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1. Introduction

Recently there has been a growing interest in average-case lower bounds, in which one tries to
prove not only that a certain complexity class cannot compute a particular Boolean function, but
also that it cannot even approximate it under a given distribution. Average-case lower bounds are
interesting in their own right, as they provide sharper separation between complexity classes than
a worst-case lower bound, but they have also found applications in other branches of complexity
theory, such as pseudorandomness [16] and learning theory [15]. Moreover, product distributions
are thought to be a source of hard instances for monotone Boolean functions [22], so that proving
average-case lower bounds under a product distribution for monotone circuits is a major question
regarding monotone computation. In this project, we are interested in studying average-case
complexity questions for restricted but natural classes of circuits, such as bounded-depth circuits,
formulas and monotone circuits.

In this line of research, Rossman has recently obtained many new results of major importance.
First, in a series of works [18,21,22] along with a joint work with Li and Razborov [14], Rossman
obtained average-case lower bounds for subgraph isomorphism in various settings. We remark
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that [21] implied the first size-hierarchy theorem for bounded-depth circuits. Secondly, Håstad,
Rossman, Servedio and Tan [11] obtained the first average-case depth hierarchy theorem for
bounded-depth circuits, thus solving a longstanding open problem. Finally, Rossman developed
in [20] a new technique called pathset complexity, allowing him to prove an average-case lower
bound for AC0 formulas. Using the same technique, Rossman proved the first correlation bound
against a monotone class of circuits (monotone formulas) under a product distribution [22].

In this project, we aim at developing some of these results, by seeking a stronger average-
case size-hierarchy theorem (Problem 3), new applications of the pathset complexity technique
(Problem 5), an average-case lower bound against k-CLIQUE for monotone formulas under an
Erdős–Rényi random graph (Problem 2), and by understanding the behaviour of monotone
circuits under two-sliced distributions (Problem 6).

2. A review of basic results of circuit complexity

Boolean circuits are arguably the most important combinatorial model of computation studied
in circuit complexity. Since any polynomial-time algorithm can be implemented by a sequence of
polynomial-size circuits (one for each input length), obtaining a superpolynomial lower bound on
the minimum circuit size of any problem in NP is enough to separate P from NP.

Definition 1. For every n ∈ N, an n-input, single-output Boolean circuit is a directed acyclic
graph with n sources and one sink. All nonsource vertices are called gates and are labeled with
one of {∨,∧,¬}. The vertices labeled with ∨ and ∧ usually have fan-in (that is, in-degree) equal
to 2, but sometimes we allow unbounded fan-in. When we do, we will mention it explicitly. The
vertices labeled with ¬ always have fan-in 1. The size of a circuit C is the number of gates it
contains, and the depth is the maximum number of gates on a path from an input to the output.
Finally, the alternation-depth of a circuit is the maximum number of alternations between ∧ and
∨ gates in a path from an input to the output.

One reason for studying the computational model of Boolean circuits is the hope that combi-
natorial methods might be succesful in proving unconditional lower bounds. Unfortunately, until
now no superlinear lower bound on the circuit size is known for any explicit Boolean function.
This motivates the search for lower bounds in restricted classes of Boolean circuits, as we explain
next.

One of the most basic complexity classes is AC0, the class of polynomial-size circuits with
constant alternation-depth or, equivalently, polynomial-size circuits with unbounded fan-in and
constant depth. It is one of the complexity classes on which we have had the most success
in proving lower bounds. For example, a celebrated result of Furst, Saxe and Sipser [7] and
Ajtai [1] is that no AC0 circuit can compute the function PARITY : {0, 1}n → {0, 1}, which
returns the parity of

∑
i∈[n] xi for x ∈ {0, 1}

n. This result was further optimized by Håstad [9]
through his switching lemma, proving that constant-depth circuits computing PARITY must
have exponential size.

Another model of computation on which we have had considerable success in proving lower
bounds is that of monotone circuits. Monotone circuits are circuits without a ¬ gate. It is easy to
see that monotone circuits only compute monotone Boolean functions, and that every monotone
Boolean function can be computed by a monotone circuit. The first superpolynomial lower bound
on the monotone complexity of a Boolean function was obtained by Razborov [17]. The result
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goes as follows. Let k-CLIQUE : {0, 1}(
n
2) → {0, 1} be the function that, given an adjacency

matrix of a graph G on n vertices, outputs 1 if and only if G contains a k-clique. The results of
Razborov [17], together with the improvements of Andreev [3] and Alon and Boppana [2], imply
that the monotone complexity of k-CLIQUE is nΩ(

√
k) for all k 6 n1/4.

2.1. Average-case complexity. A probability distribution µ over {0, 1}n is said to be a prod-
uct distribution if there exists µ1, µ2, . . . , µn such that Px∼µ[xi = 1] = µi, and every bit of
x ∼ µ is independent of the others. Thus, for every a ∈ {0, 1}n we have Px∼µ[x = a] =(∏

ai=1 µi
) (∏

ai=0(1− µi)
)
. Observe that the Erdős–Rényi random graph G(n, p) can be inter-

preted as a product distribution on {0, 1}(
n
2). A boolean function f is said to be γ-hard for

a class of circuits C under a distribution µ if Px∼µ[f(x) = C(x)] 6 γ for every circuit C ∈ C.
By default, µ is the uniform distribution and γ is typically written as 1/2 + δ or 1− δ, where
δ = δ(n)→ 0. We moreover say that a Boolean function g has correlation γ (or is γ-correlated)
with f under µ if Px∼µ[f(x) = C(x)] > γ, and we use the same term for any family of circuits C
such that there exists a function g computable by a circuit C ∈ C that is γ-correlated with f .

Understanding the (average-case) circuit complexity of natural computational problems under
interesting input distributions is an important research question in the theory of computation.
Indeed, proving that a Boolean function f is γ-hard for a family of Boolean circuits C (i.e., an
average-case lower bound or correlation bound) is a stronger result than proving that no circuit
of C can compute f exactly (i.e., a worst-case lower bound).

Moreover, recently some worst-case lower bounds have been matched by average-case lower
bounds under product distributions. For example, Håstad [12] recently proved that PARITY is
(1/2+2−Ω(n/(logS)d−1))-hard for depth-d circuits of size S under the uniform distribution, through
a stronger version of the above mentioned switching lemma, called multi-switching lemma. Let
k-CYCLE : {0, 1}(

n
2) → {0, 1} be the function that, given an adjacency matrix of a graph G on

n vertices, outputs 1 if and only if G contains a k-cycle. Using his new technique called pathset
complexity (see Section 3.3), Rossman [22] also proved that k-CYCLE is (1/2 + n−1/2+o(1))-hard
under G(n, pCk

c ) for monotone polynomial-size formulas (also known as mNC1), where pCk
c � 1/n

is such that P[G(n, pCk
c ) contains a k-cycle] = 1/2.

In this project we are interested in studying circuit complexity problems in the average-case
setting for important classes of circuits, such as bounded-depth circuits and monotone formulas,
as we explain in the next sections.

3. Research questions

3.1. Lower bounds for subgraph isomorphism. Subgraph isomorphism is one of the most
important problems in computational complexity. For example, a lower bound of nΩ(k) for
k-CLIQUE for every fixed k would be enough to separate P from NP.1 This motivates the study
of the circuit complexity of subgraph isomorphism, not only for cliques but for other fixed graphs.

One breakthrough of the area was a result due to Rossman [18], who proved that every AC0

circuit of size O(nk/4) has correlation 1/2 + n−Ω(k) with k-CLIQUE under G(n, pKk
c ), where pKk

c

is such that P[G(n, pKk
c ) contains a k-clique] = 1/2. This result implied the first size-hierarchy

1This holds because, in parametrized complexity, k-CLIQUE is W[1]-complete. Proving, for every constant k, a
lower bound of the form Ω(nck ), where ck → ∞ when k → ∞, would imply that k-CLIQUE /∈ FPT, thus proving
FPT 6= W[1], which implies P 6= NP.
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theorem for bounded-depth circuits (see Section 3.2 for more details). Moreover, this result was
extended by Li, Razborov and Rossman [14] to SUB(G), the function computing whether a given
graph contains a fixed graph G as a subgraph, tying the average-case complexity of SUB(G) to a
new graph-theoretical measure closely related to tree-width [14].

In the same framework, Rossman proved a lower bound of Ω(nk/4) on the size of monotone
circuits approximating k-CLIQUE under a distribution which is half the time G(n, pKk

c ) with a
planted k-CLIQUE and the other half is G(n, pKk

c ) conditioned on being k-clique free. Unfortu-
nately, this distribution is not a product distribution, like a “pure” Erdős–Rényi random graph.
The importance of product distributions for monotone computation is explained in Section 3.4.

The first (and, so far, only) average-case lower bound for a monotone problem under a product
distribution came in a recent work of Rossman [22], applying the pathset complexity technique
explained in Section 3.3. The correlation bound of [22] shows that k-CYCLE is hard for mNC1

under G(n, pCk
c ). A natural complexity question along these lines would be the following.

Problem 2. Decide if k-CLIQUE is hard for mNC1 under G(n, pKk
c ).

It is conjectured in [21] that k-CLIQUE is hard on average under G(n, pKk
c ) for monotone

circuits in general. We see Problem 2 as a first step in this direction. Rossman’s work on formula
lower bounds (see Section 3.3), along with his work for subgraph isomorphism in general [14,18,21],
provides good initial ideas for attacking this problem [20,22].

3.2. Stronger average-case size-hierarchy theorem for bounded-depth circuits. One
of the main aims of computational complexity is to understand the amount of computational
resources needed to perform certain computational tasks. These resources can be, for example,
time and space for algorithms in Turing machines, or size and depth in Boolean circuits. A
natural question regarding any computational resource is whether increasing the access to this
resource also increases the power of the computational model. This is known to hold with respect
to time (Time Hierarchy Theorem [8]) and space (Space Hierarchy Theorem [24]) in Turing
machines. The same question could be asked with respect to size and depth in Boolean circuits.

Analogous results have been proved in the worst-case for AC0 circuits. Sipser [23] was the
first to prove (in 1983) a depth hierarchy theorem for small-depth circuits. He showed that, for
every d ∈ N, there exists a Boolean function Fd : {0, 1}n → {0, 1} such that Fd is computable
by a linear-size depth-d circuit but any depth-(d− 1) circuit requires superpolynomial size to
compute Fd.

A size-hierarchy theorem for bounded-depth circuits was harder to come by, appearing only in
a result of 2008 due to Rossman [18]. The result goes as follows. Denote by AC0(size O(nk))

the class of constant-depth Boolean circuits with size at most O(nk). Rossman showed that,
even though the k-CLIQUE function is computed by a depth-2 circuit of size O(nk), there exists
no constant-depth circuit of size O(nk/4) that computes this function. This implies that the
hierarchy of complexity classes AC0(size O(nk)), parametrized by k, is infinite.

An average-case depth hierarchy theorem was recently obtained in a breakthrough result
by Håstad, Rossman, Servedio and Tan [11]. They proved that, for every d ∈ N, there exists
a monotone Boolean function Fd : {0, 1}n → {0, 1} such that Fd is computable by a depth-d
monotone formula, but any depth-(d− 1) circuit of subexponential size has correlation at most
1/2+n−Ω(1/d) with Fd. This can be seen as a strenghtening of the result of Sipser [23]. Obtaining
an average-case version of this result was an open problem posed by Håstad in 1986 [10].
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The size-hierarchy theorem due to Rossman [18] mentioned above is actually an average-case
result. Rossman proved not only that constant-depth circuits of size O(nk/4) cannot compute
k-CLIQUE, but also that such circuits have correlation at most 1/2 + n−Ω(k) with k-CLIQUE

under G(n, pKk
c ) (see Section 3.1). This provides a sharper separation between the computational

power of AC0(size O(nk)) and AC0(size O(nk/4)) than a worst-case lower bound.
The average-case result of Rossman shows that the correlation of AC0(size O(nk/4)) with

k-CLIQUE under G(n, pKk
c ) is only a polynomial fraction better than a constant function. Given

that k-CLIQUE is monotone, in a sense this is best possible up to polynomial factors, since a
well-known result [13] implies that any monotone function has 1/2 + Ω(n−1) correlation with a
trivial depth-1 circuit (that is, a circuit that outputs a constant or an input xi) under the uniform
distribution. However, it is reasonable to suppose that we can prove an even sharper average-case
size-hierarchy theorem by considering a non-monotone function and proving a correlation bound
that decreases exponentially.

Problem 3. Prove an exponentially decreasing average-case lower bound separating the hierarchy
AC0(size O(nk)) parametrized by k.

A result of Håstad [12], which shows that the correlation of PARITY with depth-d circuits is
1/2+2−Ω(n), might be a place to start. We are confident that a combination of this technique with
the techniques of Rossman for proving lower bounds for subgraph isomorphism (see Section 3.1)
can be successful in tackling Problem 3.

3.3. Formula lower bounds via pathset complexity. Understanding the relative power of
Boolean formulas vs. circuits is a central challenge in complexity theory. Circuits are a powerful
model of computation, capable of efficiently simulating Turing machines. On the other hand,
formulas are thought to be a much weaker model of computation. Many natural problems solvable
by small circuits, such as st-connectivity, are believed to require large formulas. However, no
super-polynomial gap between the formula complexity and circuit complexity of any Boolean
function has ever been shown. The existence of such a gap is a major open question.

Question 4. Are polynomial-size Boolean circuits strictly more powerful than polynomial-size
Boolean formulas? Equivalently, is NC1 (polynomial-size formulas) strictly contained in P/poly
(polynomial-size circuits)?

Let Distance-k(n)-Connectivity denote the problem of deciding whether there exists a
path of length at most k(n) between two given vertices s and t in a given graph. Working towards
Question 4, Rossman [20] recently proved a nΩ(log k) lower bound on the AC0 formula size of
Distance-k(n)-Connectivity for all k(n) 6 log log n and depth up to log n/(log log n)O(1).
Since circuits of depth O(log k) already solve this problem, the result of Rossman shows a sharp
separation between the power of bounded-depth circuits vs. bounded-depth formulas.

This groundbreaking result was proved through an innovative framework developed in [20],
called pathset complexity, which provides a combinatorial explanation of why Boolean formulas
fail to detect long paths in Erdős–Rényi random graphs. Roughly, his technique consists in
reducing formula size lower bounds to a purely combinatorial lower bound on the minimum cost
of constructing a set of paths via the operations of union and relational join, subject to certain
“density constraints.”
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The pathset complexity is a new technique, and we expect many new formula lower bounds
can come out of it. For example, there are many other “formula-like” computational models
which may be malleable to pathset complexity arguments. We are interested in pursuing new
lower bounds in these other models through this technique.

Problem 5. Obtain new lower bounds in other “formula-like” computational models, such as
AC0[⊕] formulas2 and multi-linear arithmetic formulas.3

For multi-linear arithmetic formulas in particular, it would be interesting to obtain a lower
bound for the iterated matrix multiplication problem, which is an algebraic variety of the
connectivity problem in graphs. Since the pathset framework has been succesful in the Boolean
setting for st-connectivity, we can expect it to work also on the algebraic setting. We note that
the iterated matrix multiplication has recently been studied in the multilinear setting by Chillara,
Limaye and Srinivasan [6].

3.4. Monotone circuits. Given k ∈ [n], a probability distribution µ over {0, 1}n is called
k-slice if, for every x ∈ supp(µ), we have |x|1 = k, where |x|1 :=

∑
i∈[n] xi. A famous result

due to Berkowitz [4] states that the monotone complexity of any monotone Boolean function is
polynomially equivalent to its non-monotone complexity under a k-slice distribution. Moreover,
by the Chernoff inequality product distributions are concentrated around a few slices. For this
reason, product distributions are believed to be a source of hard instances for monotone functions.
This motivates the study of average-case lower bounds in the monotone setting under product
distributions.

The theorem of Berkowitz mentioned above gives possible evidence that the gap under product
distributions between monotone circuits and non-monotone circuits is at most polynomial.
However, nothing is known about this gap. If this gap were at most polynomial, then the lower
bound for k-CYCLE [22] mentioned above would be extended to the non-monotone setting, thus
separating NC1 from P/poly and thereby solving Question 4. Therefore, investigating this gap
is an important quest for circuit complexity. We also remark that an exponential gap between
monotone complexity and non-monotone complexity is well-known in the worst-case [25].

Given k ∈ [n− 1], a probability distribution µ over {0, 1}n is called (k, k+ 1)-slice if, for every
x ∈ supp(µ), we have |x|1 ∈ {k, k + 1}. An important first step to understand the aforementioned
gap between non-monotone and monotone circuits under product distributions would be the
following question.

Problem 6. Decide if the gap under a (k, k + 1)-slice distribution between monotone and
non-monotone circuits is at most polynomial.

Surprisingly, nothing is known so far about this question.

4. Technical overview

In this section we give an overview of some of the results discussed in the previous sections,
explaining in more detail some of the technical aspects of them.

2Bounded-depth formulas with parity gates.
3Algebraic formulas computing only multilinear polynomials.
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4.1. Definitions and preliminaries. For a circuit C, we denote by Gates(C) the set of gates of
C, and for each ν ∈ Gates(C) we let Children(ν) denote the set of the child gates of ν in C. The
height of a gate ν is its maximum distance to an input gate. Furthermore, we denote by size(C)

and depth(C) the size and the depth of the circuit, respectively. Finally, we write wires(C) to
denote the number of wires in C (that is, we have wires(C) =

∑
ν∈Gates(C) |Children(ν)|.)

For a Boolean function f : {0, 1}n → {0, 1}, we denote by DTdepth(f) the minimum depth of
a decision-tree computing f .

Let Gn denote the set of all graphs on n vertices. We usually identify Gn with {0, 1}(
n
2), and

treat a graph function f : Gn → {0, 1} as a Boolean function with
(
n
2

)
inputs. For a graph H, we

define
m(H) := max

J⊆H,
|V (J)|>0

|E(J)|
|V (J)|

.

Observe that any pH(n) = Θ(n−1/m(H)) is a threshold function for the containment of H in an
Erdös-Rényi random graph.

For graphs H and G, we let sub(H,G) denote the number of copies of the graph H in G. By
applying Janson’s inequality, one is able to prove the following lemma.

Lemma 1. Let P be a fixed graph and let G ∼ G(n, p), where p(n) = nΩ(1)−1/m(P ). We have

P
[
sub(P,G) 6

1

2
E[sub(P,G)]

]
= exp(−nΩ(1)).

4.2. Background on bounded-depth complexity. We begin by reviewing a few key results
in bounded-depth complexity.

Definition 2. For q, p ∈ [0, 1] and n ∈ N, we denote by Rn(q, p) the distribution of random
restrictions ρ : [n]→ {0, 1, ∗} such that the ρ(i) are independent and

P[ρ(i) = ∗] = q,

P[ρ(i) = 1] = (1− q)p,

P[ρ(i) = 0] = (1− q)(1− p).

When n is clear from the context, we will omit it and write simply R(q, p).

Lemma 3 (Switching Lemma [9]). Suppose a Boolean function f : {0, 1}n → {0, 1} is an AND
or an OR of depth-r decision trees. Then for all q ∈ [0, 1] and s ∈ N, we have

Pρ∼R(q,1/2)[DTdepth(f �ρ) > s] 6 (5pr)s.

Remark 4. The lemma above is a stronger version of the original switching lemma due to
Håstad, since every function computable by a depth-r decision tree can be written as both a
r-CNF and a r-DNF.

An important consequence of the switching lemma, obtained by Boppana [5], goes as follows.
Let f : {0, 1}n → {0, 1} be a Boolean function and x ∈ {0, 1}n, and define

S(f, x) := {i ∈ [n] : f(x) 6= f(x⊕ ei)} .

Define also the average-sensitivity as(f) of f as

as(f) = 2−n
∑

x∈{0,1}n
|S(f, x)| .
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Theorem 5 (Bounded-depth circuits have low average-sensitivity [5]). If f : {0, 1}n → {0, 1} is
computable by a depth-d circuit of size S, then

as(f) = O(logS)d−1.

Equivalently, we have

Px∈U{0,1}n
i∈U [n]

[i ∈ S(f, x)] 6
O(logS)d−1

n2n
.

Remark 6. It is not hard to see that as(PARITYn) = n. Theorem 5 then implies the optimal
2Ω(n1/(d−1)) lower bound on the size of depth-d circuits computing PARITYn, thus proving that
PARITY /∈ AC0.

4.3. A lower bound for k-CLIQUE against AC0. In this section we explain in more detail
the main technical contributions that led to the ω(nk/4) lower bound on the size of AC0 circuits
approximating k-CLIQUE for fixed k, a result due to Rossman [18] mentioned in Section 3.1
and Section 3.2. However, for the sake of simplicity, here we prove a weaker version version of
the result whose proof is clearer from the technical point of view, though the full result can be
obtained with basically the same proof, only with a bit more of care. Our presentation follows
that of Rossman [19].

Definition 7. We say that a sequence of circuits (Cn)n∈N computes a sequence of Boolean
functions (fn)n∈N on graphs of n vertices with high probability under G(n, p) if

lim
n→∞

PG∼G(n,p)[Cn(G) = fn(G)] = 1.

Observe that, for instance, computing k-CLIQUE with high probability is a stronger condition
than having correlation (1/2 + ε) with the same function. Therefore, a lower bound against the
former class of circuits is weaker result than a lower bound against the latter. In this section we
will prove the following theorem.

Theorem 8. Boolean circuits of size O(nk/4) and depth at most k−2 log n/ log logn cannot
compute k-CLIQUE with high probability on G(n, n−2/(k−1))4.

Before we proceed with the proof, a few observations and definitions are in order. Let us
call pattern a constant-size graph P ⊆ Kk with no isolated vertices. Let Poisson(λ) denote the
Poisson distribution with mean λ and, given a pattern P , let Plant(n, P ) denote the random
graph with n vertices and edge set {α(v)α(w) : vw ∈ E(P )}, where α is uniformly chosen among
all injective functions from V (P ) to [n]. Let also dTV(·, ·) denote the total variation distance
between two distributions or random variables. Finally, let κ(G) denote the number of k-cliques
of a given graph G. The following is a technical lemma that can be proved by means of simple
but long calculations.

Lemma 9. Let G ∼ G(n, cn−2/(k−1)) and Kk ∼ Plant(n,Kk). Let also G+ ∼ G(n, n−2/(k−1))

conditioned on κ(G) > 0. We have

dTV(G ∪Kk, G
+) = o(1).

4The probability function could be any p(n) = Θ(n−2/(k−1)). Since we are considering circuits computing
k-CLIQUE with high probability, any probability function p(n) such that P[k-CLIQUE(G(n, p(n))) = 1] is
bounded away from both 0 and 1 would work. However, if we were aiming at a correlation bound result, we would
have to take p(n) = p

Kk
c , as defined in the survey above.

8



We may now proceed with the proof of Theorem 8. The result will folow from the following
theorem, which we will prove in the course of this section.

Theorem 10. Suppose f : Gn → {0, 1} is computed by a circuit of size O(nk/4) and depth at most
k−2 log n/ log log n. Let G ∼ G(n, n−2/(k−1)) and Kk ∼ Plant(n,Kk). Then f(G) = f(G ∪Kk)

w.h.p.

Proof of Theorem 8 from Theorem 10. Suppose that f : {0, 1}n → {0, 1} is computed by a
Boolean circuit of size O(nk/4) and depth at most k−2 log n/ log log n. Suppose moreover that f
agrees with k-CLIQUE w.h.p on G(n, n−2/(k−1)). We will derive a contradiction.

First, observe that, since f agrees with k-CLIQUE w.h.p and n−2/(k−1) is a threshold function
for k-CLIQUE, we have

P
G∼G(n,n−2/(k−1))

[f(G) = 1] = P
G∼G(n,n−2/(k−1))

[k-CLIQUE(G) = 1] + o(1) = c+ o(1), (1)

for some constant c ∈ (0, 1).
Secondly, one notes that Lemma 9 and (1) imply

P
G∼G(n,n−2/(k−1))
Kk∼Plant(n,Kk)

[f(G ∪Kk) = 1]

= o(1) + P
G∼G(n,n−2/(k−1))

[f(G) = 1 |G contains a k-clique]

= o(1) + P
G∼G(n,n−2/(k−1))

[k-CLIQUE(G) = 1 |G contains a k-clique]

= 1 + o(1).

Therefore, by Theorem 10 we get

c+ o(1) = P
G∼G(n,n−2/(k−1))

[f(G) = 1]

= o(1) + P
G∼G(n,n−2/(k−1))
Kk∼Plant(n,Kk)

[f(G ∪Kk) = 1]

= 1 + o(1),

a desired contradiction. �

We now proceed to prove Theorem 10. We will first present the main technical lemmas
without proving, so as not to stop the flow of text. The interested reader is pointed
Section 4.3.4, where the remaining proofs are presented.

4.3.1. A consequence of the switching lemma. The first ingredient of the proof is a consequence
of the switching lemma, which allows us to consider “biased” random restrictions.

Definition 11. For a Boolean function f : {0, 1}n → {0, 1}, we say that f depends on i ∈ [n] if
there exists x ∈ {0, 1}n such that f(x) 6= f(x⊕ ei). We define Live(f) as the set of coordinates
i ∈ [n] such that f depends on i. We say that a coordinate i is live if i ∈ Live(f).

Remark 12. Observe that a Boolean function f with decision-tree depth d depends on at most
2d variables, i.e.: satisfies |Live(f)| 6 2d.
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Lemma 13 (Consequence of the Switching Lemma). Let p ∈ [0, 1/2], q ∈ [0, 1], c > 5 and
t > 1. If f is a Boolean function computed by a circuit C of size S and depth d such that
d 6 log(1/q)/(tc+ log logS), then

Pρ∼R(pq,p)

[
DTdepth(f �ρ) >

logS

c

]
6 S1−t.

Consequently, by Remark 12, we have

Pρ∼R(pq,p)

[
|Live(f �ρ)| > S1/c

]
6 S1−t.

4.3.2. H-shaped average sensitivity. We now present the main technical lemma of Rossman [18,19],
which generalizes the low-average sensitivity result of Boppana (see Theorem 5). The proof
goes by applying the consequence of the switching lemma described in the previous section
(Lemma 13) and a consequence of Janson’s inequality (Lemma 1). In what follows, for a graph
G ∈ Gn and a Boolean function f : Gn → {0, 1}, we write fG to denote the function such that
fG(H) = f(G ∪H) for all H ∈ Gn.

Lemma 14. For every function f : Gn → {0, 1} and graph H ∈ Gn, there exists a unique
minimal graph T such that f(H ′) = f(H ′ ∩ T ) for every H ′ ⊆ H.

Proof. Let T be the set of all graphs T such that f(H ′) = f(H ′ ∩ T ) for every H ′ ⊆ H. It
suffices to observe that T is not empty and that T is closed under intersection. �

Definition 15. For a function f : Gn → {0, 1} and a graph H ∈ Gn, we denote by Sens(f,H)

the unique minimal subgraph of H guaranteed to exist by Lemma 14. We call Sens(f,H) the
f -sensitive subgraph of H. Moreover, when Sens(f,H) = H, we say that f is sensitive over H.

Remark 16. Observe that the edges of Sens(f,H) are precisely{
e ∈ E(H) : exists H ′, H ′′ ⊆ H such that E(H ′) = E(H ′′) \ {e} and f(H ′) 6= f(H ′′)

}
.

Definition 17. Let H,G ∈ Gn. We define the restriction ρ[G,H] :
(

[n]
2

)
→ {0, 1, ∗} as follows:

ρ[G,H](e) =


∗ if e ∈ E(H),

1 if e ∈ E(G) \ E(H),

0 otherwise.

Remark 18. Let P ⊆ Kk be a pattern and let G ∼ G(n, p) and H ∼ Plant(n, P ). Remark 16
implies that the event {fG is sensitive over H} is equivalent to the event {f �ρ[G,H] depends on
all variables} (i.e.: the event that

∣∣Live(f �ρ[G,H])
∣∣ = |E(H)|).

Proposition 19 (Main technical lemma). Let P ⊆ Kk be a pattern and p, q : N → [0, 1/2]

functions such that p(n)q(n) = nΩ(1)−1/m(P ). Suppose that f : Gn → {0, 1} is computed by
circuits of size nO(1) and depth at most log(1/q)/(ω(1) + log log n). Then

P
G∼G(n,p)

H∼Plant(n,P )

[fG is sensitive over H] 6
no(1)

E[sub(P,G(n, pq))]
.

Remark 20. Observe that, by Remark 18, Proposition 19 is similar to the average sensitivity
result of Boppana (Theorem 5). Indeed, when P is a single edge, Proposition 19 is almost the
same result, with the only difference that the input is not chosen uniformly at random but from
G(n, p).
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We now apply Proposition 19 to specific types of graphs, which we now define.

Definition 21. We say that a pattern P is small if |V (P )| 6 k/2; medium, if |V (P )| > k/2 and
P is a union of two small patterns; large otherwise. Accordingly, we say that a graph is small if
it contains at most k/2 non-isolated vertices; medium, if it contains more than k/2 non-isolated
vertices and is a union of two small graphs; large, otherwise.

Applying Proposition 19, we obtain a more useful bound when P is a medium or a nonempty
small pattern and p(n) is at threshold for the containment of a k-clique.

Lemma 22 (Consequence of Proposition 19). Let P ⊆ Kk be a pattern and p(n) = Θ(n−2/(k−1)).
Suppose that f : Gn → {0, 1} is computed by circuits of size nO(1) and depth at most
k−2 log n/ log log n+O(1). Then

P
G∼G(n,p)

H∼Plant(n,P )

[fG is sensitive over H] =

O(n−1) if P is nonempty and small,

O(n−k/4−1/k) if P is medium.

4.3.3. Final inductive argument. We are now ready to (almost) prove Theorem 10. The lower
bound we will give here is only against circuits C with wires(C) = O(nk/4), not size(C) = O(nk/4),
as promised. However, since wires(C) 6 size(C)2, this yields a ω(nk/8) lower bound for the
size. The full proof of Theorem 10 follows almost the same line of argument we give, but it is
slightly more involved. We observe that the change from a lower bound against wires to a lower
bound against size is equivalent to the change from a lower bound against a fan-in 2 circuit with
bounded alternation-depth to an unbounded fan-in circuit with bounded depth. Moreover, note
that wires(C) = O(nk/4) is a stronger assumption since size(C) 6 wires(C). Finally, since this
section wraps up everything together, we give full proofs here.

Proposition 23 (Theorem 10 for wires). Suppose f : Gn → {0, 1} is computed by a circuit
with O(nk/4) wires and depth at most k−2 log n/ log log n. Let G ∼ G(n, n−2/(k−1)) and Kk ∼
Plant(n,Kk). Then f(G) = f(G ∪Kk) w.h.p.

The proof of Proposition 23 uses an inductive argument expressed in the following lemma.

Lemma 24. Let C be a circuit of fan-in 2 computing a Boolean function f and H be a graph
such that, for every ν ∈ Gates(C), the graph Sens(ν,H) is not medium. Then Sens(f,H) is
small.

Proof. We argue by inducion on the gates that Sens(ν,H) is small for every gate ν ∈ Gates(C).
Indeed, for the base case it suffices to see that Sens(ν,H) is clearly small for every input gate
ν. Moreover, for the induction step, supposing that ν has children gates µ1 and µ2, we have
that Sens(ν,H) ⊆ Sens(ν, µ1) ∪ Sens(ν, µ2). Since both Sens(µ1, H) and Sens(µ2, H) are small
by the induction hypothesis, we have that Sens(ν,H) is either small or medium, by definition.
Therefore, it follows by the Lemma assumption that Sens(ν,H) is small. �

Proof of Proposition 23. Consider a circuit computing f with O(nk/4) wires and depth at most
k−2 log n/ log log n. Let C be the modification of this circuit that replaces each gate by a fan-
in 2 gate. Circuit C still satisfies size(C) 6 wires(C) = O(nk/4), but the depth is unbounded.
However, each gate ν ∈ Gates(C) can be computed by a circuit of size O(nk/4) wires and depth
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at most k−2 log n/ log log n, by collapsing gates of the same kind. For this reason, we are able to
apply Lemma 22, as we will do below.

Let ν ∈ Gates(C). We have

P[Sens(νG,Kk) is medium]

6
∑

medium patterns P

P
[
Sens(νG,Kk) is P -subgraph of Kk

]
6

∑
medium patterns P

E
[∣∣{H : H is a νG-sensitive P -subgraph of G

}∣∣]
=

∑
medium patterns P

sub(P,Kk) P
G∼G(n,p)

Kk∼Plant(n,Kk)
H∼Plant(n,P )

[
νG is sensitive over H

∣∣H ⊆ Kk

]

=
∑

medium patterns P

sub(P,Kk) P
G∼G(n,p)

Kk∼Plant(n,Kk)
H∼Plant(n,P )

[
νG is sensitive over H

]
,

since
{
νG is sensitive over H

}
is independent of {H ⊆ Kk}. Moreover, note that∑

medium patterns P

sub(P,Kk) 6 2k
2

= O(1).

By Lemma 22, we obtain

P
G∼G(n,p)

Kk∼Plant(n,Kk)
H∼Plant(n,P )

[
νG is sensitive over H

]
= O(n−k/4−1/k)

Therefore, since size(C) 6 nk/4, we obtain by an union bound that, with high probability, the
graph Sens(νG,Kk) is not medium for all gates ν ∈ Gates(C). Applying Lemma 24, we obtain
that Sens(fG,Kk) is small w.h.p. By a similar calculation, one is able to prove that

P[Sens(νG,Kk) is non-empty and small] = o(1).

Hence, it follows that, with high probability, Sens(fG,Kk) is empty. We conclude that, with
high probability, we have

f(G) = fG(∅) = fG(Sens(fG,Kk)) = fG(Kk) = f(G ∪Kk). �

4.3.4. Proofs of the technical lemmas. In this section, we give proofs for all the important technical
innovations used in the proof of Theorem 8 which we did not prove above.

We begin by proving Lemma 13, a consequence of the switching lemma (Lemma 3).

Proof of 13. We generate ρ ∼ R(pq, p) as a sequence of random restrictions in the following way:
first, let ρ0 ∼ R(p, λ) be a random restriction of the variables of C, where

λ :=
p(1− pq)− p(1− q)/2

1− p
.

One may check that indeed λ ∈ [0, 1]. For i ∈ [d], we let ρi ∼ R(q1/d, 1/2) be a restriction
applied to the variables which were left unrestricted by the previous restrictions ρ0, . . . , ρi−1. For
i ∈ {0, . . . , d}, we define ρi as the composition of the restrictions ρ0, ρ1, . . . , ρi, and we are able
to check that ρd ∼ R(pq, p).
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For a gate ν ∈ Gates(C) with height h, let Eν be the event that DTdepth(ν �ρh) 6 (logS)/c.
If h = 0, then P(Eν) = 1. Otherwise, supposing h > 1, we have by the Switching Lemma
(Lemma 3) that

P

¬Xν

∣∣∣∣∣∣
∧

µ∈Children(ν)

Xµ


= P

DTdepth
(
(ν �ρh−1) �ρh

)
>

logS

c

∣∣∣∣∣∣
⋂

µ∈Children(ν)

DTdepth(ν �ρh−1) 6
logS

c


6

(
5q1/d logS

c

)(logS)/c

6 S−t.

We may therefore conclude

P
[
DTdepth(f �ρ) >

logS

c

]
= P [¬Xoutput gate]

6 P

 ⋃
ν∈Gates(C)

¬Xν


6

∑
ν∈Gates(C)

P

¬Xν ∩
⋂

µ∈Children(ν)

Xµ


6

∑
ν∈Gates(C)

P

¬Xν

∣∣∣∣∣∣
⋂

µ∈Children(ν)

Xµ


6 S1−t. �

We may now prove the main technical lemma of Rossman [18,19], described in Proposition 19.
Our proof applies Lemma 13 which we proved above and a consequence of Janson’s inequality
(Lemma 1).

Proof of Proposition 19. Fix ε > 0. It suffices to prove that

P
G∼G(n,p)

H∼Plant(n,P )

[fG is sensitive over H] 6
nε

E[sub(P,G(n, pq))]
.

Towards the proof, we consider the random graph Q ∼ G(n, pq), independent of both G and H.
Observe that

Live(f �ρ[G,Q]) = E(Sens(fG, Q))

=
{
e ∈ E(Q) : ∃Q′, Q′′ ⊆ Q s.t. E(Q′) = E(Q′′) \ {e} and f(Q′) 6= f(Q′′)

}
.

We now consider two events:

1. E1 =
[

sub(P,Q) > (1/2)E[sub(P,Q)]
]
,

2. E2 =
[ ∣∣Live(f �ρ[G,Q])

∣∣ 6 nε/2|E(P )|
]
.
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Let us also consider the random graph H̃ defined as follows: if E1 holds, then H̃ is a P -subgraph
of Q chosen uniformly at random; otherwise, H̃ is H ∼ Plant(n, P ). Observe that H̃ is indepedent
of both G and H and that (G,H) and (G, H̃) have the same joint distribution.

We now obtain

P
[
fG is sensitive over H

]
= P

[
fG is sensitive over H̃

]
6 P

[
fG is sensitive over H̃

∣∣∣E1, E2

]
+ P[¬E1] + P[¬E2].

(2)

Let us first prove

P
[
fG is sensitive over H̃

∣∣∣E1, E2

]
6

1

2

nε

E[sub(P,G(n, pq))]
.

Indeed, if E1 holds, then H̃ is uniformly distributed among the P -subgraphs of Q and, for this
reason, if fG is sensitive over H̃, then E(H̃) ⊆ Live(f �ρ[G,Q]). Moreover, if E2 holds, then there

are at most
(
nε/2|E(P )|

|E(P )|
)
6 nε/2 subgraphs of Q satisfying E(H̃) ⊆ Live(f �ρ[G,Q]). Therefore, we

have

P
[
fG is sensitive over H̃

∣∣∣E1, E2

]
6

#
{
P -subgraphs P̃ of Q s.t. E(P̃ ) ⊆ Live(f �ρ[G,Q])

}
sub(P,Q)

6
nε/2

(1/2)E[sub(P,Q)]

6
1

2

nε

E[sub(P,G(n, pq))]
.

Observe now that E[sub(P,G(n, pq))] = nO(1). Therefore, because of (2), it suffices to prove that
P[¬E1] = n−ω(1) and P[¬E2] = n−ω(1).

Since P[¬E1] = n−ω(1) follows easily from Lemma 1, it only remains to prove P[¬E2] = n−ω(1),
which we now do.

Let C be a circuit computing f with size and depth as in the hypothesis. Let S := size(C)

and d := depth(C). By hypothesis we have nO(1), and we may assume without loss of generality
that S = nΘ(1). Let also

c :=
logS

(ε/2 |E(P )|) log n
+ 5,

and it is easily checkable that 5 6 c = O(1). Furthermore, one may also check that

d 6
log(1/q)

ω(1) + log log n
6

log(1/q)

ω(1)c+ log logS
.

Observe moreover that the random restriction ρ[G,H] follows the distribution R(pq, p), since G
and Q are independent. Finally, by the choice of c we have

P
[ ∣∣Live(f �ρ[G,Q])

∣∣ > nε/2|E(P )|
]
6 P

[ ∣∣Live(f �ρ[G,Q])
∣∣ > S1/c

]
.
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We are now ready to bound P[¬E2]. By Lemma 13, we have

P[¬E2] = P
[ ∣∣Live(f �ρ[G,Q])

∣∣ > nε/2|E(P )|
]

6 P
[ ∣∣Live(f �ρ[G,Q])

∣∣ > S1/c
]

6 S−ω(1)

= n−ω(1),

since S = nΘ(1). This finishes the proof. �

We can now apply Proposition 19 and obtain Lemma 22. First, we will need a technical lemma
about medium patterns which we do not prove here.

Lemma 25. For every medium pattern P , we have

|V (P )| − 2

k − 1
|E(P )| > k + 1

4
+

2

k − 1
.

Proof of Lemma 22. Let q(n) = n−k
−2+k−3 . The following observations can be easily checked.

1. p(n)q(n) = nΩ(1)−1/m(P );
2. k−2 log n/ log logn+O(1) 6 log(1/q)/(ω(1) + log log n);

Observe now that

E[sub(P,G(n, pq))] > n|V (P )|(pq)|E(P )|

= n|V (P )|−(2/(k−1)+k−2+k−3)|E(P )|+o(1)

> n|V (P )|−2/(k−1)|E(P )|−1/4−1/4k+o(1) (since |E(P )| 6 k2/4)

>

n1+o(1) if P is nonempty and small,

nk/4+1/k+o(1) if P is medium, by Lemma 25.

The lemma now follows by applying Proposition 19. �

4.4. A quick overview of pathset complexity. The main result of Rossman [20], as men-
tioned in Section 3.3, is the following:

Theorem 26. Formulas of depth log n/(log log n)6 solving Distance-k(n)-Connectivity re-
quire size nΩ(log k) for all k(n) 6 log log n.

The same technique employed in [20] was also employed in [22], as explained in Section 3.
Here we give a brief overview of the main technical innovations that led to these results.

We denote by Pk = (Vk, Ek) the directed path with k edges, where

Vk = {v0, v1, . . . , vk} , Ek = {vivi+1 : 0 6 i 6 k − 1} .

We denote by G(k, n) the set of k-layered graphs Γ, satisfying

V (Γ) =
{
vi : v ∈ Vk, i ∈ [n]

}
, E(Γ) ⊆

{
viwj : vw ∈ Ek, i, j ∈ [n]

}
.

We will consider Boolean functions of the form f : G(k, n)→ {0, 1}, by identifying G(k, n) with
{0, 1}kn

2

. We identify the vertex s with v1
0 , and t with v1

k. The variation of the Distance-k(n)-
Connectivity problem we here consider consists of answering if there exists a path between
s and t in a given k-layered graph Γ. We will also consider the graphs Γ as coming from the
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random graph distribution where each potential edge appers with probability 1/n, independent
of each other edge. Observe that 1/n is below the threshold for the containment of a st-path.

A graph G is called a pattern if it is a subgraph of Pk with no isolated vertices (note the analogy
with the patterns in the k-CLIQUE lower bound in Definition 21). For a pattern G, a G-pathset
is a relation A ⊆ [n]VG . We define the density µ(A) of a G-pathset A as µ(A) := |A| /n|V (G)|.
We say that a G-pathset is G-small if it obeys a series of constraints on its density, which we
omit here for the sake of brevity. Finally, we define (informally) the pathset complexity χ(A) of
a G-pathset A as the minimum number of operations required to construct A via unions and
relational joins, with the restriction that the relational joins can be made only between small
pathsets. This restriction serves as bottleneck, which is explored in [20] to obtain a lower bound
against pathset complexity. This lower bound is the combinatorial heart of the paper.

Theorem 27. For every Pk-pathset A, we have

χ(A) >
nΩ(log k)

2O(2k)
µ(A).

We then associate, for every x ∈ [n]V (G), every pattern graph G and random graph Γ, a
random restriction ρΓ

G,x, whose definition is quite similar to Definition 17. Finally, we associate
for every Boolean function f : G(k, n)→ {0, 1} a random pathset AΓ

f,G defined as follows

AΓ
f,G =

{
x ∈ [n]V (G) : f � ρΓ

G,x depends on all variables
}
.

By employing the Switching Lemma (Lemma 3) and Janson’s inequality, Rossman proved, in a
very similar fashion to the proof of Proposition 19 and Lemma 22, an average-sensitivity type
lemma, as follows.

Lemma 28. Suppose f : G(k, n) → {0, 1} is computable by a circuit of size nk and depth
log n/(log log n)6. Then, for all patterns G, we have

P
Γ
[AΓ

f,G is not G-small] 6 O(n−2k).

Lemma 22 is used in a union bound, in a similar manner to what we do in the proof of
Proposition 23.

By employing a simple but new top-down argument, one is also able to prove the following
lemma, which is the essential bridge connecting pathset complexity with formula size. Observe
that this is the only part where the fact that F is a formula is used; elsewhere, F could also be a
circuit.

Lemma 29. Let F be any fan-in 2 formula and let Γ ∈ G(k, n). If AΓ
f,G is G-small for all gates

f ∈ F and patterns G, then

χ(AΓ
fout,G) 6 2O(k2) depth(F ) size(F ).

Finally, by employing another simple but crucial argument, it is proved in [20] the following
lower bound on the density of the random pathset.

Lemma 30. Suppose that a circuit F computes Distance-k(n)-Connectivity w.h.p. on
random graphs Γ. Then, w.h.p, we have µ(AΓ

fout,Pk
) > 0.99n−2.

Combining all these ingredients, one is now able to prove Theorem 26.
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Proof of Theorem 26. By Lemma 28, with high probability AΓ
f,G is G-small for every f ∈ F and

pattern G. Moreover, by Lemma 30, we have µ(AΓ
fout,Pk

) > 0.99n−2 w.h.p. Therefore, we have

size(F ) > 2−O(k2) depth(f)−kχ(AΓ
fout,Pk

) (by Lemma 29)

> 2−O(k2) depth(f)−k
nΩ(log k)

2O(2k)
µ(A) (by Theorem 27)

> nΩ(log k) (by Lemma 30). �
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