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Abstract. We analyse the impact of the P-ideal dichotomy to the existence

of uncountable biorthogonal sistems in nonseparable Banach spaces. Our main

result states that under the P-ideal dichotomy, any nonseparable Banach space
of density strictly smaller than b with weak∗ sequentially compact dual unit

ball has an uncountable biorthogonal system. As a consequence, we get that
the following are equivalent to the cardinal assumption b = ω2 assuming the

PID: Every nonseparable Asplund space has an uncountable biorthogonal sys-

tems; Every nonseparable Asplund space has a nonseparable quotient with
monotone Schauder basis. We add to this list few other statements of this

kind related to the renorming of a given Asplund space with an equivalent

norm with the Mazur intersection property.

1. Introduction

Given an uncountable set S, a P-ideal in S is a collection I of countable infinite
subsets of S which form an ideal under inclusion and for every sequence (In)n∈ω in
I there is I ∈ I such that In \ I is finite for every n ∈ ω.

The second author introduced the following principle in [18]:

Definition 1 (P-Ideal Dichotomy). For every P-ideal I of countable infinite subsets
of some (uncountable) set S, either

(i) there is an uncountable X ⊆ S such that [X]ω ⊆ I; or
(ii) S =

⋃
n∈ω Sn where for every n ∈ ω and any I ∈ I, |Sn ∩ I| < ω.

It has been proven in [18] that the P-Ideal Dichotomy (or simply PID) follows
from the Proper Forcing Axiom and is consistent with the Generalized Continuum
Hypothesis (relative to the consistency of a supercompact cardinal). When the in-
dex set S is equal to ω1, the corresponding principle PID is consistent just relative
to ZFC, see [1]. Many applications of PID have been obtained since it was first
introduced, see [20]. In particular, several recent results assume PID to establish
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the equivalence between cardinal inequalities of the form t > ω1 where t is a char-
acteristic of the continuum and some mathematical statement concerning objects
of higher order (i.e., object that are not necessarily reals), see e.g., [1, 3, 14, 18].

The present work goes in this direction, establishing, under the PID, the equiv-
alence between one of the most basic cardinal assumptions of this kind and the
existence of some uncountable structures in nonseparable Asplund spaces. For ex-
ample, we show that, under PID, every nonseparable Aslund space has an uncount-
able biorthogonal system if and only if b > ω1, where b stands for the bounding
number, i.e. the minimal cardinality of an unbounded family in ωω with respect
to the eventual dominance preorder ≤∗. One of the important influences of PID
on this standard cardinal invariant of the continuum is that b ∈ {ω1, ω2}; see [20].
Hence, the following assertions are equivalent under PID:

(a1) b > ω1.
(a2) b = ω2.

and therefore in all the equivalences that we have, the cardinal inequality b > ω1

can, in fact, be replaced by the cardinal equality b = ω2. It would be interesting to
see if this phenomenon is also true for other inequalities of the form t > ω1 which
PID connects to some standard problems in mathematics.

In a different direction, there has been a lot of research to understand the ex-
istence of certain uncountable structures in nonseparabale Banach spaces. Given
0 ≤ ε < 1, an ε-biorthogonal system in a Banach space X is a family of pairs
(xα, fα)α∈κ of X ×X∗ such that fα(xα) = 1 and |fα(xβ)| ≤ ε for all α ̸= β in κ. It
is a biorthogonal system in the particular case when ε = 0. A biorthogonal system
(xα, fα)α∈κ is fundamental if span{xα : α ∈ κ} = X.

It is well known that every infinite dimensional Banach spaceX admits an infinite
biorthogonal system and if X is separable, a biorthogonal system (xn, fn)n∈ω can

be chosen so that span{xn : n ∈ ω} = X and spanw∗
{fn : n ∈ ω} = X∗.

Let us consider the following pairs of assertions:

(b1) Every Banach space of density ω1 has an uncountable ε-biorthogonal sys-
tem, for every ε ∈ (0, 1).

(b2) Every nonseparable Banach space has an uncountable ε-biorthogonal sys-
tem, for every ε ∈ (0, 1).

(c1) Every Banach space of density ω1 has an uncountable biorthogonal system.
(c2) Every nonseparable Banach space has an uncountable biorthogonal system.

(d1) Every Banach space of density ω1 has a fundamental biorthogonal system.
(d2) Every Banach space of density ω1 has a nonseparable quotient with a mono-

tone Schauder basis.

Remark 2. (b1) ⇔ (b2) and (c1) ⇔ (c2) hold in ZFC because of Hahn-Banach
Theorem. (d1) ⇔ (d2) holds in ZFC thanks to a result by Plichko, [13] - see also
[7, Theorem 4.15].

From now on, we refer to (b), (c) and (d) meaning any of the two equivalent
corresponding statements above, and also to (a) to refer to any of the assertions
(a1) and (a2), whenever we are working under the PID.

The main purpose of this paper is to prove the following result.
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Main Theorem. The following statements are equivalent assuming the P-ideal
dichotomy:

(a) b = ω2.
(b′) Every nonseparable Asplund space has an uncountable ε-biorthogonal sys-

tem, for every ε ∈ (0, 1).
(c′) Every nonseparable Asplund space has an uncountable biorthogonal system.
(d′) Every Asplund space of density ω1 has a fundamental biorthogonal system.
(e′) The dual of every Asplund space of density ω1 has a fundamental biorthog-

onal system.

Notice that the statements (b′)−(d′) correspond to (b)−(d) restricted to Asplund
spaces. Asplund spaces, also called strong differentiability spaces, are those Banach
spaces X such that any convex continuous function on X is Fréchet-differentiable
in a dense set. This is equivalent to say that all the separable subspaces of X
have separable duals. Hence, subspaces of Asplund spaces are Asplund and (b1)
(respectively (c1), (d1)) remains equivalent to (b2) (respectively (c2), (d2)) when
“Banach space” is replaced by “Asplund space”. One interesting feature of our Main
Theorem is that it connects phenomena in two different parts of mathematics, a
connection that would have been difficult to guess without PID at disposal. However
note that this theorem connects also two known phenomena (b’) and (c’) from the
geometry of Asplund spaces. In fact, in the literature (see, e.g., [8],[10] ) one finds
the question if (b) and (c) are equivalent restrictions on a given Banach space. For
example, it is shown in [8] that if a nonseparable Banach space X has an equivalent
norm ∥ · ∥′ with the Mazur intersection property (stating that every closed convex
subset of X is the intersection of closed ∥ · ∥′-balls) then for every ε > 0 the
space X has an uncountable ε-biorthogonal system and asked if one can get also
an uncountable biorthogonal system. The reason for this question is reinforced by
another result from [8] saying that if a Banach space X has a biorthogonal system
(xγ , fγ)γ∈Γ such that the functionals (fγ)γ∈Γ span the dual space X∗, then X has
a renorming with the Mazur intersection property. On the other hand, it is shown
in [10] that there is a generic Asplund space X such that for all ε > 0 there is an
uncountable ε-biorthogonal system in X but X has no uncountable biorthogonal
system. Thus, some assumption like PID is necessary in our Main Theorem.

The Main Theorem gives a partial answer to the following question, raised by
the second author:

Question 3 (Todorcevic, Question 26.7, [20]). Under the PID, are the following
statements equivalent?

(a) b > ω1.
(c) Every nonseparable Banach space contains an uncountable biorthogonal sys-

tem.

This question was motivated, on one side, by the result establishing the con-
sistency that every nonseparable Banach space has an uncountable biorthogonal
system. This result was first obtained by the second author in [19] using Martin’s
Maximum (MM) and then reformulated in [20] by replacing MM by the conjunction
of the PID and the cardinal assumption p > ω1.

On the other hand, the maximal cardinality of a biorthogonal system in a given
Banach space X and its relation to the density of X have been studied by several
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authors but have not yet been completely understood. Since the 80’s several con-
sistent examples of nonseparable Banach spaces with no uncountable biorthogonal
systems have been obtained under assumptions like the Continuum Hypothesis or
the combinatorial principles ♢ or ♣, see [7], and by forcing, like those of [4, 10]. For
a further discussion on this subject see [9]. Among those examples, the one con-
structed by the second author in [16, Theorem 2.4] under the cardinal assumption
b = ω1 is of great importance to us here:

Theorem 4 (Todorcevic, [16], [17]). Assuming b = ω1, there is a compact Haus-
dorff scattered space K of weight ω1 whose finite powers Kn are all hereditarily
separable.

The relevance of this result here can briefly be explained as follows. First of
all, since the compact space K is scattered, the function space C(K) is Asplund.
The fact that finite powers of K are all hereditarily separable is equivalent to the
fact that the function space C(K) is hereditarily Lindelöf with respect to the weak
topology and so, in particular, it has no ε-biorthogonal system for any ε ≥ 0. All
this is quite standard and can be found in the references given in the following
sketch of proof of the Main Theorem.

Sketch of the proof of the Main Theorem: The implications (d′) ⇒ (c′) ⇒ (b′) are
immediate.

The contrapositive of (b′) ⇒ (a) follows from Theorem 4: the construction in
[16, Theorem 2.4] yields, under b = ω1, a compact Hausdorff scattered space K
of weight ω1 whose finite powers Kn are all hereditarily separable. By a result of
Namioka and Phelps [11], from the fact thatK is scattered, we can conclude that the
Banach space C(K) of all scalar valued continuous functions defined on K, with the
supremum norm, is an Asplund space (of density ω1). As also mentioned above,
the fact that K is scattered and has hereditarily separable finite powers implies
that C(K) is hereditarily Lindelöf with respect to the weak topology (see e.g. [7,
Theorem 4.38]). This in turn guarantees that it has no uncountable ε-biorthogonal
systems for any ε ∈ [0, 1). In particular, it has no uncountable biorthogonal systems,
nor fundamental biorthogonal systems.

The rest of the paper is mostly devoted to prove that, under PID, (a) ⇒ (d′), to
conclude the proof. □

Notice that PID wasn’t used in the previous sketch. The main use of PID can
be illustrated by the following simple lemma, which gives typical useful P-ideals
under ω1 < b.

Lemma 5. If a family F of subsets of a set S is such that |F| < b, then

I = {I ∈ [S]ω : (∀F ∈ F) |F ∩ I| < ω}

is a P-ideal and is denoted by F⊥. □

The proofs go along similar lines as those contained in [2, 19, 20], by weakening
the cardinal assumption. We prove that (a) ⇒ (c′) in Section 2, where we also
prove the crucial Theorem 6, which will be used several times. Then, we prove that
(a) ⇒ (d′) in Section 3 and Section 4 is devoted to analyse the impact of these
results in the dual of an Asplund space. Our notation is fairly standard and follows
[7].
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2. Uncountable biorthogonal systems

Our main purpose in this section is to prove the following result.

Theorem 6. Assume the PID and b > ω1. If X is a Banach space with weak∗

sequentially compact dual unit ball which contains a Q-linear dense subspace D of
cardinality ω1, then there is an uncountable bounded sequence (fα : α < ω1) of
(distinct) functionals in X∗ such that

(1) ∀x ∈ X (fα(x) : α < ω1) ∈ c0(ω1)

and

(2) ∀x ∈ D (fα(x) : α < ω1) ∈ ℓ1(ω1).

This theorem will be crucial to get all subsequent constructions of biorthogonal
systems, whose functionals will be obtained by refining the sequence of function-
als satisfying properties (1) and (2) given above. For instance, we easily get the
following corollary, which fulfills the proof that (a) implies (c′):

Corollary 7. Assume PID and b > ω1. Every nonseparable Asplund space X
contains an uncountable biorthogonal system.

Proof. Stegall showed in [15] that Asplund spaces have weak∗ sequentially compact
dual unit balls. Hence, given an Asplund space X of density ω1, we can apply
Theorem 6, and get for a dense Q-linear subspace D of X of cardinality ω1, a
bounded sequence (fα)α∈ω1 of (distinct) functionals in X∗ sastifying properties (1)
and (2). For each α ∈ ω1, let xα ∈ D be such that fα(xα) ̸= 0. It follows from [6,
Proposition 11] that X has an uncountable biorthogonal system. □

The proof of Theorem 10 goes in two steps, first to obtain property (1) and then
to obtain property (2). We first need the following easy lemma.

Lemma 8. Let K be a topological Hausdorff space of weight strictly smaller than
b. If a sequence (xn)n∈ω ⊆ K converges to some x ∈ K and for each n ∈ ω,
(ynk )k∈ω ⊆ K is a sequence converging to xn, then there is an increasing sequence
(kn)n∈ω such that (ynkn

)n∈ω converges to x. Consequently, the sequential closure
Seq(S) of any set S in K is the set of all limits of sequences of elements of S. □

The following proposition guarantees the existence of a sequence of functionals
satisfying property (1):

Proposition 9. Assume the PID and b > ω1. If X is a Banach space of density
ω1 whose dual unit ball is weak∗ sequentially compact, then there is an uncountable
bounded sequence (fα)α∈ω1 of (distinct) functionals in X∗ such that

∀x ∈ X (fα(x) : α ∈ ω1) ∈ c0(ω1).

Proof. Fix D a dense Q-linear subspace of X of cardinality ω1. It is easy to
construct an increasing chain (Xα)α<ω1 of separable subspaces of X such that
dim(Xα+1/Xα) = 1, if λ < ω1 is a limit ordinal, then Xλ = span

⋃
α<λ Xα and

X = span
⋃

α<ω1
Xα. Using Hahn-Banach Theorem, we can obtain a normalized

sequence (hα)α∈ω1
of linearly independent functionals in X∗ such that for every

x ∈ D, hα(x) = 0 for all but countably many α ∈ ω1.
Let

I1 = {I ∈ [ω1]
ω : (∀x ∈ D)(∀ε ∈ (0, 1) ∩Q) {α ∈ I : |hα(x)| ≥ ε} is finite}



6 CHRISTINA BRECH AND STEVO TODORCEVIC

and by Lemma 5, I1 is a P-ideal. Apply the PID and notice that if alternative
(i) holds, we are done. If alternative (ii) of PID holds, let Γ ∈ [ω1]

ω1 be such
that |I ∩ Γ| < ω for every I ∈ I1. Hence 0 /∈ Seq({hα : α ∈ Γ}). Indeed,
if 0 ∈ Seq({hα : α ∈ Γ}), then by Lemma 8 there is be (αn)n∈ω ⊆ Γ such that
(hαn

)n∈ω is weak∗ convergent to 0, so that I = {hαn
: n ∈ ω} ∈ I1. This contradicts

the fact that |I ∩ Γ| < ω for every I ∈ I1. On the other hand, 0 ∈ {hα : α ∈ Γ}
w∗

.
Consider K = Seq({hα : α ∈ Γ}), S = {g − f : f ̸= g and f, g ∈ K} and

I2 = {I ∈ [S]ω : (∀x ∈ D)(∀ε ∈ (0, 1) ∩Q) {h ∈ I : |h(x)| ≥ ε} is finite}.

By Lemma 5, I2 is a P-ideal. We shall prove that alternative (ii) of the PID cannot
hold.

Given a weak∗-open neighborhood V of 0, since 0 ∈ {hα : α ∈ Γ}
w∗

, we know
that V ∩{hα : α ∈ Γ} is infinite, so that its sequential closure Seq(V ∩{hα : α ∈ Γ})
is a weak∗ sequentially closed subset of K which doesn’t contain 0.

Let F be a maximal filter of weak∗ sequentially closed subsets of K containing
Seq(V ∩ {hα : α ∈ Γ}) for all weak∗-open neighborhood V of 0. Using the weak∗

sequential compactness of the dual unit ball and the maximality of F we get that
it is σ-complete in the sense that the intersection of countably many elements of F
belongs to F . Let F+ be the co-ideal of positive subsets of K, that is, all subsets Z
ofK which intersect every element of F . Observe that if Z ∈ F+, then Seq(Z) ∈ F .
Also, if

⋃
n∈ω Zn ∈ F+, then there is n ∈ ω such that Zn ∈ F+.

Claim. If S =
⋃

n∈ω Sn, then there is n0 ∈ ω such that 0 ∈ Seq(Sn0).

Proof of Claim 1. If S =
⋃

n∈ω Sn, a Fubini-type argument gives us an n0 ∈ ω and
a set Z ∈ F+ such that

(∀f ∈ Z) Zf = {g ∈ Γ : g − f ∈ Sn0
} ∈ F+.

Fix f0 ∈ Seq(Z). Inductively, given

fn ∈ Seq(Z) ∩ (
⋂

{Seq(Zfi
k
) : k ∈ ω, i < n}),

use Lemma 8 to get (fn
k )k∈ω ⊆ Z such that fn = limk f

n
k . Since by our hypothesis,

for each k ∈ ω, Zfn
k
∈ F+, we get that

Seq(Z) ∩ (
⋂

{Seq(Zfi
k
) : k ∈ ω, i < n+ 1}) ∈ F ,

so that we can fix

fn+1 ∈ Seq(Z) ∩ (
⋂

{Seq(Zfi
k
) : k ∈ ω, i < n+ 1}).

Now we have a sequence (fn)n∈ω ⊆ Seq(Z) and by the hypothesis that BX∗ is
weak∗ sequentially compact, we may assume without loss of generality (passing to a
subsequence) that (fn)n∈ω converges to some f , so that (f2n−f2n+1)n∈ω converges
to 0.

For each n ∈ ω, since f2n+1 ∈
⋂
{Seq(Zf2n

k
) : k ∈ ω}, let for each k ∈ ω

(gn,ki )i∈ω ⊆ Zf2n
k

be such that f2n+1 = limi g
n,k
i for every k ∈ ω, again by Lemma

8, and for each n ∈ ω, there is an increasing sequence (ik)k∈ω such that f2n+1 =

limk g
n,k
ik

, so that (f2n
k − gn,kik

)k∈ω converges to f2n − f2n−1. Applying Lemma 8

once again, there is an increasing sequence (kn)n∈ω such that (f2n
kn

− gn,kn

ikn
)n∈ω

converges to 0. On the other hand, let us go back to the choice of these sequences
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to see that (f2n
kn

− gn,kn

ikn
)n∈ω ⊆ Sn0 since gn,kn

ikn
∈ Zf2n

kn
. This concludes the proof of

the claim. □

The previous claim guarantees that alternative (ii) of PID cannot hold for I2.
Hence, alternative (i) holds. Thus we get an uncountable family of functionals
(fα)α∈ω1 such that for every x ∈ D, hence every x ∈ X, (fα(x))α∈ω1 ∈ c0(ω1).
This concludes the proof of the theorem. □

We are now ready to prove the next step in the main result of this section.

Proposition 10. Assume the PID and b > ω1. If X is a Banach space of density
ω1 and D is a Q-linear dense subspace of X of cardinality ω1 and (fα : α < ω1) is
an uncountable bounded sequence of (distinct) functionals in X∗ such that

(1) ∀x ∈ X (fα(x) : α < ω1) ∈ c0(ω1)

Then there is Γ ∈ [ω1]
ω1 such that

(2) ∀x ∈ D (fα(x) : α < ω1) ∈ ℓ1(Γ).

Proof. Let

I = {I ∈ [ω1]
ω : (∀x ∈ D)

∑
α∈I

|fα(x)| < +∞}.

Let us prove that I is a P-ideal.
Given a pairwise disjoint sequence (In)n∈ω of elements of I, fix e an enumeration

of
⋃

n∈ω In and for each x ∈ D, let gx ∈ ωω be such that∑
α∈In\e[gx(n)]

|fα(x)| <
1

2n
.

Since b > ω1, there is g ∈ ωω such that gx ≤∗ g for every x ∈ D. Let

I =
⋃
n∈ω

In \ e[g(n)].

Clearly In ⊆∗ I for every n ∈ ω and let us prove that I ∈ I. Given x ∈ D, let
n0 ∈ ω be such that n ≥ n0 implies that gx(n) ≤ g(n). Then, for each n < n0,∑

α∈In\e[g(n)]

|fα(x)| ≤
∑
α∈In

|fα(x)| < +∞

and for n ≥ n0, ∑
α∈In\e[g(n)]

|fα(x)| ≤
∑

α∈In\e[gx(n)]

|fα(x)| <
1

2n
.

Hence, ∑
α∈I

|fα(x)| =
∑
n∈ω

∑
α∈In\e[g(n)]

|fα(x)|

=
∑
n<n0

∑
α∈In\e[g(n)]

|fα(x)|+
∑
n≥n0

∑
α∈In\e[g(n)]

|fα(x)| < +∞,

so that I ∈ I, which concludes the proof that I is a P-ideal.
Apply the PID and notice that if alternative (i) holds, we are done. Let us see

that alternative (ii) of PID cannot hold, because any infinite subset of ω1 contains
an infinite subset which is in I. Let I ∈ [ω1]

ω and fix e an enumeration of I. For
each x ∈ D, let hx ∈ ωω be such that for every n ≥ hx(k), |fe(n)(x)| < 1

2k
.
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Since b > ω1, there is h ∈ ωω such that hx ≤∗ h for every x ∈ D. Without loss
of generality we may assume that h is strictly increasing. Let B = {e(h(n)) : n ∈
ω} ∈ [I]ω and let us see that B ∈ I: given x ∈ D, let n0 ∈ ω be such that n ≥ n0

implies hx(n) ≤ h(n), so that |fe(h(n))(x)| < 1
2n . Hence,∑

α∈B

|fα(x)| =
∑
n∈ω

|fe(h(n))(x)| =
∑
n<n0

|fe(h(n))(x)|+
∑
n≥n0

|fe(h(n))(x)|

≤
∑
n<n0

|fe(h(n))(x)|+
∑
n≥n0

1

2n
< +∞.

This guarantees that B belongs to the ideal I, so that (ii) of PID cannot happen
and this concludes the proof. □

Proof of Theorem 6. Since Asplund spaces have weak∗ sequentially compact dual
unit ball (see [5]), we can directly apply Propositions 9 and 10. □

3. Nonseparable quotient

Our main purpose in this section is to prove the following result, which corre-
sponds to (a) implies (d′) in the Main Theorem.

Theorem 11. Assume PID and b > ω1. Every Asplund space X of density ω1 has
a fundamental biorthogonal system.

The proof of this result is a simplified version of [20, Corollary 26.5] or its original
version [19, Theorem 1]. It is simplified since, as opposed to the original paper, we
start from a sequence of functionals given by Theorem 6 satisfying properties (1)
and (2), which already defines the desired bounded linear operator. All we have to
do is to refine this sequence to guarantee that the image of the quotient operator
has a monotone long Schauder basis. This refinement is obtained with no use of
the PID or b > ω1.

Proposition 12. Let X be a Banach space with weak∗ sequentially compact dual
unit ball which contains a Q-linear dense subspace D of cardinality ω1 and let
(fα : α < ω1) be an uncountable bounded sequence (fα)α∈ω1 of (distinct) functionals
in X∗ such that

(1) (∀x ∈ X) (fα(x) : α < ω1) ∈ c0(ω1)

and

(2) (∀x ∈ D) (fα(x) : α < ω1) ∈ ℓ1(ω1).

Then there is Γ ∈ [ω1]
ω1 such that (fα)α∈Γ is a monotone long Schauder basic

sequence in X∗ and span{f∗
α : α ∈ Γ} is a (nonseparable) quotient of X with (with

monotone Schauder basis (f∗
α)α∈Γ).

Proof. From Corollary 7, we can find Γ ∈ [ω1]
ω1 and (xα)α∈Γ in X such that

(xα, fα)α∈Γ is a biorthogonal system. For each Γ0 ∈ [Γ]ω1 , we can consider the
map QΓ0

: X → (span{fα : α ∈ Γ0})∗, defined by

QΓ0
(x) =

∑
α∈Γ0

fα(x)f
∗
α.
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For x ∈ D,
∑

α∈Γ0
|fα(x)| < ∞ and therefore QΓ0 is well defined. Moreover,

QΓ0
(xβ) =

∑
α∈Γ0

fα(xβ)f
∗
α = f∗

β for all β ∈ Γ0, so that

span{f∗
α : α ∈ Γ0}) ⊆ ImQΓ0

⊆ (span{fα : α ∈ Γ0})∗.
If we find Γ0 such that (fα)α∈Γ0

is a long monotone basic sequence, then

span{f∗
α : α ∈ Γ0}) = ImQΓ0

= (span{fα : α ∈ Γ0})∗,
which guarantees that QΓ0

is the desired quotient mapping. It remains to find Γ0.
For each x ∈ D and each ε > 0, fix Γx,ε ∈ [Γ]<ω such that∑

α∈ω1\Γx,ε

|fα(x)| < ε.

Claim. For every δ, ε ∈ (0, 1) and every ∆ ∈ [Γ∩λ]<ω there is a finite subset F ⊆ Γ
such that for every norm-one f∗ ∈ (span{fα : α ∈ ∆})∗ there is x ∈ D such that
∥x∥ ∈ (1−δ, 1+δ), Γx,ε ⊆ F and |f∗(e)−e(x)| ≤ δ·∥e∥ for all e ∈ span{fα : α ∈ ∆}.

Proof of the Claim. Let D∗ be a finite subset of (span{fα : α ∈ ∆})∗ which is δ
3 -

dense. For each g∗ ∈ D∗, by the principle of local reflexivity there is yg∗ ∈ X with

∥yg∗∥ ∈ (1− δ
3 , 1+

δ
3 ) such that |g∗(e)−e(yg∗)| ≤ δ

3 ·∥e∥ for all e ∈ span{fα : α ∈ ∆}.
Let xg∗ ∈ D be such that ∥yg∗ − xg∗∥ < δ

3 . Notice that ∥xg∗∥ ∈ (1− δ, 1 + δ). Let
F =

⋃
{Γxg∗ ,ε : g

∗ ∈ D∗}, which is clearly finite.
Given a norm-one f∗ ∈ (span{fα : α ∈ ∆})∗, let g∗ ∈ D∗ be such that ∥f∗ −

g∗∥ < δ
3 . We know that ∥xg∗∥ ∈ (1− δ, 1 + δ) and Γxg∗ ,ε ⊆ F . Moreover, for every

e ∈ span{fα : α ∈ ∆} we have that

|f∗(e)− e(x)| ≤ |f∗(e)− g∗(e)|+ |g∗(e)− e(yg∗)|+ |e(yg∗)− e(xg∗)|

≤ ∥f∗ − g∗∥ · ∥e∥+ |g∗(e)− e(yg∗)|+ ∥yg∗ − xg∗∥ · ∥e∥ < δ · ∥e∥,
which concludes the proof of Claim 1. □

Let Ω be the set of limit ordinals λ < ω1 with the following property: for every
δ, ε ∈ (0, 1), every ∆ ∈ [ω1∩λ]<ω and for every norm-one f∗ ∈ (span{fα : α ∈ ∆})∗
there is x ∈ X such that ∥x∥ ∈ (1 − δ, 1 + δ) and |f∗(e) − e(x)| ≤ δ · ∥e∥ for all
e ∈ span{fα : α ∈ ∆} and

∑
α∈ω1\λ |fα(x)| < ε.

Claim. Ω is closed and unbounded in ω1.

Proof of the Claim. It is easy to see that it is closed. Given any subset S ⊆ Ω, let
λ = supS. For every ∆ ∈ [ω1∩λ]<ω and every norm-one f∗ ∈ (span{fα : α ∈ ∆})∗,
let λ′ ≤ λ, λ′ ∈ S such that ∆ ⊆ λ′. Then, given δ, ε ∈ (0, 1), there is x ∈ X such
that ∥x∥ ∈ (1 − δ, 1 + δ) and |f∗(e) − e(x)| ≤ δ · ∥e∥ for all e ∈ span{fα : α ∈ ∆}
and

∑
α∈ω1\λ |fα(x)| ≤

∑
α∈ω1\λ′ |fα(x)| < ε. Hence, λ ∈ Ω.

To prove that Ω is unbounded, given µ < ω1, let λ0 = µ and recursively construct
an increasing sequence (λn)n∈ω in ω1 with the following property:

∀δ, ε ∈ (0, 1) ∀∆ ∈ [ω1 ∩ λn]
<ω ∀f∗ ∈ (span{fα : α ∈ ∆})∗ such that ∥f∗∥ = 1

∃x ∈ X such that ∥x∥ ∈ (1− δ, 1 + δ), Γx,ε ⊆ λn+1 and

∀e ∈ span{fα : α ∈ ∆} |f∗(e)− e(x)| ≤ δ · ∥e∥.
Then, taking λ = supn∈ω λn, we get that λ > µ and λ ∈ Ω.

For the recursive construction, for each δ, ε ∈ (0, 1)∩Q and each ∆ ∈ [ω1∩λn]
<ω,

let F∆,δ,ε be a finite subset of ω1 as in Claim 1 and let λn+1 < ω1 be such that
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maxF∆,δ,ε < λn+1 for all δ, ε ∈ Q∩ (0, 1) and all ∆ ∈ [λn]
<ω. It is easy to see that

λn+1 has the required properties. □

Let Γ0 ∈ [Γ]ω1 be such that for every µ < λ consecutive elements of Ω there is
at most one element of Γ. Let us see that (fα)α∈Γ0 is a long monotone Schauder
basic sequence. Given g =

∑n
i=1 aifαi and f =

∑m
i=1 aifαi

for some α1 < · · · < αn

in Γ0, a1, . . . , an ∈ R and 1 ≤ m < n, we prove that ∥f∥ ≤ ∥g∥.
Suppose by contradiction that there is θ > 1 such that ∥f∥ > θ · ∥g∥. We

may assume WLOG that ∥f∥ = 1. Let λ ∈ Ω be such that αm < λ ≤ αm+1,
∆ = {α1, . . . , αm} and a norm-one f∗ ∈ (span{fα : α ∈ ∆})∗ such that |f∗(f)| =
∥f∥ = 1. Given δ ∈ (0, 1), let ε ∈ (0, 1) be such that max{|ai| : 1 ≤ i ≤ n} · ε < δ.
Since ∆ ∈ [ω1 ∩ λ]<ω and λ ∈ Ω, there is x ∈ X such that ∥x∥ ∈ (1 − δ, 1 + δ)
and |f∗(e)− e(x)| ≤ δ · ∥e∥ for all e ∈ span{fα : α ∈ ∆} and

∑
α∈ω1\λ |fα(x)| < ε.

In particular, |1 − f(x)| = |f∗(f) − f(x)| ≤ δ and
∑n

i=m+1 |fαi
(x)| < ε, so that∑n

i=m+1 |aifαi
(x)| ≤ max{|ai| : m+ 1 ≤ i ≤ n} · ε < δ

3 . Then we get that:

1 = ∥f∥ > θ∥g∥ ≥ θ(1− δ)|g(x)|

≥ θ(1− δ)(|f(x)| −
n∑

i=m+1

|aifαi(x)|) ≥ θ(1− δ)(1− δ − δ).

For a sufficiently small δ, we get a contradiction. □

Combining previous results we can prove the main result of this section.

Proof of Theorem 11. Apply Theorem 6 and Proposition 12. □

4. Biorthogonal systems in the dual space

The main purpose of this section is to prove the following result:

Theorem 13. Assume PID and b > ω1. Then the dual of every Asplund space of
density ω1 has an fundamental biorthogonal system.

Theorem 13 follows directly from the next two results. The following theorem is
a ZFC result implicit in the proof of [2, Theorem 4].

Theorem 14. If X is an Asplund space of density ω1 and (xα, fα)α<ω1
is a fun-

damental biorthogonal system, then there is Γ ∈ [ω1]
ω1 such that T : (X∗, w∗) →

(c0(Γ), τp) given by T (f) = (f(xα))α∈Γ is a well-defined linear continuous bounded
mapping with nonseparable range.

We finish with the following result:

Theorem 15. Assume PID and b > ω1. If X is an Asplund space of density
ω1 and (xα)α<ω1 is a sequence in X such that T : (X∗, w∗) → (c0(ω1), τp) given
by T (f) = (f(xα))α∈ω1 is a well-defined linear continuous bounded mapping with
nonseparable range, then X∗ has a fundamental biorthogonal system.

Proof. SinceX is Asplund and has density ω1, X
∗ has also density ω1 - see the proof

of [2, Theorem 4]. Also, X does not contain any isomorphic copy of ℓ1. Therefore,
thanks to a characterization in [12], we get that for every countable Z ⊆ BX∗∗ ,

Z
w∗

is a Rosenthal compact and, therefore, BX∗∗ is weak∗ sequentially compact.
With these properties in hand, we can apply several of the previous results to X∗,
starting from the sequence (xα)α<ω1

seen as a sequence in X∗∗.
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Fix D∗ a Q-linear dense subset of X∗ and apply Proposition 10 to get Γ ∈ [ω1]
ω1

such that

∀f ∈ D∗ (f(xα))α∈Γ ∈ ℓ1(Γ).

We can now use Proposition 12 to get that X∗ has a nonseparable quotient with
Schauder basis, which in turn implies that X∗ has a fundamental biorthogonal
system. □

Remark 16. The statement of Theorem 15 is inspired by the main result in [2].
Namely, we expect that with some extra work it could be guaranteed that the func-
tionals of the fundamental biorthogonal system in the dual space obtained in Theo-
rem 15 are indeed in the space X. If this is so, then by the results of [8, Theorem
2.4], we can add yet another statement to our list of equivalences of b = ω2 under
PID: Every Asplund space X of density ω1 has a renorming with the Mazur inter-
section property, that is, a renorming such that every closed convex subset of X is
the intersection of closed balls of X.

References

1. Uri Abraham and Stevo Todorcevic, Partition properties of ω1 compatible with CH, Fund.

Math. 152 (1997), no. 2, 165–181.
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