cos(θ1)cos(θ2)




n fx

n fy

n fz



=


cos(θ2)n fx + sin(θ2)sin(θ1)n fy + cos(θ1)sin(θ2)n fz

cos(θ1)n fy− sin(θ1)n fz

−sin(θ2)n fx + cos(θ2)sin(θ1)n fy + cos(θ1)cos(θ2)n fz


So, since R ·n(f)−Pro jxy(R ·n(f)) results in 0 in the x and y coordinates and

−sin(θ2)n fx + cos(θ2)sin(θ1)n fy + cos(θ1)cos(θ2)n fz

in the z-coordinate of the resultant vector, we have that its norm is

‖R ·n(f)−Pro jxy(R ·n(f))‖2 =
[
−sin(θ2)n fx + cos(θ2)sin(θ1)n fy + cos(θ1)cos(θ2)n fz

]2

= sin2(θ2)n2
fx−2sin(θ2)cos(θ2)sin(θ1)n fxn fy+

+cos2(θ2)sin2(θ1)n2
fy +2cos2(θ2)sin(θ1)cos(θ1)n fyn fz−

−2sin(θ2)cos(θ2)cos(θ1)n fxn fz + cos2(θ1)cos2(θ2)n2
fz.

(4.0.2)

Also, since
1
3
(
v f1 + v f2 + v f3

)
︸ ︷︷ ︸

:=b f

=


x f1 + x f2 + x f3

3
y f1 + y f2 + y f3

3
z f1 + z f2 + z f3

3

 , we have that

eT
3 R ·b f =


0

0

1



T 
cos(θ2) sin(θ1)sin(θ2) cos(θ1)sin(θ2)

0 cos(θ1) −sin(θ1)

−sin(θ2) sin(θ1)cos(θ2) cos(θ1)cos(θ2)




x f1 + x f2 + x f3

3
y f1 + y f2 + y f3

3
z f1 + z f2 + z f3

3



4 OPTIMIZATION METHOD 68

= −sin(θ2)

(
x f1 + x f2 + x f3

3

)
+ sin(θ1)cos(θ2)

(
y f1 + y f2 + y f3

3

)
+

+cos(θ1)cos(θ2)

(
z f1 + z f2 + z f3

3

)
.

Besides that, we need to subtract the minimal value of all z-coordinates of V . So we

can do that by subtracting from all terms of the sum the minimal z-coordinates value of V after

applied rotation matrix R to it. We then obtain

eT
3 R ·b f −minV

z = −sin(θ2)

(
x f1 + x f2 + x f3

3

)
+ sin(θ1)cos(θ2)

(
y f1 + y f2 + y f3

3

)
+

+cos(θ1)cos(θ2)

(
z f1 + z f2 + z f3

3

)
−min

{(
V ·RT

)
· e3

}
.

Notice that, if V ∈ Rn×3 and R ∈ R3×3, we have that the transposed vertices matrix V T =

(v1 v2 · · · vn), vi ∈R3, is a list of column vectors. When we apply the rotation matrix to V T

we have

R ·V T = R · (v1 v2 · · · vn) = (Rv1 Rv2 · · · Rvn),

with R ·v j ∈R3 as the rotation of each vertice of the surface by R. Taking the transpose of R ·V T

we obtain
(

R ·V T
)T

= V ·RT ∈Rn×3. Multiplying by e3 = (0,0,1)T , we have that
(
V ·RT

)
·

e3 ∈ Rn and has the z-coordinates of all vertices of V . Since we are working with surfaces

that have their barycenters centered at the origin of R3, the function min
{(

V ·RT
)
· e3

}
has

a negative value and, subtracting it in the function, will give us the height of each triangle as if

the surface was on top of the printer plate.

Therefore, we can rewrite our objective function 3.2.4 as

min
θ1,θ2

∑
f∈F

A f Tf (θ1,θ2),

s.t. (θ1,θ2) ∈ (−π,π]×
[
−π

2
,
π

2

] (4.0.3)

4 OPTIMIZATION METHOD 69

where Tf (θ1,θ2) =
(

eT
3 R ·b f −minV

z

)
· ‖R ·n(f)−Pro jxy(R ·n(f))‖2 and

Tf (θ1,θ2) =

[
−sin(θ2)

(
x f1 + x f2 + x f3

3

)
+ sin(θ1)cos(θ2)

(
y f1 + y f2 + y f3

3

)
+

+cos(θ1)cos(θ2)

(
z f1 + z f2 + z f3

3

)
−min

{(
V ·RT

)
· e3

}]
[
sin2(θ2)n2

fx + cos2(θ1)cos2(θ2)n2
fz−2sin(θ2)cos(θ2)sin(θ1)n fxn fy+

+cos2(θ2)sin2(θ1)n2
fy +2cos2(θ2)sin(θ1)cos(θ1)n fyn fz−

−2sin(θ2)cos(θ2)cos(θ1)n fxn fz
]
.

(4.0.4)

4.1 The Matlab function fmincon and its optimization theory

Until now, our tests were searching for the minimal value of function 3.2.4 by search-

ing a combination of angles (θ1,θ2) ∈ (−π,π]×
[
−π

2
,
π

2

]
such that the rotation matrix R =

Re2(θ2)Re1(θ1) ∈ SO(3) is applied to the surface and generates a new global position in space

that generates less support in the 3D printing process. By partitioning the angle ranges (−π,π]

and
[
−π

2
,
π

2

]
with a spacing of ∆θ1 = ∆θ2 =

π

180
on each interval, we were able to evaluate

the objective function with each combination of these angles and store the minimum value of

all those function evaluations. With that, we find the minimum value of objective function 3.2.4

by evaluating 65341 angle combinations, giving us an slow method. The execution time of all

tests can be seen in table 4.1.1.

Surface |F | Time Surface |F | Time Surface |F | Time

Arm 16618 839.92s Max 10540 467.67s Bunny 6966 299.01s

Human skull 4986 240.30s Human heart 14720 687.55s Camel 3576 210.65s

Horse 4796 282.88s Knight 1000 56.89s Cow 5520 251.59s

Table 4.1.1: Execution time of the algorithm that finds the smallest value of the function 3.2.4,

for each surface tested. |F | is the number of triangular faces of each mesh.

Replacing function 3.2.4 by function 4.0.3 was important to see how can we find the

solution to this problem more efficiently. The problem presented in 4.0.3 seems to be a finite

4 OPTIMIZATION METHOD 70

sum of a sin(·) and cos(·) combination with two variables (θ1,θ2) subject to a box condition

(θ1,θ2) ∈ (−π,π]×
[
−π

2
,
π

2

]
.

To solve the minimization problem presented by equation (4.0.3) we use a Matlab

function called fmincon. This function is able to find a local minimum value of constrained

nonlinear multivariable functions. We used the default parameter of fmincon that finds the

solution of a minimization problem using an Interior-point algorithm with logarithmic bar-

rier penalty method to deal with the constraints of the problem and descent direction given by

Broyden–Fletcher–Goldfarb–Shanno (BFGS) Quasi-Newton method. Notice that our objective

function 4.0.3 has a term

minV
z = min

{(
V ·RT

)
· e3

}
that is difficult to differentiate. This leads us to approximate the gradient of the function by the

finite difference method.

Before we show our results with Matlab’s fmincon function, let us see a little of op-

timization theory to understand how fmincon works. The main definitions, results and applica-

tions that we will use here can be seen in (POWELL, 1965), (NOCEDAL, WRIGHT, 2006),

(IZMAILOV, SOLODOV, 2007), (BYRD, GILBERT, NOCEDAL, 2000), (BERAHAS, BYRD,

NOCEDAL, 2019), among others.

4.1.1 Finite-difference approximation

This technique is based on Taylor’s theorem (see (NOCEDAL, WRIGHT, 2006)).

When f :Rn −→R is twice differentiable and Lipschitz continuous, we have that

f (x+ εei) = f (x)+ ε
∂ f
∂xi

(x)+
1
2

ε
2 ∂ 2 f

∂x2
i
(x)+O(ε3)

and

f (x− εei) = f (x)− ε
∂ f
∂xi

(x)+
1
2

ε
2 ∂ 2 f

∂x2
i
(x)+O(ε3),

for an ε > 0 and ei = (0 0 · · · 1 · · · 0)T with one at its ith-coordinate, for each i = 1, . . .n.

Subtracting both equations, we have

f (x+ εei)− f (x− εei) = 2ε
∂ f
∂xi

(x)+O(ε3).

4 OPTIMIZATION METHOD 71

Dividing the remaining equation by 2ε , we got

f (x+ εei)− f (x− εei)

2ε
=

∂ f
∂xi

(x)+O(ε2)

that gives us the central-difference formula, given by

∂ fε

∂xi
(x)≈ f (x+ εei)− f (x− εei)

2ε
, (4.1.1)

with a truncation error in order of O(ε2) for each i = 1, . . . ,n. So, putting each one into a vector,

we define the central-difference gradient by

∇ε f (x) =



∂ fε

∂x1
(x)

∂ fε

∂x2
(x)

...

∂ fε

∂xn
(x).


(4.1.2)

With that in mind, let us talk about some preliminary optmization theory. Here, we

are looking for a point that is a global minimum value of equation 4.0.3.

4.1.2 Local and global minima and descent directions

A general formulation of a minimization problem subject to constraints on the vari-

ables is

min
x

f (x)

s.t. x ∈Ω,

(4.1.3)

where f :Rn −→R and Ω ∈Rn. In our case

Ω =

{
x = (x1,x2) ∈R2

∣∣∣−π < x1 ≤ π and − π

2
≤ x2 ≤

π

2

}
.

That leads us to the following definition.

Definition 4.1.1 (Global and Local minimum). Consider the minimization problem 4.1.3.

4 OPTIMIZATION METHOD 72

• We say that x∗ ∈Ω is the global minimum of f in Ω if

f (x∗)≤ f (x),∀x ∈Ω.

• We say that x∗ ∈Ω is a local minimum of f in Ω if there exists ε ∈R,ε > 0 such that

f (x∗)≤ f (x),∀x ∈Ω∩B(x∗,ε),

where B(x∗,ε) =
{

x ∈Ω | ‖x− x∗‖< ε
}

.

Definition 4.1.2. Consider the minimization problem 4.1.3. We say that d ∈ Rn is a descent

direction for f from a point x0 ∈Rn if there exists ε ∈R,ε > 0 such that

f (x0 + td)< f (x0),∀t ∈ (0,ε].

Definition 4.1.3. Consider the minimization problem 4.1.3. We say that a direction d ∈ Rn is

feasible from a point x0 ∈Ω if there exists t ∈R, t > 0 such that x+ td ∈Ω,∀t ∈ (0, t].

Proposition 4.1.1. If f ∈ C 1 and ∇ f (x)T d < 0, then d is a descent direction.

Proof. By Taylor’s Theorem

f (x+ td)− f (x)
t

= ∇ f (x)T d +
o(|t| · ‖d‖)

t
,

for any t ∈ (0,1).

Notice that, if there is an ε > 0 is small enough so that t < ε and∣∣∣∣o(|t| · ‖d‖)t

∣∣∣∣< 1
2

∣∣∣∇ f (x)T d
∣∣∣ ,

then ∇ f (x)T d +
o(|t| · ‖d‖)

t
< ∇ f (x)T d +

1
2

∇ f (x)T d =
3
2

∇ f (x)T d < 0.

Therefore
f (x+ td)− f (x)

t
< 0⇒ f (x+ td)< f (x), for t ∈ (0,ε). �

4 OPTIMIZATION METHOD 73

4.1.3 Barrier penalty method

In the general formulation of the minimization problem (4.1.3), suppose the con-

straints on the variables are described by

Ω =
{

x ∈Rn |g(x)≤ 0
}
,

where g : Rn −→ Rm. In our case, the functions in the constraint set are linear box conditions

x1−π ≤ 0,−x1−π < 0,x2−
π

2
≤ 0 and − x2−

π

2
≤ 0.

The main idea of internal penalty methods is that we can approximate the original

problem by a sequence of unconstrained problems. We add a penalty function to the objective

function that goes to infinity when any sequence approaches the boundary of the feasible set Ω.

Definition 4.1.4. A function φ : Ω −→ R is called a barrier function of the set Ω if it is con-

tinuous on the interior of Ω and φ(xk)→+∞ (k→ ∞) for every sequence {xk} ⊂Ω such that

xk→ x̃ with gi(x̃) = 0 for i ∈ {1,2, . . . ,m}.

In the case of fmincon, the logarithmic barrier function is used, i.e., if f :Rn −→R is

the objective function for minimization and there are constraints conditions Ω=
{

x ∈Rn |g(x)≤ 0
}

for the problem variables, the method adds the function φ : Ω−→R defined by

φ(x) =−
m

∑
i=1

ln
(
−gi(x)

)
to the objective function and converts the initial constrained minimization problem 4.1.3 into

an unconstrained minimization problem

min
x

f (x)+αφ(x)

s.t. x ∈Rn,

(4.1.4)

where α > 0 is a penalty parameter.

The next two results will discuss the convergence of the use of algorithms using in-

ternal penalty barrier functions.

Proposition 4.1.2. Let {xk} be a sequence generated by an algorithm using internal penalty

barrier function, where xk is a global solution of problem 4.1.4 with α = αk and αk+1 < αk,∀k.

Then, for all k we have

4 OPTIMIZATION METHOD 74

φ(xk+1)≥ φ(xk) (4.1.5a)

f (xk+1)≤ f (xk) (4.1.6a)

Proof. Given the optimality of xk+1 in 4.1.4 with α = αk+1 we have

f (xk+1)+αk+1φ(xk+1)≤ f (xk)+αk+1φ(xk).

Also, by the optimality of xk in 4.1.4 we have

f (xk)+αkφ(xk)≤ f (xk+1)+αkφ(xk+1).

Summing these two equations, we have

f (xk+1)+αk+1φ(xk+1)+ f (xk)+αkφ(xk) ≤ f (xk)+αk+1φ(xk)+ f (xk+1)+αkφ(xk+1)

αkφ(xk)−αk+1φ(xk) ≤ αkφ(xk+1)−αk+1φ(xk+1)

(αk−αk+1)φ(xk) ≤ (αk−αk+1)φ(xk+1)

Since αk+1 < αk we have that φ(xk)≤ φ(xk+1) and then

f (xk+1)+αk+1φ(xk+1) ≤ f (xk)+αk+1φ(xk)

f (xk+1)− f (xk) ≤ αk+1φ(xk)−αk+1φ(xk+1)

= αk+1(φ(xk)−φ(xk+1))

≤ 0.

�

This leads us to the convergence theorem.

Theorem 4.1.1. Let f :Rn −→R and g :Rn −→Rm be continuous functions. Suppose that the

constraint set Ω =
{

x ∈Rn|g(x)≤ 0
}

is such that int(Ω) =
{

x ∈Rn|g(x)< 0
}
6= /0 and

inf
x∈int(Ω)

f (x) = inf
x∈Ω

f (x)>−∞.

4 OPTIMIZATION METHOD 75

Then all accumulation points of a sequence {xk} generated by an algorithm using internal

penalty barrier method, where xk is a global solution of the problem 4.1.4 with α = αk and

αk→ 0 (k→ ∞) is a global solution of problem 4.1.3.

Proof. Let x ∈ D be an accumulation point of the sequence {xk}. If f (x) = inf
x∈int(Ω)

f (x), then

the proof is over. If f (x)> inf
x∈int(Ω)

f (x)︸ ︷︷ ︸
:=v

let p ∈N∗ such that we can define

δ =
(f (x)− v)

p
> 0.

and take a x̃ ∈ int(Ω) such that f (x̃)≤ v−δ .

By equation 4.1.6 in proposition 4.1.2, the sequence { f (xk)} is non-increasing. Then

the sequence { f (xki)}, with xki → x (i→ ∞) is also non-increasing and

f (xki)≥ lim
i→∞

f (xki) = f (x) = v+ pδ .

Now, since f (x̃)≤ v−δ and f (xki)≥ v+ pδ we have that

f (xki)− f (x̃)≥ δ − v+ v+ pδ = (1+ p)δ > δ .

So, as xki is a global solution for 4.1.4 with i sufficiently large and by equation 4.1.5, we have

that

0 ≥ f (xki)+αkiφ(xki)− f (x̃)− tkiφ(x̃)

> f (xki)− f (x̃)+ tkiφ(xki)−αkiφ(x̃)

> δ +αki (φ(xki)−φ(x̃))︸ ︷︷ ︸
>0 (by eq. 4.1.5)

> δ > 0.

So, since 0 < δ ≤ 0 and f (x) = v+ pδ , we have that f (x) = v = inf
x∈Ω

f (x). �

4.1.4 The BFGS method

The Matlab function fmincon uses the BFGS method to find a descent direction to

solve optimization problems. This method was developed by Broyden, Fletcher, Goldfarb, and

Shanno as a Quasi-Newton method that only requires the gradient (or its approximation) of the

4 OPTIMIZATION METHOD 76

objective function to find a descent direction.

Let xk be the result of a minimization step of an optimization problem. By Taylor’s

Theorem, we can approximate f (x) by

f (x)≈ f (xk)+∇ f (xk)(x− xk)+
1
2
(x− xk)

T
∇

2 f (xk)(x− xk).

Defining the quadratic model qk(x) = f (xk)+∇ f (xk)(x− xk)+
1
2
(x− xk)

T
∇

2 f (xk)(x− xk), we

have that if qk(xk) is the local minimum of the quadratic model, we have that

0 = ∇(qk(xk)) = ∇
2 f (xk)(xk− xk)︸ ︷︷ ︸

dk

+∇ f (xk).

So, we can write explicitly the solution of the minimizer of this quadratic model as

dk =−
(

∇
2 f (xk)

)−1
∇ f (xk) (4.1.7)

and dk is used as a descent direction in the optimization problem

xk+1 = xk + tkdk,

where the step size 0 < tk ≤ 1 is chosen to satisfy Wolfe conditions

f (xk + tkdk)≤ f (xk)+λ1tk∇ f (xk)
T dk (4.1.8a)

∇ f (xk + tkdk)
T dk ≥ λ2∇ f (xk)

T dk, (4.1.8b)

where 0≤ λ1 < λ2 < 1.

The idea of BFGS Quasi-Newton method is that we can use an approximation Bk ∈

Rn×n of the Hessian ∇
2 f (xk) that is computed at every iteration by calculating

Bk+1 = Bk +

(
∇ f (xk+1)−∇ f (xk)

)(
∇ f (xk+1)−∇ f (xk)

)T(
∇ f (xk+1)−∇ f (xk)

)T
(xk+1− xk)

− Bk (xk+1− xk)(xk+1− xk)
T Bk

(xk+1− xk)
T Bk (xk+1− xk)

.

(4.1.9)
To calculate (Bk+1)

−1, we can use Sherman– Morrison–Woodbury formula (see (NO-

4 OPTIMIZATION METHOD 77

CEDAL, WRIGHT, 2006) in Appendix A.28 section for more information), that gives us

(Bk+1)
−1 =

I−
(xk+1− xk)

(
∇ f (xk+1)−∇ f (xk)

)T(
∇ f (xk+1)−∇ f (xk)

)T
(xk+1− xk)

(Bk)
−1

I−
(
∇ f (xk+1)−∇ f (xk)

)
(xk+1− xk)

T(
∇ f (xk+1)−∇ f (xk)

)T
(xk+1− xk)


+

(xk+1− xk)(xk+1− xk)
T(

∇ f (xk+1)−∇ f (xk)
)T

(xk+1− xk)
(4.1.10)

Observation 4.1.1. Notice that, if the matrix (∇2 f (x))−1 ∈ Rn×n or its approximation Bk ∈

Rn×n are symmetric positive definite (S.P.D.) matrices, the direction given by equation 4.1.7

is a descent direction. Indeed, by definition, if A ∈ Rn×n is S.D.P., xT Ax > 0,∀x ∈ Rn,x 6=

0. So, by proposition 4.1.1, if ∇ f (x)T d < 0 then d is a descent direction. Taking d = dk =

−
(

∇
2 f (xk)

)−1
∇ f (xk) or d = dk =−(Bk)

−1
∇ f (xk) we have that

∇ f (xk)
T dk =−∇ f (xk)

T
(

∇
2 f (xk)

)−1
∇ f (xk)︸ ︷︷ ︸

>0

< 0

or

∇ f (xk)
T dk =−∇ f (xk)

T (Bk)
−1

∇ f (xk)︸ ︷︷ ︸
>0

< 0.

The next proposition will guarantee that all Bi ∈Rn×n of each iterate of BFGS method

are S.P.D. matrices.

Proposition 4.1.3. In BFGS updating iterate, if Bk ∈Rn×n is S.P.D. and

(
∇ f (xk+1)−∇ f (xk)

)T
(xk+1− xk)> 0,

then Bk+1 ∈Rn×n is S.P.D..

Proof. Defining yk = ∇ f (xk+1)−∇ f (xk) and sk = (xk+1− xk), to show that Bk+1 is S.P.D., we

need to show that for any vector v ∈Rn (v 6= 0), vT Bk+1v > 0.

Considering any v ∈R3,v 6= 0 and using the BFGS formula for Bk+1 4.1.9, we have:

4 OPTIMIZATION METHOD 78

vT Bk+1v = vT Bkv+

(
vT yk

)2

yT
k sk︸︷︷︸
>0

−

(
vT Bksk

)2

sT
k Bksk︸ ︷︷ ︸
>0

=

(
vT yk

)2

yT
k sk

+
(vT Bkv)(sT

k Bksk)−
(

vT Bksk

)2

sT
k Bksk

By Cauchy-Schwarz, we have that

∣∣∣vT Bksk

∣∣∣2 ≤ ∣∣∣vT Bkv
∣∣∣ · ∣∣∣sT

k Bksk

∣∣∣ .
So, we have two possibilities:

• if
(

vT Bkv
)(

sT
k Bksk

)
=
(

vT Bksk

)2
then

vT Bk+1v =

(
vT yk

)2

yT
k sk

> 0;

• if
(

vT Bksk

)2
<
(

vT Bkv
)(

sT
k Bksk

)
then

(
vT Bkv

)(
sT

k Bksk

)
−
(

vT Bksk

)2
> 0

and then

vT Bk+1v =

(
vT yk

)2

yT
k sk

+
(vT Bkv)(sT

k Bksk)−
(

vT Bksk

)2

sT
k Bksk

> 0.

In all cases, we have that vT Bk+1v > 0 and, therefore, Bk+1 is S.P.D.. �

Observation 4.1.2. It is well known from Linear Algebra that if Bk+1 is S.P.D., then (Bk+1)
−1

is also symmetric positive definite. For more informations, see (NOCEDAL, WRIGHT, 2006) or

any Linear Algebra book.

The global convergence of methods that use BFGS to find a descent direction is guar-

anteed by the next theorem.

Theorem 4.1.2. Let f :Rn −→R differentiable and ‖∇ f (x)‖< L‖x‖ for a L > 0. Suppose that

the step of any algorithm with BFGS uses Wolfe conditions to calculate its step size. Suppose,

4 OPTIMIZATION METHOD 79

also, that the matrices (Bk)
−1 produced by this algorithm satisfy

‖(Bk)
−1 ‖ ≤ β and 〈(Bk)

−1 d,d〉 ≥ γ‖d‖2,

for some β > 0 and γ > 0 and ∀d ∈Rn.

Then, the sequence {xk} generated by this algorithm has an accumulation point or if

the function f is bounded below in Rn, we have

{
∇ f (xk)

}
→ 0 (k→ ∞).

Proof. Suppose that ∇ f (xk) 6= 0,∀k. By Wolfe condition 4.1.8, we have that

f (

xk+1︷ ︸︸ ︷
xk + tkdk) ≤ f (xk)+λ1tk∇ f (xk)

T dk

= f (xk)−λ1tk∇ f (xk)
T (Bk)

−1
∇ f (xk).

Notice that 〈(Bk)
−1 d,d〉 ≥ γ‖d‖2,∀d ∈ Rn. So, this inequality holds for ∇ f (xk).

Then,

f (

xk+1︷ ︸︸ ︷
xk + tkdk) = f (xk)−λ1tk∇ f (xk)

T (Bk)
−1

∇ f (xk)

≤ f (xk)−λ1tkγ‖∇ f (xk)‖2

= f (xk)−λ1tkγ‖Bk

(
(Bk)

−1
∇ f (xk)

)
‖2

= f (xk)−λ1tkγ‖Bkdk‖2

≤ f (xk)−λ1tkγ‖Bk‖2‖dk‖2

Notice that, if ‖B−1
k ‖ ≤ β then ‖Bk‖ ≥

1
β

. Indeed, as Bk ·B−1
k = In×n, we have that

‖Bk ·B−1
k ‖= ‖In×n‖= 1. So, using the statement ‖B−1

k ‖ ≤ β , we have that

1 = ‖Bk ·B−1
k ‖ ≤ ‖Bk‖‖B−1

k ‖ ≤ ‖Bk‖β ⇒

⇒ 1
β
≤ ‖Bk‖.

So, we have that ‖Bk‖ ≥
1
β
⇒‖Bk‖2 ≥ 1

β 2 ⇒−‖Bk‖2 ≤− 1
β 2 . Then

4 OPTIMIZATION METHOD 80

f (xk+1) ≤ f (xk)−λ1tkγ‖Bk‖2‖dk‖2

≤ f (xk)−λ1tk
γ

β 2‖dk‖2.

Since the step size satisfies 0 < tk and the sequence {tk} does not converge to 0, we have

that we can find an ε > 0 such that |tk− 0| = |tk| > ε,∀k. So, it is always possible to choose

t =
max{ε, t1, t2, . . . , tk}

2
such that tk ≥ t > 0 that does not depend on k. So, since the sequence

{ f (xk)} is non-increasing, if f has a lower bound or if {xk} has an accumulation point, we have

that f (xk+1)− f (xk)→ 0 (k→ ∞) and then {dk}→ 0 (k→ ∞).

Since dk =−(Bk)
−1

∇ f (xk) we have that ∇ f (xk) =−Bkdk→ 0 (k→ ∞). �

We can now present the algorithm used by Matlab function fmincon, set as default, that

uses barrier penalty method for the constraints, central-difference method to approximate the

gradient of the objective function and Quasi-Newton BFGS method to find a descent direction:
Algorithm 1: fmincon algorithm for problem 4.0.3

initialization;

V ;F ; k←− 0; TOL > 0; α0 ∈R; x0 = (x0
1,x

0
2)

T ∈Ω;

Ff (x0) = A f Tf (x0) as in 4.0.4;

φ(x0) = α0

(
ln
(

π− x0
1

)
+ ln

(
π + x0

1

)
+ ln

(
π

2
− x0

2

)
+ ln

(
π

2
+ x0

2

))
;

g(x0) = ∑
f∈F

Ff (x0)−φ(x0);

∇ε g(x0) as in 4.1.2;

Inverse Hessian approximation B−1
0 ∈R

n×n;

d0 =−(B0)
−1

∇ε g(x0);

while ‖dk‖> TOL or −∇ε g(xk)
T dk > TOL or ‖∇ε g(x0)‖> TOL do

1. Compute search direction

dk =−(Bk)
−1

∇ε g(xk);

2. Set xk+1 = xk + tkdk where tk satisfies the Wolfe conditions 4.1.8;

3. Compute (Bk+1)
−1 by 4.1.10;

4. Choose αk+1 < αk;

5. Compute ∇ε g(xk+1) as in 4.1.2;

6. k←− k+1;

7. Return to step 1;

end

4 OPTIMIZATION METHOD 81

4.2 Optimization Results

We saw in the previous section that with fmincon, we are able to find a local minimum

for the problem 4.0.3. Looking at the graph of the function 4.0.3 in figure 4.2.1, applied to the

Figure 4.2.1: Objective function 4.0.3 3D graph applied on Knight Libigl (JACOBSON et al.,
2018) surface.

Knight surface, we notice that the objective function is not convex and has some different local

minima. So, if we use a function that calculates a local minimum, with an initial point that is

sufficiently far from the global minimum, the solver will find a local minimum, instead of the

global one. We can see in figure 4.2.2 that, if we choose an initial point that is not close enough

Figure 4.2.2: Knight surface from Libigl (JACOBSON et al., 2018) after global rotation on
tests performed on section 3.4 (left) and after finding a local minimum using fmincon Matlab
function with a chosen initial point (right). The teal surface on the left would be printed in 136
minutes with 3g of material loss (support that would be wasted) and the pink surface on the
right would be printed in 149 minutes with 5g of material loss.

4 OPTIMIZATION METHOD 82

of global minimum, fmincon find a local minimum but this is not the global minimum, since we

can find another surface position that improves the obtained result..

In the tests in section 3.4 we only find global minimum candidates for each surface.

So, to be able to find the same (or better) results that we found in the previous tests, we peform

different strategies using fmincon minimization solver. The tests that we did were based on

multistart points for global search. Notice that, the angle range of the objective function can be

easily divided in smaller intervals, with size h > 0. So, to the first multistart strategy, we take

the central point of each subset of angle ranges as starting point, as we can see in figure 4.2.3.

Figure 4.2.3: Dividing the angle ranges on the restrictions of equation 4.0.3 and taking the
central point of each set, we got multiple start point of our algorithm.

Setting h =
π

4
, we have 32 different initial points and we got results that are close to

what was found in the previous tests, but much faster. Also, these results has the same amount

of length of material, weight and printing time as compared to the tests done in the section 3.4

and was presented on table 3.4.1, what indicates that these points could be the global minimum

of 4.0.3.

The second test that we did was also a multistart method, inspired by the multi-

start method presented in (MARTÍ, RESENDE, RIBEIRO, 2013), that chooses random starting

points to the minimization problem. In every test we have different multiple start points. The

final result has reached the same minimum points as presented in table 3.4.1 in all surfaces and

every time that we run the algorithm. We can see in figure 4.2.5 one of the tests with randomly

chosen starting points (R.C.S.P.), with 32 initial points. We can see some of optimization results

4 OPTIMIZATION METHOD 83

in figure 4.2.4

Figure 4.2.4: Surfaces on initial position (top) and after optimal rotation (bottom). Knight,
Horse, Bunny and Arm are surfaces available on Libigl (JACOBSON et al., 2018).

π
x-axis

y-axis

-π

π

2
-

π

2

Figure 4.2.5: Graph of randomly chosen starting points (R.C.S.P.) strategy applied on Knight
Libigl surface, with 100 starting points. Each black spot on graphic is an initial point that the
algorithm choose randomly as the start point to minimization problem.

The table with the optimal global rotation angles and the time spent of multiple con-

straint division (M.C.D.), randomly chosen starting points (R.C.S.P.) strategies and the tests

presented in section 3.4 to find the global minimum of problem 4.0.3 are available in table

4.2.1.

5 CONCLUSION 84

Surface xmin
Time

Tests (sec 3.4)
Time

(M.C.D.)
Time

(R.C.S.P.)
Arm

(
−2.7444 0.0799

)
839.97s 17.56s 17.79s

Human skull
(

3.1004 −0.4287
)

240.30s 9.46s 9.17s

Horse
(
−1.4316 0.2639

)
282.88s 10.91s 9.68s

Max
(
−2.9084 −0.0235

)
467.67s 7.16s 9.95s

Human heart
(
−2.6011 0.0370

)
687.55s 13.03s 12.94s

Knight
(
−1.4726 0.0074

)
56.89s 5.21s 4.36s

Bunny
(
−0.1788 0.5579

)
299.01s 16.41s 12.91s

Camel
(

2.9598 −1.4669
)

210.65s 5.16s 5.35s

Cow
(
−1.5708 −0.0924

)
251.59s 6.81s 7.37s

Table 4.2.1: This table presents the run time of both strategies to seek the global minimum
point and the tests presented in section 3.4. On multiple constraint division (M.C.D.) strategy,
we divide the angle intervals into smaller with h =

π

4
spacing on both axes, having 32 different

initial points. On randomly chosen starting point (R.C.S.P.) strategy, we collect 32 random
points as start point of our algorithm. On tests presented in section 3.4 we run 65341 angles
combination and select the one with the lower objective function value.

5 Conclusion

5.1 Review

In this section, we review the main aspects of our work. We first reviewed some of the

main concepts of orthogonal and rigid transformations, presenting results that served as basis

for modelling our problem. With these concepts, in particular the theorem of rotation matrices

representation with Euler sequences 2.2.2, we could identify the variables of our problem in

order to create a minimization problem.

We modeled our minimization problem based on preliminary concepts that were re-

viewed before. We presented two ways to model the overhanging problem in 3D printing. The

angle-based approach shows that we can reduce the suspended area of the surface, but this does

not mean a reduction of support in 3D printing. This model presents better results with some

surfaces but not in general. So, we formulate a model that considers the the z-coordinate norm

of the normal surface vector with a weight factor that takes into consideration the height of each

triangle on mesh. This modelling of the problem presents better results in all surfaces tested,

compared with initial positions of surfaces, in terms of printing time and support quantity. With

a quick review of (ALEXANDER, ALLEN, DUTTA, 1998) method to surface position, we

5 CONCLUSION 85

were able to compare both methods and conclude that our method has better results compared

with theirs.

With the modelled objective function 3.2.4 and its explicit representation 4.0.3, we

reviewed the concepts used by the Matlab function fmincon, that finds a local minimum of the

objective function with logarithmic barrier function to deal with the constraints of the problem,

finite differences to approximate the gradient of the function and BFGS method to find a descent

direction for the algorithm. We then apply fmincon to our objective function with two multistart

strategies for initial points: multiple constraint division (M.C.D.), that divides the constraint

domain of problem variables into smaller intervals and take the center of this set as start point

of algorithm; randomly chosen starting points (R.C.S.P), that randomly chooses starting points

on constraint domain of problem and run the algorithm with them. With them, we find strong

candidates of global solution to the minimization problem, whose tests showed to be very close

to the tests previously performed.

In conclusion, we develop a method that finds a global rotation of the surfaces that

reduces the amount of support in 3D printing and presents better results than previous work.

5.2 Future work

We think that the work developed in this thesis has space for better results and the

main future works that can be developed are:

• Develop all Matlab code in C/C++: All tests and optmization codes were done in Mat-

lab. It would be interesting for future applications to develop the method proposed here

in a more robust programming language such as C ++.

• Fully differentiable weight function: On this thesis, we consider a weight function for

each triangle on the surface mesh, that takes into consideration the triangle height with re-

spect to the printer plate. This weight function has a factor that is difficult to differentiate

and forces us to approximate the gradient on minimization method with finite differences.

So, it will be interesting to develop a weight function that is easy to differentiate, leading

to a much precise and faster optmization method to solve the problem.

• Global optimization method: We used Matlab’s fmincon function to solve the mini-

mization problem, but this method finds a local minimum of the objective function. Even

using two multistart strategies to initialize our minimization search and always finding

5 CONCLUSION 86

the same values for all tests and surfaces, this does not prove that the solution found for

the problem is, indeed, the global minimum of the objective function. We intend to in-

vestigate global optimization methods to apply into this minimization problem or try to

prove that the methods that we used so far are sufficient to find a global minimum.

• Horizontal partitioning of the surface: Even after finding a position in space that min-

imizes the amount of support in 3D printing, some of the overhanging parts can still

remain at a distance from the printer plate that can generate a lot of support. We believe

that one way to solve this problem is to find an optimal height for a horizontal partition

of the surface. We consider a horizontal partition because the seam that will separate the

two parts of the partitioned surface will be in the same direction as the printing direction

and could be hidden.

REFERENCES 87

References
ADOREZOOEY. Human heart. Sketchfab, Paris, 2015. Available from:
https://sketchfab.com/3d-models/human-heart-a294c26cb0e34c8f97d72e4dc4e9fdd5.
Access in: nov. 29, 2019.

AELLIS43. Human skull (untextured). Sketchfab, Paris, 2014. Avail-
able from: https://sketchfab.com/3d-models/human-skull-untextured-
6521abbdccb24e11915e7d9c7905e719. Access in: nov. 29, 2019.

ALEXANDER, P.; ALLEN, S.; DUTTA, D. Part orientation and build cost determination in
layered manufacturing. Computer-Aided Design, Elsevier, v. 30, n. 5, p. 343–356, 1998.

BERAHAS, A. S.; BYRD, R. H.; NOCEDAL, J. Derivative-free optimization of noisy
functions via quasi-newton methods. SIAM Journal on Optimization, SIAM, v. 29, n. 2, p.
965–993, 2019.

BOLLAPRAGADA, R.; WILD, S. M. Adaptive sampling quasi-newton methods for
derivative-free stochastic optimization. arXiv preprint arXiv:1910.13516, 2019.

BORWEIN, J.; LEWIS, A. S. Convex analysis and nonlinear optimization: theory and
examples. New York: Springer Science & Business Media, 2010.

BUSS, S. R. 3D computer graphics: a mathematical introduction with OpenGL. United
Kingdom: Cambridge University Press, 2003.

BYRD, R. H.; GILBERT, J. C.; NOCEDAL, J. A trust region method based on interior point
techniques for nonlinear programming. Mathematical programming, Springer, v. 89, n. 1, p.
149–185, 2000.

CARMO, M. P. d. Geometria Diferencial de Curvas e Superfıcies, 2a ediçao. Rio de Janeiro:
Sociedade Brasileira de Matemática, 2006.

CHEN, X. Superlinear convergence of smoothing quasi-newton methods for nonsmooth
equations. Journal of Computational and Applied Mathematics, Elsevier, v. 80, n. 1, p.
105–126, 1997.

DAI, C. et al. Support-free volume printing by multi-axis motion. ACM Transactions on
Graphics (TOG), ACM, v. 37, n. 4, p. 134, 2018.

DENOYEL, A.; PINSON, C.; PASSET, P.-A. Sketchfab. Sketchfab, Paris, 2012. Available
from: https://sketchfab.com/. Access in: nov. 29, 2019.

ELSERMAN, M.; BRUIJN, E. de; WIJNIA, S. Ultimaker. 2011. Https://ultimaker.com.

GOMES, J.; VELHO, L.; SOUSA, M. C. Computer graphics: theory and practice. United
States: AK Peters/CRC Press, 2012.

GOSAVI, A.; PHATAKWALA, S. A finite-differences derivative-descent approach for
estimating form error in precision-manufactured parts. Journal of Manufacturing Science and
Engineering, American Society of Mechanical Engineers, v. 128, n. 1, p. 355–359, 2006.

HOUCK, H. A. et al. Light-stabilized dynamic materials. Journal of the American Chemical
Society, ACS Publications, v. 141, n. 31, p. 12329–12337, 2019.

REFERENCES 88

HU, R. et al. Approximate pyramidal shape decomposition. ACM Trans. Graph., Citeseer,
v. 33, n. 6, p. 213–1, 2014.

IZMAILOV, A.; SOLODOV, M. Otimização, volume 2: métodos computacionais. Rio de
Janeiro: IMPA, 2007.

JACOBSON, A. et al. gptoolbox: Geometry Processing Toolbox. 2018.
Http://github.com/alecjacobson/gptoolbox.

JACOBSON, A.; PANOZZO, D. et al. libigl: A simple C++ geometry processing library.
2018. Https://libigl.github.io/.

KARASIK, E.; FATTAL, R.; WERMAN, M. Object partitioning for support-free 3d-printing.
Computer Graphics Forum, v. 38, n. 2, p. 305–316, 2019.

KOVÁCS, E. Rotation about an arbitrary axis and reflection through an arbitrary plane.
Annales Mathematicae et Informaticae, v. 40, p. 175–186, 2012.

KREYSZIG, E. Introductory functional analysis with applications, v. 1. New York: Wiley,
1978.

LARSON, J.; MENICKELLY, M.; WILD, S. M. Derivative-free optimization methods. Acta
Numerica, Cambridge University Press, v. 28, p. 287–404, 2019.

MARTÍ, R.; RESENDE, M. G.; RIBEIRO, C. C. Multi-start methods for combinatorial
optimization. European Journal of Operational Research, Elsevier, v. 226, n. 1, p. 1–8, 2013.

MARTÍNEZ, J. et al. Polyhedral voronoi diagrams for additive manufacturing. ACM
Transactions on Graphics (TOG), ACM, v. 37, n. 4, p. 129, 2018.

NOCEDAL, J.; WRIGHT, S. Numerical optimization. New York: Springer Science & Business
Media, 2006.

POWELL, M. A method for minimizing a sum of squares of non-linear functions without
calculating derivatives. The Computer Journal, The British Computer Society, v. 7, n. 4, p.
303–307, 1965.

RANELLUCCI, A.; LENOX, J. Slic3r: Open source 3D printing toolbox. 2011.
Https://slic3r.org.

RUITER, A. H. de; FORBES, J. R. Generalized euler sequences revisited. The Journal of the
Astronautical Sciences, Springer, v. 62, n. 1, p. 1–20, 2015.

SHANNO, D. F. Conditioning of quasi-newton methods for function minimization.
Mathematics of computation, v. 24, n. 111, p. 647–656, 1970.

SORKINE, O.; ALEXA, M. As-rigid-as-possible surface modeling. v. 4, p. 109–116, 2007.

VANEK, J.; GALICIA, J. A. G.; BENES, B. Clever support: Efficient support structure
generation for digital fabrication. v. 33, n. 5, p. 117–125, 2014.

WANG, W. M.; ZANNI, C.; KOBBELT, L. Improved surface quality in 3d printing by
optimizing the printing direction. v. 35, n. 2, p. 59–70, 2016.

REFERENCES 89

WITTENBURG, J.; LILOV, L. Decomposition of a finite rotation into three rotations about
given axes. Multibody System Dynamics, Springer, v. 9, n. 4, p. 353–375, 2003.

YAGOU, H.; OHTAKE, Y.; BELYAEV, A. Mesh smoothing via mean and median filtering
applied to face normals. p. 124–131, 2002.

YAO, M. et al. Level-set-based partitioning and packing optimization of a printable model.
ACM Transactions on Graphics (TOG), ACM, v. 34, n. 6, p. 214, 2015.

ZHANG, X. et al. Perceptual models of preference in 3d printing direction. ACM Transactions
on Graphics (TOG), ACM, v. 34, n. 6, p. 215, 2015.

ZHENG, Y. et al. Bilateral normal filtering for mesh denoising. IEEE Transactions on
Visualization and Computer Graphics, IEEE, v. 17, n. 10, p. 1521–1530, 2010.

A SOURCE CODES 90

A Source codes

In this section, we present some of the source codes written in Matlab to apply the

optimization method to find the global minimum of problem 4.0.3. The functions are divided

in two parts: main functions and auxiliary functions. Other auxiliary functions were used, such

as readOBJ.m, tsurf.m and are available on gptoolbox (JACOBSON et al., 2018) website. Also,

the surfaces that were used for tests here are available on libigl (JACOBSON, PANOZZO et al.,

2018) website.

A.1 Main functions

The main functions use fmincon to find the minimum of problem 4.0.3. The Matlab

function print3Dopt grid.m uses the multiple constraint division (M.C.D.) strategy for multistart

initial point. The Matlab function print3Dopt rand.m uses the randomly chosen starting points

(R.C.S.P) strategy also for multistart initial point. The Matlab function print3Dopt.m can be

used if the user knows what starting point to use for the algorithm find the global minimum.

A.1.1 print3Dopt grid.m

function [Xmin,Vnew,F,minim] = print3Dopt_grid(surface)

% This algorithm uses the GPTOOLBOX (JACOBSON, 2018) readOBJ function

% to read solids in .obj format and searches for the best orientation in

% space that solves the minimization problem:

%

% min sum W*||N-PrN||,

%

% where N is the normal field of surface, PrN is the projection of the

% normal field on the xy-plan and W is a weight function for each

% triangle of the mesh. This function uses fmincon to solve the minimiza-

% tion problem with a uniform grid center multistart point strategy.

%

%Syntax:

%

% [Xmin,V,F,minim] = print3Dopt_grid(surface)

%

%Input:

A SOURCE CODES 91

%

% surface path to .obj file

%

%Outputs:

%

% Xmin 2 by 1 vector solution of the minimization problem

% V #V by 3 list of vertices at the optimal position

% F #F by 3 list of triangle indices

% minim objective function value at the optimal point

%

%JACOBSON, A. gptoolbox: Geometry processing toolbox.

%http://github.com/alecjacobson/gptoolbox, 2018.

%

[V,F]=readOBJ(surface); %% Reading .obj file from path

minim=1e10; %% Setting a high minimum initial value

Xmin=zeros(2,1); %% Alocating the optimal point

h=pi/4; %% Setting the lenght to partition the grid domain

% % % %Necessary parameters for fmincon

LB=[-pi;-pi/2]; %%Left box condition %

UB=-LB; %% Right box condition %

A=[]; %

B=[]; %

Aeq=[]; %

Beq=[]; %

% % % % % % % % % % % % % % % % % % % %

% Begining of multistart strategy

for ii=-pi:h:pi-h

for jj = -pi/2:h:pi/2-h

x0=[(ii+h)/2;(jj+h)/2]; %% Setting the initial point for fmincon

Vh = rotatexy(V,F,[0;0],'center');%% Translating the surface

% barycenter to the origin.

N = normalsurf(Vh,F); %% Generating the normal field of the surface

Area = areatsurf(Vh,F); %% Generating a vector with triangle mesh

% areas

A SOURCE CODES 92

% % % % % % % % % % % % % % % % %%fmincon applied to the objective function

options = optimoptions('fmincon','Display','none'); %

[X,fval] = fmincon(@(x)(Area.*(-sin(x(2,1))*Vh(F(:,1),1)+ ... %

cos(x(2,1))*sin(x(1,1))*Vh(F(:,1),2) + cos(x(1,1))*... %

cos(x(2,1))*Vh(F(:,1),3) - min(-sin(x(2,1))*Vh(F(:,1),1)+ ... %

cos(x(2,1))*sin(x(1,1))*Vh(F(:,1),2) + cos(x(1,1))*... %

cos(x(2,1))*Vh(F(:,1),3))))'*((sin(x(2,1)).ˆ2).*(N(:,1).ˆ2)+...

(cos(x(1,1)).ˆ2)*(cos(x(2,1)).ˆ2).*(N(:,3).ˆ2) - ... %

2.*sin(x(2,1)).*cos(x(2,1)).*sin(x(1,1)).*N(:,1).*N(:,2) + ...%

(cos(x(2,1)).ˆ2).*(sin(x(1,1)).ˆ2).*(N(:,2).ˆ2) + ... %

2.*(cos(x(2,1)).ˆ2).*sin(x(1,1)).*cos(x(1,1)).*... %

N(:,2).*N(:,3) - 2.*sin(x(2,1)).*cos(x(2,1)).*... %

cos(x(1,1)).*N(:,1).*N(:,3)),x0,A,B,Aeq,Beq,LB,UB,[],options);%

% %

% % %Getting the minimal value of function evaluation and the optimal point

if fval < minim %

minim = fval; %

Xmin=X; %

end %

% %

end

end

% %

Vnew = rotatexy(V,F,Xmin,'plate');%% Rotating the surface by optimal angles

% given by fmincon results, centering the

% surface barycenter at the origin and

% adjusting the surface to printer plate

end

A.1.2 print3Dopt rand.m

function [Xmin,Vnew,F,minim] = print3Dopt_rand(surface)

% This algorithm uses the GPTOOLBOX (JACOBSON, 2018) readOBJ function

% to read solids in .obj format and searches for the best orientation in

% space that solves the minimization problem:

A SOURCE CODES 93

%

% min sum W*||N-PrN||,

%

% where N is the normal field of surface, PrN is the projection of the

% normal field on the xy-plan and W is a weight function for each

% triangle of the mesh. This function uses fmincon to solve the minimiza-

% tion problem with a randomic multistart point strategy.

%

%Syntax:

%

% [Xmin,V,F,minim] = print3Dopt_rand(surface)

%

%Input:

%

% surface path to .obj file

%

%Outputs:

%

% Xmin 2 by 1 vector solution of the minimization problem

% V #V by 3 list of vertices at the optimal position

% F #F by 3 list of triangle indices

% minim objective function value at the optimal point

%

%JACOBSON, A. gptoolbox: Geometry processing toolbox.

%http://github.com/alecjacobson/gptoolbox, 2018.

%

[V,F]=readOBJ(surface); %% Reading .obj file from path

minim=1e10; %% Setting a high minimum initial value

Xmin=zeros(2,1); %% Alocating the optimal point

m=32; %% Setting the number of random choices for initial point

% multistart = zeros(m,2); %%Creating a vector with random initial points

% % % %Necessary parameters for fmincon

LB=[-pi;-pi/2]; %%Left box condition %

UB=-LB; %% Right box condition %

A=[]; %

B=[]; %

A SOURCE CODES 94

Aeq=[]; %

Beq=[]; %

% % % % % % % % % % % % % % % % % % % %

% Begining of multistart strategy

for r=1:m

% % % % % % % % % % % % % % % % %Setting the random initial point

ii=2*pi.*rand(1,1) -pi; %% x-coordinate

jj=pi.*rand(1,1) - pi/2; %% y-coordinate

x0=[ii;jj];%% Setting the initial point with random choices

% multistart(r,:) = x0';%% Adding the initial point on vector

% %

Vh = rotatexy(V,F,[0;0],'center');%% Translating the surface

% barycenter to the origin.

N = normalsurf(Vh,F); %% Generating the normal field of the surface

Area = areatsurf(Vh,F); %% Generating a vector with triangle mesh

% areas

% % % % % % % % % % % % % % % % % % %%fmincon applied on objective function

options = optimoptions('fmincon','Display','none'); %

[X,fval] = fmincon(@(x)(Area.*(-sin(x(2,1))*Vh(F(:,1),1)+ ... %

cos(x(2,1))*sin(x(1,1))*Vh(F(:,1),2) + ... %

cos(x(1,1))*cos(x(2,1))*Vh(F(:,1),3) - ... %

min(-sin(x(2,1))*Vh(F(:,1),1)+ ... %

cos(x(2,1))*sin(x(1,1))*Vh(F(:,1),2) + ... %

cos(x(1,1))*cos(x(2,1))*... %

Vh(F(:,1),3))))'*((sin(x(2,1)).ˆ2).*(N(:,1).ˆ2) + ... %

(cos(x(1,1)).ˆ2)*(cos(x(2,1)).ˆ2).*(N(:,3).ˆ2) - ... %

2.*sin(x(2,1)).*cos(x(2,1)).*sin(x(1,1)).*N(:,1).*N(:,2) + ... %

(cos(x(2,1)).ˆ2).*(sin(x(1,1)).ˆ2).*(N(:,2).ˆ2) + ... %

2.*(cos(x(2,1)).ˆ2).*sin(x(1,1)).*cos(x(1,1)).*N(:,2).*N(:,3) - ...

2.*sin(x(2,1)).*cos(x(2,1))... %

.*cos(x(1,1)).*N(:,1).*N(:,3)),x0,A,B,Aeq,Beq,LB,UB,[],options); %

% %

% % %Getting the minimal value of function evaluation and the optimal point

if fval < minim %

A SOURCE CODES 95

minim = fval; %

Xmin=X; %

end %

% %

end

% %

Vnew = rotatexy(V,F,Xmin,'plate');%% Rotating the surface by optimal angles

% given by fmincon results, centering the

% surface barycenter at the origin and

% adjusting the surface to printer plate

end

A.1.3 print3Dopt.m

function [X,Vnew,F,fval,exitflag,output] = print3Dopt(surface,x0)

% This algorithm uses the GPTOOLBOX (JACOBSON, 2018) readOBJ function

% to read solids in .obj format and searches for the best orientation in

% space that solves the minimization problem:

%

% min sum W*||N-PrN||,

%

% where N is the normal field of surface, PrN is the projection of the

% normal field on the xy-plan and W is a weight function for each

% triangle of the mesh. This function uses fmincon to solve the minimiza-

% tion problem.

%

%Syntax:

%

% [X,V,F,fval,exitflag,output] = print3Dopt(surface,x0)

%

%Input:

%

% surface path to .obj file

% x0 initial point for fmincon

%

%Outputs:

A SOURCE CODES 96

%

% X 2 by 1 vector solution of minimization problem

% V #V by 3 list of vertices at the optimal position

% F #F by 3 list of triangle indices

% fval objective function value at the optimal point

% exitflag a value that describes the exit condition of fmincon

% output a structure output with information about the optimization

% process.

%

%JACOBSON, A. gptoolbox: Geometry processing toolbox.

%http://github.com/alecjacobson/gptoolbox, 2018.

%

[V,F]=readOBJ(surface); %% Reading .obj file from path

% % % %Necessary parameters for fmincon

LB=[-pi;-pi/2]; %%Left box condition %

UB=-LB; %% Right box condition %

A=[]; %

B=[]; %

Aeq=[]; %

Beq=[]; %

% % % % % % % % % % % % % % % % % % % %

Vh = rotatexy(V,F,[0;0],'center'); %% Translating the surface barycenter to

% the origin.

N = normalsurf(Vh,F); %% Generating the normal field of the surface

Area = areatsurf(Vh,F); %% Generating a vector with triangle mesh areas

% % % % % % % % % % % % % % % % % % %%fmincon applied to objective function

options = optimoptions('fmincon','Display','none'); %

[X,fval,exitflag,output] = fmincon(@(x)(Area.*(-sin(x(2,1))*... %

Vh(F(:,1),1)+ cos(x(2,1))*sin(x(1,1))*Vh(F(:,1),2) + ... %

cos(x(1,1))*cos(x(2,1))*Vh(F(:,1),3) - min(-sin(x(2,1))... %

*Vh(F(:,1),1)+ cos(x(2,1))*sin(x(1,1))*Vh(F(:,1),2) + ... %

cos(x(1,1))*cos(x(2,1))*Vh(F(:,1),3))))'*((sin(x(2,1)).ˆ2)... %

.*(N(:,1).ˆ2) + (cos(x(1,1)).ˆ2)*(cos(x(2,1)).ˆ2)... %

.*(N(:,3).ˆ2) - 2.*sin(x(2,1)).*cos(x(2,1)).*sin(x(1,1))... %

A SOURCE CODES 97

.*N(:,1).*N(:,2) + (cos(x(2,1)).ˆ2).*(sin(x(1,1)).ˆ2)... %

.*(N(:,2).ˆ2) + 2.*(cos(x(2,1)).ˆ2).*sin(x(1,1))... %

.*cos(x(1,1)).*N(:,2).*N(:,3) - 2.*sin(x(2,1))... %

.*cos(x(2,1)).*cos(x(1,1)).*N(:,1)... %

.*N(:,3)),x0,A,B,Aeq,Beq,LB,UB,[],options); %

% %

Vnew = rotatexy(V,F,X,'plate'); %% Rotating the surface by optimal angles

% given by fmincon results, centering the

% surface barycenter at the origin and

% adjusting the surface to printer plate

end

A.2 Auxiliary functions

A.2.1 rotatexy.m

function Vnew = rotatexy(V,F,theta,option)

%Rotates a surface V around x and y axis by angle thetax,thetay

%

%Sintax:

%

% Vnew = rotatexy(V,F,theta)

%

% Inputs:

%

% V #V by 3 matrix of surface's vertex coordinates.

% F #F by 3 matrix of indices of surface's triangle

% corners.

% theta 2 by 1 vector with x and y rotation angle.

% option final position option of surface.

% Set 'plate' if the surface need to be positioned on printer

% plate.

%

% Output:

%

% Vnew #V x 3 matrix of surface's vertex coordinates after rotation.

%

A SOURCE CODES 98

% Making the input vector a column vector

if size(theta,2) > 1 %

theta = theta'; %

end %

% %

thetax = theta(1,1); % Separating coordinates

thetay = theta(2,1); %

% % % % Translating the barycenter of the surface to the origin

Xbari = (V(F(:,1),1) + V(F(:,2),1) + V(F(:,3),1))/3; %

Ybari = (V(F(:,1),2) + V(F(:,2),2) + V(F(:,3),2))/3; %

Zbari = (V(F(:,1),3) + V(F(:,2),3) + V(F(:,3),3))/3; %

X = sum(Xbari)/length(Xbari); %

Y = sum(Ybari)/length(Ybari); %

Z = sum(Zbari)/length(Zbari); %

%

T=[1,0,0,-X;0,1,0,-Y;0,0,1,-Z;0,0,0,1]; %

TV = T*[V ones(size(V,1),1)]'; %

TV = TV'; %

% %

% % % % % % % % % % % % % % % Setting and applying the rotation matrix

ROT1 = [cos(thetay) 0 sin(thetay) 0;... %

0 1 0 0;... %

-sin(thetay) 0 cos(thetay) 0;... %

0 0 0 1]; %

%

ROT2 = [1 0 0 0;... %

0 cos(thetax) -sin(thetax) 0;... %

0 sin(thetax) cos(thetax) 0;... %

0 0 0 1]; %

%

ROT = ROT1*ROT2; %

Vnew = ROT*TV'; % Applying the rotation matrix %

if strcmp(option,'plate') == 1 % Positioning the surface after rotation

T2=[1,0,0,0;0,1,0,0;0,0,1,-min(Vnew(3,:));0,0,0,1]; %

Vnew = T2*Vnew; %

A SOURCE CODES 99

end %

Vnew = Vnew'; % New surface vertices matrix after rotation %

Vnew = Vnew(:,1:3);% %

% %

end

A.2.2 normalsurf.m

function N = normalsurf(V,F)

%Find the Normal field of surface V and triangle index F.

%

%Sintax:

%

% N = normalsurf(V,F)

%

% Inputs:

%

% V #V by 3 matrix of surface's vertex coordinates.

% F #F by 3 matrix of indices of surface's triangle corners.

% Output:

% N #F by 3 matrix of Normal field of surface.

%

v = V(F(:,3),:) - V(F(:,1),:); % Setting triangle's edges

w = V(F(:,2),:) - V(F(:,1),:); % Setting triangle's edges

vxw=cross(v,w); % Cross product of triangle's edges and finding normals

N=normr(vxw); % Normalizing the normals

end

A.2.3 areatsurf.m

function A = areatsurf(V,F)

%Creates a vector with all triangle mesh areas of surface.

%

%Sintax:

A SOURCE CODES 100

%

% A = areatsurf(V,F)

%

% Inputs:

%

% V #V by 3 matrix of surface's vertex coordinates.

% F #F by 3 matrix of indices of surface's triangle corners.

%

% Output:

%

% A #F by 1 vector of all triangle mesh areas of V.

%

% Calculating parameters for triangle area using Heron's formula

a = sqrt((V(F(:,2),1) - V(F(:,1),1)).ˆ2 + ... %triangle edge a

(V(F(:,2),2) - V(F(:,1),2)).ˆ2 + ... %

(V(F(:,2),3) - V(F(:,1),3)).ˆ2); %

b = sqrt((V(F(:,3),1) - V(F(:,1),1)).ˆ2 + ... %triangle edge b

(V(F(:,3),2) - V(F(:,1),2)).ˆ2+ ... %

(V(F(:,3),3) - V(F(:,1),3)).ˆ2); %

c = sqrt((V(F(:,3),1) - V(F(:,2),1)).ˆ2 + ... %triangle edge c

(V(F(:,3),2) - V(F(:,2),2)).ˆ2+ ... %

(V(F(:,3),3) - V(F(:,2),3)).ˆ2); %

p = (a+b+c)./2; %Semiperimeter %

%

A=sqrt(p.*(p-a).*(p-b).*(p-c)); % Calculating area of triangles

% %

end

	Introduction
	3D Printing support - overview
	Related work
	Goals and contributions
	Structure of the thesis

	Preliminary concepts: rigid transformations and SO(3) space
	Linear and rigid transformations
	The rotation space SO(3) and generalized Euler sequences
	Spatial surfaces and their representations
	Triangle mesh representation

	Objective function
	Surface normal angle analysis
	Initial results
	Problems in paradise

	Surface normal ``Least squares''
	Support volume

	Alexander's method
	Tests and method comparison

	Optimization method
	The Matlab function fmincon and its optimization theory
	Finite-difference approximation
	Local and global minima and descent directions
	Barrier penalty method
	The BFGS method

	Optimization Results

	Conclusion
	Review
	Future work

	References
	Source codes
	Main functions
	print3Dopt grid.m
	print3Dopt rand.m
	print3Dopt.m

	Auxiliary functions
	rotatexy.m
	normalsurf.m
	areatsurf.m

