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Abstract. The problem whether every infinite dimensional Banach
space has a separable infinite dimensional quotient is known as the
separable quotient problem. In this survey, we review results con-
necting the bounding number b to this problem and to the existence
of uncountable biorthogonal systems in nonseparable Banach spaces.
Our discussion highlights combinatorial methods that help differenti-
ate the structure of Banach spaces of density equal to the bounding
number b from those with density smaller than b.
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1. Introduction

The following problem, commonly referred to as the “separable quotient prob-
lem”, is one of the most significant open questions in Banach space theory.

Problem 1.1. Does every infinite dimensional Banach space have a separable
infinite dimensional quotient?

It has likely been considered since the 1930s, alongside other important problems
stemming from Banach’s seminal work. It is attributed to Stanis law Mazur and
Stefan Banach. However, there is no explicit mention of it in Banach’s book [3],
and I couldn’t find any formal record of it. The earliest reference I am aware of,
where the problem is explicitly stated, is Rosenthal’s paper [31] (see Remark 2
on page 188). Over nearly a century, much research has been developed around
this problem, and several partial results have been obtained. It also motivated
problems related to other structures, as in the case of the article [20], which deals
with topological groups.

Several other important problems from Banach’s book have been solved. The
basis problem, which is whether every separable Banach space admits a Schauder
basis, was answered in the negative by Enflo in [11]. The basic sequence problem
is whether every Banach space admits a basic sequence and a positive solution is
stated in [3] with no proof. Generalizations to that solution are proved in [4]. The
textbook [21] is a good reference for all these results.

Quotients of Banach spaces are useful for gaining insight into the structure of
the space itself and vice versa. This is exemplified by the so called three space
problems, which are of the following form: knowing that two out of the three
spaces X, Y ⊆ X and X/Y have a certain property, can we conclude that the
third space also shares this property? There are several examples of three-space
properties in the literature, see [8].

2
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During the 1960s and the 1970s, several positive results for the separable quotient
problem have been obtained. Let us mention that the following classes of Banach
spaces do admit separable quotients:

• Banach spaces containing c0 (Bessaga, Pe lczyński, [5]);
• Reflexive spaces (Pe lczyński, [27]);
• Weakly compactly generated spaces (Amir, Lindenstrauss, [1]);
• Spaces whose dual contains ℓ1 (Hagler, Johnson, [14]).

Moreover, Johnson and Rosenthal proved in [16] that every separable space X
contains a closed infinite dimensional linear subspace Y of X such that X/Y is
infinite dimensional.

These are classical results and most of their original proofs have a structural
flavour. The classical survey in [23], as well as the more recent account in [12],
along with the references cited therein, are good sources for the reader interested
in the separable quotient problem. In this paper, we also review results that pro-
vide partial solutions to Problem 1.1 or solve related problems. In contrast to the
aforementioned works, however, the results we analyze here primarily focus on the
relationship between the density of a Banach space and the cardinality of certain
structures within it and their proofs often combine classical analytic methods with
combinatorial approaches. The bounding number b plays an important role in the
results discussed here, which represent only a small sample of the diverse combina-
torial constructions related to separable quotients in nonseparable Banach spaces.

The paper is organized as follows. Section 2 contains results relating the exis-
tence of separable quotients, quotients with Schauder basis and biorthogonal sys-
tems in general Banach spaces. We show that every Banach space of density smaller
than b admits a (separable) quotient with Schauder basis. This result has been ob-
tained in [32], but it also follows from classical arguments from the 1970s. Section
3 focuses on the existence of biorthogonal systems in C(K) spaces and its relation
to properties of the corresponding compact space K. We recall constructions of
nonseparable Banach C(K) spaces without uncountable biorthogonal systems as-
suming combinatorial principles. Let us point out that there are also interesting
constructions of nonseparable Banach spaces which are not C(K) spaces, see e.g.
[22], but they won’t be addressed here. In Section 4, we detail an old consistent
construction by Todorčević of a nonseparable Banach C(K) space without uncount-
able biorthogonal systems, under the assumption that b = ω1. We chose to present
Todorčević’s original proof, as the outline given in his book [35] lacks detail. More-
over, his result is crucial to the brief discussion in Section 5 of recent results from
[7], which combine the techniques resumed in Section 2 with the P-ideal dichotomy,
introduced in [36].

The paper is intended to set theorists interested in Banach spaces. Therefore,
the reader is assumed to be familiar with the classical set theory definitions, which
we introduce only when necessary for the arguments presented. We also aimed
to minimize the introduction of too many definitions from Banach space theory;
however, readers can find these definitions in the references if needed. We follow
standard notation for set theory and [15] for Banach spaces.
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2. Quotients with Schauder bases

In the 1970s, Johnson and Rosenthal proved in [16, Theorem IV.1(i)] that every
separable Banach space has a nontrivial separable quotient. By nontrivial we mean
that it has infinite codimension. This result was later improved for Banach spaces
of density strictly smaller than b:

Theorem 2.1 (Saxon, Sanchez-Ruiz, [32]). Every Banach space of density strictly
smaller than b has a separable quotient.

In their proof, the authors use an equivalent version of the separable quotient
problem from [33]. We can also see this result as a consequence of classical results.
This approach was used in [12] and a similar argument is presented below, for the
convenience of the reader. Our main focus is on the use of the bounding number
b to refine sequences in the dual space. The bounding number b is defined as
the smallest cardinality of a subset of ωω which is unbounded with respect to the
relation ⩽∗, where f ⩽∗ g means that f(n) ⩽ g(n) fails for finitely many n ∈ ω.

Recall that a sequence (en)n in a Banach space X is a Schauder basis if every
vector x ∈ X has a unique representation as a series

∑
n λnen. As noted in the

introduction, it has been known since the 1970s that separable Banach spaces may
not have Schauder bases, see [11]. However, it is also known that every infinite-
dimensional Banach space X contains a basic sequence, meaning a sequence of
vectors that forms a Schauder basis for some infinite-dimensional closed subspace
of X, see [4]. In fact, Banach spaces are abundant in basic sequences, see [21], and
this will be helpful in the following argument.

Sketch of the proof of Theorem 2.1. Let (φn)n be a normalized weakly∗ null se-
quence in X∗ (ie. (φn(x))n converges to 0 for every x ∈ X). Its existence is
guaranteed by results from Josefson–Nissenzweig theorem, see [15]. It follows also
from results from [14].

Suppose that X has density strictly smaller than b and let D ⊆ X be norm-dense
in SX such that |D| < b. For each x ∈ D, since (φn)n is weakly∗ null, let fx ∈ ωω

be such that

k ⩾ fx(n) ⇒ |φk(x)| < 1

2n
.

From |D| < b, we get that there is a ⩽∗-dominating f ∈ ωω for {fx : x ∈ D}.
Without loss of generality, f can be assumed to be strictly increasing. Let

kn = f(n) for each n ∈ ω. For each x ∈ D, there is n0 ∈ ω such that n ⩾ n0 implies
fx(n) ⩽ f(n). Hence,∑

n∈ω

|φkn(x)| =
∑
n∈ω

|φf(n)(x)| =
∑
n<n0

φf(n)(x)| +
∑
n⩾n0

|φf(n)(x)|

⩽
∑
n<n0

|φf(n)(x)| +
∑
n⩾n0

1

2n
,

so that the series
∑

n∈ω |φkn
(x)| converges. From now on, we assume that for every

x ∈ D,
∑

n∈ω |φ∗
n(x)| converges.
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Given a subsequence (φnk
)k, consider the mapping defined by

Q : X → (span{φnk
: k ∈ ω})∗ Q(x)(φ) = φ(x).

Independently on the extra properties of the subsequence (φnk
)k, Q is a well-

defined linear continuous map. Our goal is to find a subsequence (φnk
)k which is

a basic sequence such that Q is a quotient mapping onto span{φ∗
nk

: k ∈ ω}, where
(φ∗

nk
)k are the elements of X∗∗ biorthogonal to (φnk

)k. This is done similarly to the
original result by Johnson and Rosenthal from [16]: given a sequence (εn)n in (0, 1),
we recursively use the principle of local reflexivity to prove the following claim:

Claim. There is an increasing sequence (nk)k such that for every N ∈ ω, there is
a finite subset DN of D such that given a norm-one φ∗ ∈ (span{φnk

: k < N})∗

there is a norm-one x ∈ DN such that

∀φ ∈ span{φnk
: k < N} |φ∗(φ) − φ(x)| < εN∥φ∥

and
∑

n⩾nN
|φn(x)| < εN .

Proof of the Claim. Given (ni)i<N , let D∗
N be a finite εN

3 -dense in the sphere of
(span{φnk

: k < N})∗. By the local reflexivity principle, for each φ∗ ∈ D∗
N there

is yφ∗ ∈ X such that ∥yφ∗∥ = 1 and

∀φ ∈ span{φnk
: k < N} |φ∗(φ) − φ(yφ∗)| < εN

3
∥φ∥.

Let xφ∗ ∈ D be such that ∥yφ∗ − xφ∗∥ < εN
3 .

Since DN := {xφ∗ : φ∗ ∈ D∗} is a subset of D, we know that for each x ∈ D,∑
n∈ω |φn(x)| converges. Hence, since DN is finite, there is nN > nN−1 such that

∀φ∗ ∈ D∗
N

∑
n⩾nN

|φn(xφ∗)| < εN .

Finally, given any norm-one ψ∗ ∈ span{φnk
: k < N}, let φ ∈ D∗

N be such that
∥ψ∗ − φ∗∥ < εN

3 . It follows that for every φ ∈ span{φnk
: k < N},

|ψ∗(φ)−φ(xφ∗)| ⩽ |ψ∗(φ)−φ∗(φ)|+|φ∗(φ)−φ(yφ∗)|+|(φ(yφ∗)−φ(xφ∗)| < εN∥φ∥,
which concludes the proof of the claim. □

Now, if we impose that Πn∈ω( 1
1−3εn

) < +∞, we can show that (φnk
)k is a basic

sequence in X∗, so that their biorthogonal functionals (φ∗
nk

)k form a basic sequence
X∗∗. Therefore, for x ∈ D, we have that Q(x) =

∑
k∈ω φnk

(x)φ∗
nk

. This implies
that Q[X] ⊆ span{φ∗

nk
: k ∈ ω}. Finally, assuming that

∑
n∈ω εn < +∞, successive

approximations guarantee that span{φ∗
nk

: k ∈ ω} ⊆ Q[X], as desired. □

In this argument, the basic sequence plays a crucial role in identifying a natural
candidate for a quotient space, and it allows us to obtain a quotient with a Schauder
basis at no additional cost. The following consistency result gets separable quotients
with Schauder basis in spaces of large density:

Theorem 2.2 (Dodos, Lopez-Abad, Todorčević, [10])). It is consistent with the
usual axioms of ZFC that every Banach space with density at least ℵω has a sepa-
rable quotient with an unconditional basis.
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The proof extracts a partition property of some cardinal κ which ensures the
existence of an unconditional basic sequence in the dual of every Banach space of
density at least κ. A result from [14] and the fact that ℵω consistently satisfies
this partition property imply the previous result. Another result combining com-
binatorial methods and Hagler and Johnson’s result to guarantee the existence of
a separable quotient is the following:

Theorem 2.3 (Argyros, Dodos, Kanellopoulos, [2]). Every dual Banach space has
a separable quotient.

Pe lczyński asked in [27] whether the following problem is equivalent to the orig-
inal separable quotient problem:

Problem 2.1. Does every Banach space have a nontrivial quotient with Schauder
basis?

Theorem 2.1 implies that this is equivalent to the original separable quotient
problem, since a separable quotient would itself have a (separable) quotient with
Schauder basis. A natural version of Problem 2.1 was originally posed by Plichko
in [29]:

Problem 2.2. Does every Banach space have a quotient with a long Schauder
basis of the length of its density?

Long Schauder basis are natural generalizations of standard Schauder basis, but
indexed in larger ordinals and useful in the nonseparable setting, see [15]. Plichko
himself gave a negative answer to this question. First, he gave a negative answer
to the following question, posed by Davis and Johnson in [9].

Problem 2.3. Does every Banach space have a bounded fundamental biorthogo-
nal system?

Recall that a family of pairs (xα, φα)α∈κ in X ×X∗ is a biorthogonal system if
φα(xα) = 1 and φα(xβ) = 0 if α ̸= β. It is a fundamental biorthogonal system if,
moreover, span{xα : α ∈ κ} is norm dense in X. Hence, a basic sequence, together
with its biorthogonal functionals, forms a biorthogonal system, whereas a Schauder
basis, together with its biorthogonal functionals, forms a fundamental biorthogonal
system. A biorthogonal system (xα, φα)α∈κ is bounded if supα∈κ ∥xα∥·∥φα∥ < +∞
and it easily follows from counting arguments that for any uncountable regular car-
dinal κ, every biorthogonal system of cardinality κ contains a bounded biorthogonal
system of same cardinality. In [28], Plichko showed the following result.

Theorem 2.4. If Γ is an index set of cardinality greater than c, then ℓc∞(Γ) does
not admit a bounded fundamental biorthogonal system.

ℓc∞(Γ) is the space of bounded sequences of scalars indexed in Γ with countable
support. A few years later, Plichko proved in [29] that Problems 2.2 and 2.3 are
equivalent. Finally, Godefroy and Louveau posed in [13] the following more general
question:
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Problem 2.4. Does every nonseparable Banach space have an uncountable biortho-
gonal system?

The next section discusses consistent negative answers to this question in the
context of spaces of continuous functions.

3. C(K) spaces without biorthogonal systems

Given a compact Hausdorff space K, let C(K) be the space of continuous real-
valued functions on K with the supremum norm. The class of C(K) spaces is
a great source of interesting examples, particularly in the context of nonseparable
spaces, as the zoo of nonmetrizable compact spaces gave rise to interesting examples
of C(K) spaces, see [15]. Every Banach space X is isometrically isomorphic to a
subspace of C(BX∗), where the dual ball is equipped with the weak∗ topology and
the structure of a C(K) space can be analyzed from the properties of the topological
space K. The classical Stone-Weierstrass theorem guarantees that the density of
C(K) equals the weight of K and Riesz Representation theorem identifies each
linear continuous functional on C(K) with a regular signed Borel measure on K.

There is a natural way to get biorthogonal systems in C(K) from discrete subsets
of K: if {xα : α ∈ Γ} is a discrete subset of K, Urysohn’s Lemma guarantees the
existence, for each α < κ, of φα ∈ C(K) such that φα(xα) = 1 and φα(xβ) = 0
for β ̸= α. Taking the point-evaluating functional δα ∈ C(K)∗ defined by δα(φ) =
φ(xα), we get that (φα, δα)α∈Γ is a biorthogonal system in C(K).

This argument can be improved to show the following result:

Theorem 3.1 (Todorčević, [37]). If a compact Hausdorff space K has a nonsepa-
rable subspace, then C(K) contains an uncountable biorthogonal system.

On the other hand, the following result is some sort of contrapositive for scattered
spaces:

Theorem 3.2 (Zenor, [40]; Velichko [39]). Let K be a compact Hausdorff scat-
tered space. If Kn is hereditarily separable for every n ∈ ω, then C(K) has no
uncountable biorthogonal systems.

The previous result derives from arguments from the 1980s related to pointwise
convergence and the weak topology in C(K), see [25]. It identifies a class of Banach
spaces where one might seek counterexamples to Problem 2.4. Notably, there are
several consistent constructions of nonmetrizable compact scattered spaces with
hereditarily separable finite powers. The most known is likely Kunen’s construc-
tion, presented in [25, Theorem 7.1] and achieved under the continuum hypothesis.
Additionally, Shelah built such a space under ♢ (see [34]), and a variation of Os-
taszewski’s construction under ♣ (see [26]) was described in [15, Theorem 4.36].

The following result by Todorčević will play a crucial role in the discussion that
follows.

Theorem 3.3 (Todorčević, Theorem 2.4, [35]). Assuming that b = ℵ1, there exists
a nonmetrizable compact scattered Hausdorff space K such that Kn is hereditarily
separable for every n ∈ ω. In particular, C(K) is a nonseparable Asplund space
with no uncountable biorthogonal systems.
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A complete proof of this result is provided in the next section. Several other con-
sistent examples of nonseparable Banach spaces without uncountable biorthogonal
systems have been obtained by forcing. The versatility of the forcing method has
enabled the construction of examples with a wide range of properties. We highlight
two constructions that illustrate this diversity by pursuing different directions.

The first construction proves the consistency of a gap between the density of a
Banach space and the maximal cardinality of a biorthogonal system.

Theorem 3.4 (Brech, Koszmider, [6]). It is consistent with the usual axioms of
set theory ZFC that there exists a compact scattered Hausdorff space K of weight
ℵ2 such that Kn is hereditarily separable for every n ∈ ω. In particular, C(K) is a
Banach space of density ℵ2 with no uncountable biorthogonal systems.

All C(K) constructions discussed so far have the property of being Asplund
spaces: a Banach space X is Asplund if every separable subspace has a separable
dual. Namioka and Phelps proved in [24] that C(K) is Asplund if and only if K
is scattered. This is important in the proof of Theorem 3.2, as it ensures that
the functionals on C(K) are atomic measures. Indeed, Asplund spaces can be
considered “small”, which might explain why the nonseparable examples which do
not admit uncountable biorthogonal systems were found in this class, even with
density ℵ2. This will be relevant in Section 5. For now, let us turn to the second
construction, which demonstrates that being Asplund is consistently not a necessary
condition for the nonexistence of uncountable biorthogonal systems in C(K) spaces:

Theorem 3.5 (Koszmider, [17]). It is consistent with the usual axioms of set theory
ZFC that there exists a compact Hausdorff space K of weight ℵ1 such that C(K)
is a space with no uncountable semi-biorthogonal systems, i.e. there is no sequence
of pairs (xα, φα)α∈κ in X × X∗ such that φα(xα) = 1, φα(xβ) = 0 if α > β and
φα(xβ) ⩾ 0 if α < β.

It follows from a result of [19] thatK is not scattered, hence C(K) is not Asplund.

4. A construction by Todorčević

Although an outline of the proof of Theorem 3.3 appears in [35], many details
are left to the reader. Since the result gained importance in light of recent results-
which will be discussed in the next section-we have chosen to include a complete
and detailed proof here for the reader’s convenience.

Recall that the theorem says that assuming b = ℵ1, there exists a nonmetriz-
able compact scattered Hausdorff space K such that Kn is hereditarily separable
for every n ∈ ω. In particular, C(K) is a nonseparable Asplund space with no
uncountable biorthogonal systems.

Proof of Theorem 3.3. Let (fα)α<ω1
be an unbounded family in (ωω,⩽∗) and with-

out loss of generality we may assume that fα <
∗ fβ for every α < β < ω1.

Fix e : [ω1]2 → ω a function with the following properties:

• For every β ∈ ω1, eβ := e({·, β}) : β → ω is injective.
• For every α ∈ ω1, {eβ ↾α: β < ω1} is a countable set.
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The existence of such e is a consequence of the existence of an Aronszajn tree, see
e.g. [18].

Let ∆(α, β) = min{n ∈ ω : fα(n) ̸= fβ(n)} if α ̸= β, ∆(α, α) = ∞,

H(β) = {α < β : e(α, β) ⩽ fβ(∆(α, β))}
and recursively define

V (β) = {β} ∪
⋃

η∈H(β)

{α ∈ V (η) : ∀ξ ∈ H(β) ∪ {β} (ξ ̸= η ⇒ ∆(α, ξ) < ∆(α, η))}.

Let us denote by φ(α, η, β) the sentence

∀ξ ∈ H(β) ∪ {β} (ξ ̸= η ⇒ ∆(α, ξ) < ∆(α, η)),

so that
V (β) = {β} ∪

⋃
η∈H(β)

{α ∈ V (η) : φ(α, η, β) holds}.

Finally, let Vn(β) = {α ∈ V (β) : ∆(α, β) ⩾ n} and we claim that there is a
topology τ in ω1 such that {Vn(β) : n ∈ ω} forms a local topological basis at β.
The desired space K will be the one-point compactification of L := (ω1, τ).

Claim 1. If α ∈ Vn(β), then there is k ∈ ω such that Vk(α) ⊆ Vn(β).

Proof of Claim 1. We prove this by induction on β. Given α ∈ Vn(β), α ̸= β, let
η ∈ H(β) be such that α ∈ V (η) and φ(α, η, β) holds. In particular, n ⩽ ∆(α, β) <
∆(α, η), so that α ∈ Vn(η). By the inductive hypothesis, there is k ∈ ω such that
Vk(α) ⊆ Vn(η). We may assume without loss of generality k ⩾ max{n,∆(α, η)}
and let us check that Vk(α) ⊆ Vn(β). Fix α′ ∈ Vk(α). First, since ∆(α′, α) ⩾ k ⩾ n
and ∆(α, β) ⩾ n, we get that ∆(α′, β) ⩾ n. Second, ∆(α′, α) ⩾ ∆(α, η) implies
that φ(α′, η, β) holds, so that α′ ∈ V (β). Hence, Vk(α) ⊆ Vn(β). □

Let L = (ω1, τ) and notice that L is Hausdorff since V∆(α,β)(α)∩ V∆(α,β)(β) are
disjoint for α ̸= β. Let us prove that it is locally compact. For each β ∈ ω1 and
n ∈ ω, let

Fβ,n = {η ∈ H(β) : e(η, β) ⩽ fβ(n)}
and notice that the first property of e guarantees that Fβ,n is finite.

Claim 2. For every β ∈ ω1 and every n ∈ ω, if α ∈ Vn(β) ∖ Vn+1(β), then there
is η ∈ Fβ,n such that α ∈ V∆(η,β)(η) and φ(α, η, β) holds.

Proof of Claim 2. If α ∈ Vn(β)∖Vn+1(β), then ∆(α, β) = n and there is η ∈ H(β)
such that φ(α, η, β) holds. In particular, ∆(α, β) < ∆(α, η). Hence, ∆(η, β) =
∆(α, β) = n, and since η ∈ H(β), we get that e(η, β) ⩽ fβ(n), which ensures that
η ∈ Fβ,n and concludes the proof of the claim. □

Claim 3. For every β ∈ ω1 and every m ∈ ω, Vm(β) is compact.

Proof of Claim 3. We prove it by induction on β. Let X ⊆ Vm(β) be an infinite
set and notice that one of the following alternatives holds:

(1) For every n ⩾ m, X ∩ Vn(β) is infinite.
(2) There exists n ⩾ m such that X ∩ (Vn(β) ∖ Vn+1(β)) is infinite.
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If (1) holds, then β is an accumulation point of X in Vm(β) and we are done. If
(2) holds, it follows from Claim 2 that there is η ∈ Fβ,n such that V∆(η,β)(η) ∩X
is infinite and φ(α, η, β) holds for every α ∈ V∆(η,β)(η) ∩ X. By the inductive
hypothesis, there is γ ∈ V∆(η,β)(η) an accumulation point of V∆(η,β)(η) ∩ X. Let
us show that γ ∈ Vm(β).

Given k ⩾ max{n,∆(γ, η)}, there is α ∈ Vk(γ) ∩ V∆(η,β)(η) ∩X. In particular,
α ∈ Vn(β) ∖ Vn+1(β). Hence, ∆(γ, α) ⩾ k ⩾ n and ∆(α, β) = n, so that ∆(γ, β) =
n. Moreover, ∆(γ, α) ⩾ k ⩾ ∆(γ, η), so that

∀ξ ∈ H(β) ∪ {β}, ξ ̸= η ⇒ ∆(γ, ξ) = ∆(α, ξ) < ∆(α, η) = ∆(γ, η).

This proves that φ(γ, η, β) holds and, therefore, γ ∈ Vn(β) ⊆ Vm(β). □

L is clearly a scattered space, since for any nonempty X ⊂ ω1, minX is isolated
in X. Let K be the one point compactification of L and let us denote by ω1 the
infinity point.

The proof that Kn is hereditarily separable requires some extra work. Given

Γ ⊆ ω1, we say that a family (βξ
1 , . . . , β

ξ
n)ξ∈Γ ⊆ ωn

1 is cofinal if for every α ∈ ω1,

there is η ∈ Γ such that α < βξ
i for every ξ ⩾ η in Γ and every 1 ⩽ i ⩽ n.

Claim 4 ([35, Lemma 2.0]). If (βξ
1 , . . . , β

ξ
n)ξ∈ω1

⊆ ωn
1 is cofinal, then there are

δ < ξ < ω1 such that βδ
i ∈ H(βξ

i ) for every 1 ⩽ i ⩽ n.

Before proving the claim, let us finish the proof of the theorem. We want to
prove that if K is the one-point compactification of L, then Kn is hereditarily
separable for every n ∈ ω. From [30, Theorem 3.1], Kn is hereditarily separable if
and only if no uncountable sequence is left-separated, that is, for every uncountable

(β̄ξ)ξ<ω1 ⊆ Kn, there is η < ω1 such that β̄η ∈ {β̄ξ : ξ < η}. For each ξ < ω1, let

β̄ξ = (βξ
1 , . . . , β

ξ
n) ∈ Kn.

We prove this by induction on n (take K0 = {ω1}). Suppose that there is

1 ⩽ j ⩽ n and Γ ∈ [ω1]ω1 such that (βξ
j )ξ∈Γ is constant. Then, we can omit

the jth coordinate to get an uncountable sequence in Kn−1 which cannot be left-
separated by the inductive hypothesis. This immediately yields that (β̄ξ)ξ<ω1 is
not left-separated either.

Otherwise, we may assume without loss of generality that each (βξ
i )ξ∈ω1

is strictly
increasing (and does not include ω1). By contradiction, suppose that, for each

ξ < ω1, there is (mξ
1, . . . ,m

ξ
n) ∈ ωn such that

∀ξ < ω1 ∀1 ⩽ i ⩽ n βξ
i ∈ Vmξ

i
(βξ

i )

and

∀ξ < η < ω1 ∃1 ⩽ i ⩽ n βξ
i /∈ Vmη

i
(βη

i ).

Passing to an uncountable subset Γ ⊆ ω1, we may assume that, for each 1 ⩽ i ⩽ n,

there is mi ∈ ω such that mξ
i = mi for every ξ ∈ Γ. Also, refining Γ to a further

uncountable subset, we may assume without loss of generality that ∆(βξ
i , β

η
i ) ⩾ mi

for every ξ < η in Γ.
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Since (βξ
1 , . . . , β

ξ
n)ξ∈Γ ⊆ ωn

1 is cofinal, it follows from Claim 4 that there are

ξ < η in Γ such that βξ
i ∈ H(βη

i ) for every 1 ⩽ i ⩽ n. Since H(β) ⊆ V (β)

and ∆(βξ
i , β

η
i ) ⩾ mi for every ξ < η in Γ, we conclude that βξ

i ∈ Vmi
(βη

i ) for
every 1 ⩽ i ⩽ n, which contradicts our assumption and concludes the proof of the
theorem.

Let us finally prove Claim 4.

Proof of Claim 4. Since ωω with the usual Baire topology is a second countable
space, there is I ∈ [ω1]ω such that for every k ∈ ω and every ξ ∈ ω1, there is δ ∈ I

such that ∆(βδ
i , β

ξ
i ) ⩾ k for every 1 ⩽ i ⩽ n. Fix γ ∈ ω1 such that βδ

i < γ for

every δ ∈ I and every 1 ⩽ i ⩽ n. Let Γ ∈ [ω1]ω1 be such that (βξ
1 , . . . , β

ξ
n)ξ∈Γ is

still cofinal and if ξ < η in Γ, then βξ
i < βη

j for all 1 ⩽ i, j ⩽ n. We may assume,

without loss of generality, that γ < βξ
i for every ξ ∈ Γ and every 1 ⩽ i ⩽ n.

We will proceed by refining the cofinal family several times to some cofinal
subfamily with better properties. To simplify the notation, we will keep calling Γ
the uncountable subset obtained after each further refinement.

We use the second property of the function e to refine Γ to an uncountable subset
such that for each 1 ⩽ i ⩽ n, there is ei : γ → ω such that

∀ξ ∈ Γ eβξ
i
↾γ= ei.

We claim that we can refine Γ to some uncountable subset to ensure that for
each 1 ⩽ i ⩽ n, there is mi ∈ ω such that

∀ξ, η ∈ Γ fβξ
i
↾mi

= fβη
i
↾mi

and
∀k ∈ ω ∃ξ ∈ Γ ∀1 ⩽ i ⩽ n fβξ

i
(mi) > k.

We prove it for n = 1. Suppose by contradiction that for each m ∈ ω and s ∈ ωm

such that
Γs = {ξ ∈ Γ : fβξ

1
↾m= s}

is uncountable, there is ks ∈ ω such that

∀ξ ∈ Γs fβξ
1
(m) ⩽ ks.

Let f ∈ ωω be defined by

f(m) = max{ks : s ∈ ωm+1 and ∀j ∈ m+ 1, s(j) ⩽ ks↾j}.
For each m ∈ ω, let

Γm =
⋃

{Γs : s ∈ ωm and Γs is uncountable}.

Clearly Γm+1 ⊆ Γm and by induction one proves that each Γm is cocountable in Γ,
so that

⋂
m∈ω Γm is an uncountable set. It remains to notice that

∀ξ ∈
⋂
m∈ω

Γm fβξ
1
⩽∗ f,

which contradicts the fact that (fβξ
1
)ξ∈Γ is unbounded since (βξ

1)ξ∈Γ is cofinal in

ω1. This holds because if ξ ∈
⋂

m∈ω Γm, then for all m ∈ ω, sm = fβξ
1
↾m is such
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that Γs is uncountable. Therefore, fβξ
1
(m) ⩽ ks ⩽ f(m). The general case requires

a multi-dimensional version of the preceding argument.
Now, we use an auxiliary and arbitrary ξ0 ∈ Γ to choose δ ∈ I such that

∆(βδ
i , β

ξ0
i ) ⩾ mi, so that fβδ

i
↾mi

= f
β
ξ0
i

↾mi
. Since fβδ

i
<∗ fγ , let m0 ∈ ω be such

that fβδ
i
(k) < fγ(k) for all k ⩾ m0.

Finally, choose ξ ∈ Γ such that fβξ
i
(mi) ⩾ max{ei(βδ

i ), fβδ
i
(mi) + 1} for all 1 ⩽

i ⩽ n. We have that δ < ξ are such that e(βδ
i , β

ξ
i ) = eβξ

i
(βδ

i ) = ei(βδ
i ) ⩽ fβξ

i
(mi).

To conclude that δ ∈ H(ξ), it remains to see that mi = ∆(βδ
i , β

ξ
i ). From the choice

of δ and the fact that ∆(βξ
i , β

ξ0
i ) ⩾ mi, we know that mi ⩽ ∆(βδ

i , β
ξ0
i ) = ∆(βδ

i , β
ξ
i ).

On the other hand, fβξ
i
(mi) > fβδ

i
(mi), so that ∆(βδ

i , β
ξ
i ) ⩽ mi, which concludes

the proof. □

This finishes the proof of the theorem. □

5. Biorthogonal systems in nonseparable spaces

In this section we review results ensuring the consistency of the existence of
uncountable biorthogonal systems in every nonseparable Banach space. We start
with the following important result:

Theorem 5.1 (Todorčević, [37]). Martin’s maximum implies that every Banach
space of density ℵ1 has a quotient with a monotone long Schauder basis of length
ℵ1.

The proof of this result involves using Martin’s maximum to get an improvement
of the argument presented after Theorem 2.1. We discuss below a variation of that
argument, which proves the following equivalence result:

Theorem 5.2 (Brech, Todorčević, [7]). Under the P-ideal dichotomy, the following
are equivalent:

(1) b > ℵ1

(2) All Asplund spaces of density ℵ1 have a quotient with a monotone long
Schauder basis of length ℵ1.

(3) All nonseparable Asplund spaces have a biorthogonal system of length ℵ1.

Sketch of the proof. The contrapositive implication from ¬(1)⇒ ¬(3) follows im-
mediately from [35, Theorem 2.4] (Theorem 3.3 above), with no use of the P-ideal
dichotomy. (2)⇒(3) holds in ZFC because if X is a nonseparable Asplund space
and Y is a subspace of X o density ℵ1, (2) implies that Y has a quotient with a
monotone long Schauder basis of length ℵ1. The associated biorthogonal system in
this quotient can be lifted to a biorthogonal system in Y using the quotient map-
ping. And the functionals of this biorthogonal system can be lifted to the whole
space using Hahn-Banach Theorem.

The real work is to prove (1)⇒(2) and this is where the P-ideal dichotomy
(PID, for short) comes into play. A P-ideal I of countable infinite subsets of some
uncountable set S is an ideal of sets (ie. closed under subsets and finite unions)
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which satisfies, moreover, that if (In)n is a sequence of elements of I, then there
is I ∈ I such that In ∖ I is finite for every n ∈ ω. The PID was introduced by
Todorčević in [36] and it says that given any P-ideal I of countable infinite subsets
of some uncountable set S, either there is an uncountable Γ ⊆ S such that all of its
countable subsets belong to I, or S can be partitioned into countably many pieces
Sn, n ∈ ω, in such a way that any I ∈ I has finite intersection with each piece
Sn. In a certain way, when I imposes a property on its elements, the PID ensures
that either an uncountable subset of S shares this property, or S can be split into
countably many pieces whose behavior is orthogonal to that of elements of I.

Similarly to the argument presented in Section 2, in order to prove (1)⇒(2), we
construct a long basic sequence (φα)α∈Γ0

in X∗ such that the mapping

Q : X → (span{φα : α ∈ Γ0})∗ Q(x)(φ) = φ(x)

is a quotient mapping with range span{φ∗
α : α ∈ Γ0}.

In the original separable setting from Johnson and Rosenthal’s result, since BX∗

is metrizable in the weak∗ topology, we immediately get a normalized weakly∗

null sequence from the fact that BX∗ is weakly∗ dense in SX∗ and by recursion
one can pass to a subsequence which gives the Schauder basis of a quotient of
X. In the case when X has density smaller than b presented in Section 2, the
normalized weakly∗ null sequence was obtained from classical results and a similar
recursion argument leads to the convenient basic sequence. The use of the fact
that X has density smaller than b helps in locating the range of Q within the space
span{φ∗

nk
: k ∈ ω} as

Q(x) =
∑
k∈ω

φnk
(x)φ∗

nk

for x in a dense subset of X.
Here, the argument is indeed more involved and the first and main difficulty is

that we have to start the refinements from an uncountable version of the normalized
weakly∗ null sequence, which is not given by classical results. In order to get it,
we start from a suitable normalized sequence (ψα)α∈ω1

in X∗ such that for every
x ∈ X, (ψα(x))α∈ω1

has countable support. The PID is then used to select the
uncountable version of a weakly∗ null convergent sequence: a sequence (φα)α∈ω1

such that

∀x ∈ X ∀ε > 0 {α ∈ ω1 : |φα(x)| ⩾ ε} is finite.

Two P-ideals are used in this argument, the first one containing countable pieces
of the desired uncountable sequence:

I1 = {I ∈ [ω1]ω : (∀x ∈ D)(∀ε ∈ (0, 1) ∩Q) {α ∈ I : |ψα(x)| ⩾ ε} is finite},

where D is a dense subset of X of cardinality ℵ1. It is ensured to be a P-ideal using
the fact that |D| = ℵ1 < b and the first alternative of the PID would lead us to the
desired uncountable version of a weakly∗ null convergent sequence. However, we
cannot guarantee that the second alternative does not hold. Hence, we have to pass
to some sort of weakly∗ sequentially compact bidimensional version of (ψα)α∈ω1

where a Fubini-like argument is used. We then define a second P-ideal and show
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that the second alternative of PID cannot hold for this ideal. This yields the desired
uncountable sequence (φα)α∈ω1

which is weakly∗ null.
From this point on, the proof follows along similar lines as the one presented in

Section 2. We make use of the P-ideal formed by countable subsets of Γ satisfying
the desired property:

I = {I ∈ [ω1]ω : (∀x ∈ D)
∑
α∈I

|fα(x)| < +∞}.

Once we show that the second alternative is impossible, we obtain an uncountable
Γ ⊆ ω1 such that

∀x ∈ D
∑
α∈Γ

|φα(x)| < +∞.

We finish by refining the sequence to an uncountable Γ0 ⊆ Γ such that the mapping
Q is indeed a quotient mapping and (φ∗

α)α∈Γ0
is a long basic sequence of its range.

The local reflexivity principle is used in a similar way as in the argument presented
in Section 2. □

Theorem 5.1 had already been reformulated in [38], where Martin’s maximum
was replaced by the P-ideal dichotomy and the cardinal assumption p > ℵ1. It is
worth recalling that the conclusion of Theorem 5.2 holds for Asplund spaces, while
both in Theorem 5.1 (and in its modification in) [38], the conclusion holds for all
Banach spaces. The point is that the cardinal assumption p > ℵ1 allows stronger
diagonalization arguments than the weaker b > ℵ1. Asplund spaces have weak∗

sequentially compact dual balls and this helps in finding convergent sequences and
replaces the diagonalization arguments at some point. In both cases, convergent
sequences are used to kill one of the alternatives of the PID.
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