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THIN-VERY TALL COMPACT SCATTERED SPACES

WHICH ARE HEREDITARILY SEPARABLE

CHRISTINA BRECH AND PIOTR KOSZMIDER

Abstract. We strengthen the property Δ of a function f : [ω2]2 → [ω2]≤ω

considered by Baumgartner and Shelah. This allows us to consider new types of
amalgamations in the forcing used by Rabus, Juhász and Soukup to construct
thin-very tall compact scattered spaces. We consistently obtain spaces K as
above where Kn is hereditarily separable for each n ∈ N. This serves as a
counterexample concerning cardinal functions on compact spaces as well as
having some applications in Banach spaces: the Banach space C(K) is an
Asplund space of density ℵ2 which has no Fréchet smooth renorming, nor an
uncountable biorthogonal system.

1. Introduction

Given a compact scattered space K, we call the derivative of K (denoted by
K ′) the subset of K formed by its accumulation points, and we inductively define
K(α) = (K(β))′ if α = β+1 andK(α) =

⋂
β<α K(β) if α is a limit ordinal. The height

of K, ht(K), is the smallest ordinal α such that K(α) is finite and nonempty, and
the width of K, wd(K), is the supremum of the cardinalities |K(α)\K(α+1)| for α <
ht(K). We call K =

⋃
α<ht(K)K

(α) \K(α+1) the Cantor-Bendixson decomposition

of K and K(α) \K(α+1) its αth Cantor-Bendixson level.
The purpose of this work is to show that the existence of compact hereditarily

separable scattered spaces of height ω2 is consistent with the usual axioms of set
theory. For a given ordinal θ let us consider the following notation:

• A cw(θ) space is a compact scattered space of countable width and height
equal to θ.

• An hs(θ) space is a compact scattered space which is hereditarily separable
and of height equal to θ.

cw(ω1) spaces are usually called thin-tall spaces and cw(ω2) spaces are the thin-very
tall spaces. First we remark that any hs(θ) space is a cw(θ) space as the Cantor-
Bendixson levels form discrete subspaces. Whether there is or is not in ZFC a
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cw(ω1) space was a question posed by Telgársky in 1968 (unpublished) and first
(consistently) answered by Ostaszewski [21], using ♦. Rajagopalan constructed the
first ZFC example of a cw(ω1) in [23]. Further, Juhász and Weiss generalized these
results (and simplified their proofs) in [12] proving in ZFC that for any ordinal
θ < ω2, there is a cw(θ) space.

For higher θ’s the situation changes: in any model of CH there are no cw(ω2)
spaces and Just proved in [13] that neither are there such spaces in the Cohen model
(where ¬ CH holds). On the other hand, Baumgartner and Shelah [2] constructed
by forcing the first consistent example of a cw(ω2) space. An interesting point
of this forcing construction was the use of a new combinatorial device, called a
function with the property Δ.

The main purpose of this work is to prove the consistency of the existence of
an hs(ω2) space. In fact, our space has even stronger properties: each of its finite
powers is hereditarily separable. Whether consistently there are hs(ω3) or even
cw(ω3) spaces remains a well-known open question. On the other hand, Mart́ınez
in [17] adopted the method of [2] to obtain the consistency of the existence of cw(θ)
spaces for each θ < ω3.

It follows from an old result of Shapirovskĭı [25] that for any compact space K,
hd(K) ≤ hL(K)+. Our construction shows that the dual inequality does not follow
from ZFC, since for our compact space K, we have that hL(K) = ℵ2 �≤ ℵ1 =
hd(K)+. Nevertheless, the dual inequality holds under GCH for regular spaces:
since the weight w(K) of a regular space K is less than or equal to 2d(K) (see,
for example, [8]), we trivially conclude that hL(K) ≤ w(K) ≤ 2d(K) = d(K)+ ≤
hd(K)+ under GCH.

Turning to properties of Banach spaces, let us first recall some definitions and
results: a Banach space X is an Asplund space if every continuous and convex
real-valued function on X is Fréchet smooth at all points of a Gδ dense subset of
X. For separable Banach spaces, this is equivalent to admitting a Fréchet smooth
renorming (see [4]). Namioka and Phelps proved in [19] that C(K) is Asplund if
and only if K is scattered. Thus, our C(K) is an Asplund space.

Haydon constructed in [7] the first nonseparable Asplund space C(K) which does
not admit a Fréchet smooth renorming, concluding that the situation changes for
nonseparable Asplund spaces. Later, Jiménez Sevilla and Moreno analyzed in [10]
the structural properties of the space C(K), where K is the well-known Kunen line
constructed under CH (see [20]). They showed, for the Kunen line K, that C(K)
is also a nonseparable Asplund space with no Fréchet smooth renorming.

The weight of our space K is ℵ2, so that C(K) is an Asplund space of density ℵ2.
The fact that K is compact scattered and every finite power of K is hereditarily
separable implies, in the same way as for the Kunen line, that C(K) does not admit
any Fréchet smooth renorming, but as in the case of the Kunen line we do not know
if it admits a Gâteaux smooth renorming, or a Fréchet smooth bump function.

A biorthogonal system on a Banach space X is a family (xα, ϕα)α<κ ⊆ X ×X∗

such that ϕα(xβ) = δα,β , and a semi-biorthogonal system on a Banach space X is
a sequence (xα, ϕα)α<κ ⊆ X ×X∗ such that ϕα(xβ) = 1 if α = β, ϕα(xβ) = 0 if
α < β and ϕα(xβ) ≥ 0 if β < α. Todorcevic showed in [29] (Theorem 9 together
with the results of [3]) the existence of uncountable semi-biorthogonal systems in
Banach spaces C(K) of density strictly greater than ℵ1. On the other hand, the fact
that our space K is compact scattered and every finite power of K is hereditarily
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separable implies, in the same way as for the Kunen line, that C(K) does not admit
an uncountable biorthogonal system. It follows that Todorcevic’s result cannot
be improved in ZFC by replacing the existence of uncountable semi-biorthogonal
systems by the existence of uncountable biorthogonal systems in spaces C(K) of
large density. On the other hand it is proved in [29] that it is consistent that every
nonseparable Banach space has an uncountable biorthogonal system, showing that
the existence of a Banach space such as ours or Kunen’s cannot be proved in ZFC.

Our construction is based on the Juhász and Soukup [11] interpretation of Rabus’
work [22], where he modified the Baumgartner-Shelah forcing from [2] to obtain a
countably tight space which is initially ω1-compact and noncompact, answering a
question of Dow and van Douwen.

This paper is organized as follows: we finish this section by reviewing the method
of Juhász and Soukup and some related results and definitions which we will need
afterwards. In Section 2 we prove the key lemma which enables us to prove our
main result in a straightforward way. This lemma introduces a new way of amal-
gamating conditions in forcings which add thin-very tall spaces. One can apply
these amalgamations in the generic construction if one strengthens the property Δ
of a function involved in the forcing. In Section 3, we introduce the strong prop-
erty Δ and, assuming the existence of a function which satisfies it, we prove the
main results and analyze their consequences in topological and functional analytic
terms. Section 4 is devoted to establishing the consistency of the existence of a
function with the strong property Δ. Section 4 is due to the second author and the
remaining sections to the first author.

The notation and terminology used are those of [11]. Given a set X, ℘(X) is the
power set of X and, given a cardinal κ, [X]κ (resp. [X]≤κ and [X]<κ) denotes the
family of subsets of X of cardinality equal to κ (resp. less than or equal to κ and
less than κ).

Let us start by recalling the definition of the property Δ:

Definition 1.1 (Baumgartner, Shelah, [2], p.122). A function f : [ω2]
2 → [ω2]

≤ω

has the property Δ if f({ξ, η}) ⊆ min{ξ, η} for all {ξ, η} ∈ [ω2]
2 and for any

uncountable family A of finite subsets of ω2, there are distinct a, b ∈ A such that
for any τ ∈ a ∩ b, any ξ ∈ a \ b and any η ∈ b \ a we have:

1) a ∩ b ∩min{ξ, η} ⊆ f({ξ, η});
2) τ < ξ ⇒ f({τ, η}) ⊆ f({ξ, η});
3) τ < η ⇒ f({τ, ξ}) ⊆ f({ξ, η}).

Now, we fix a function f : [ω2]
2 → [ω2]

≤ω with the property Δ.

Definition 1.2 (Juhász, Soukup [11], Definition 2.1). Let Pf be the forcing formed
by conditions p = (Dp, hp, ip), where:

1. Dp ∈ [ω2]
<ω,

2. hp : Dp → ℘(Dp) and for all ξ ∈ Dp, maxhp(ξ) = ξ,
3. ip : [Dp]

2 → [Dp]
<ω and for all ξ, η ∈ Dp, ξ < η, we have that:

(a) if ξ ∈ hp(η), then hp(ξ) \ hp(η) ⊆
⋃

γ∈ip({ξ,η}) hp(γ),

(b) if ξ /∈ hp(η), then hp(ξ) ∩ hp(η) ⊆
⋃

γ∈ip({ξ,η}) hp(γ),

(c) ip({ξ, η}) ⊆ f({ξ, η}),
ordered by p ≤ q if Dp ⊇ Dq, for all ξ ∈ Dq, hp(ξ) ∩Dq = hq(ξ) and ip|[Dq]2 = iq.
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To simplify notation, it is convenient to define the following:

Definition 1.3 (Juhász, Soukup [11]). Given finite nonempty sets of ordinals x
and y such that maxx < max y, we define

x ∗ y =

{
x \ y if maxx ∈ y,
x ∩ y if maxx /∈ y.

We now rewrite conditions 3(a) and 3(b) of the definition of the forcing as

hp(ξ) ∗ hp(η) ⊆
⋃

γ∈ip({ξ,η})
hp(γ).

To define the space Kf , fix the ground model V and a generic filter G.

Definition 1.4 (Juhász, Soukup [11], Definition 2.3). For each ξ < η < ω2, working
in V Pf , let

h(ξ) =
⋃

p∈G

hp(ξ) and i({ξ, η}) =
⋃

p∈G

ip({ξ, η}),

and let Lf be the topological space (ω2, τ ), where τ is the topology on ω2 which
has the family of sets

{h(ξ) : ξ < ω2} ∪ {ω2 \ h(ξ) : ξ < ω2}
as a topological subbasis. We call h(ξ) the generic neighborhood of ξ.

From Theorem 1.5 of [11], it follows that for all ξ < ω2, h(ξ) is a compact
subspace of (ω2, τ ) and it easy to check that

(+) {h(ξ) \
⋃

η∈F

h(η) : F ∈ [ξ]<ω} forms a local topological basis at ξ.

Therefore Lf is a locally compact scattered zero-dimensional space.
We are now ready to define Kf :

Definition 1.5. In V Pf , Kf is the one-point compactification of Lf . The point of
compactification is denoted ∗; thus Kf \ Lf = {∗}.

In particular, we use the following results.

Theorem 1.6 (Rabus [22], Lemma 4.1; Juhász, Soukup [11], Lemma 2.8). Pf

satisfies c.c.c.

Proposition 1.7. V Pf satisfies “Kf is a compact scattered zero-dimensional space”.

2. Amalgamating conditions

In this section, we present the key lemma needed to prove our main result. Let
us start with some preliminaries and auxiliary lemmas.

Definition 2.1. Let p1 = (D1, h1, i1), p2 = (D2, h2, i2) ∈ Pf be two conditions.
We say that p1 and p2 are isomorphic conditions if there is an order-preserving
bijective function e : D1 → D2 satisfying the following conditions:

(a) if ξ, η ∈ D1, then ξ ∈ h1(η) if and only if e(ξ) ∈ h2(e(η));
(b) if ξ ∈ D1 ∩D2, then e(ξ) = ξ.

In this case, if the order-preserving bijection e is such that ξ ≤ e(ξ) for every ξ ∈ D1

we say that p1 is lower than p2.
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For example we have the following:

Lemma 2.2. Let p1 = (D1, h1, i1), p2 = (D2, h2, i2) ∈ Pf be two isomorphic
conditions and let e : D1 → D2 be the order-preserving bijection. Then for every
ξ ∈ D1 ∩D2,

(a) (h1(ξ) ∪ h2(ξ)) ∩D1 = h1(ξ),
(b) (h1(ξ) ∪ h2(ξ)) ∩D2 = h2(ξ),
(c) h1(ξ) = e−1[h2(ξ)].

Proof. Directly from Definition 2.1. �

Definition 2.3 (Juhász, Soukup [11]). Given p1 = (D1, h1, i1), p2 = (D2, h2, i2) ∈
Pf , define a mapping δ2 : dom(δ2) → D1 ∩D2, where

dom(δ2) = {η ∈ D2 : there is δ ∈ D1 ∩D2 such that η ∈ h2(δ)}

and

δ2(η) = min{δ ∈ D1 ∩D2 : η ∈ h2(δ)}.

Lemma 2.4. Suppose that p1 = (D1, h1, i1) and p2 = (D2, h2, i2) ∈ Pf are two
conditions. Then,

(a) for all η ∈ dom(δ2) \D1, we have that η < δ2(η) and
(b) for all η ∈ D1 ∩D2 we have η ∈ dom(δ2) and δ2(η) = η.

Proof. Directly from Definition 2.3. �

We prove the next lemma, for the reader’s convenience.

Lemma 2.5 (Juhász, Soukup [11]). Let p1 = (D1, h1, i1), p2 = (D2, h2, i2) ∈ Pf

be two isomorphic conditions. If ξ ∈ D1 ∩D2, then

h2(ξ) = δ−1
2 [h1(ξ)].

Proof. Let ξ ∈ D1 ∩D2.
Suppose that η ∈ dom(δ2) and δ2(η) ∈ h1(ξ). Since δ2(η), ξ ∈ D1 ∩ D2, it

follows from Definition 2.1(a) and (b) that δ2(η) ∈ h2(ξ). Suppose that η /∈ h2(ξ).
Then, η ∈ h2(δ2(η)) ∗ h2(ξ) so that there is δ ∈ i2({δ2(η), ξ}) such that η ∈ h2(δ),
which contradicts the minimality of δ2(η) and concludes the proof of the inclusion
δ−1
2 [h1(ξ)] ⊆ h2(ξ).
Reciprocally, if η ∈ h2(ξ), then η ∈ dom(δ2). Suppose that δ2(η) /∈ h2(ξ). Then,

η ∈ h2(δ2(η)) ∗ h2(ξ) so that there is δ ∈ i2({δ2(η), ξ}) such that η ∈ h2(δ), which
contradicts the minimality of δ2(η). So, δ2(η) ∈ h2(ξ) and since δ2(η), ξ ∈ D1 ∩D2,
it follows from Definition 2.1(a) and (b) that δ2(η) ∈ h1(ξ), concluding the proof
of the lemma. �

In the proof of c.c.c., Rabus, Juhász and Soukup considered the minimal amal-
gamation which is constructed in a symmetric way with respect to both of the
conditions being extended. We will consider an asymmetric amalgamation. The
lack of symmetry in our amalgamation is the result of using two functions, δ2 and
e, in the definition of the amalgamation. The final auxiliary lemma below char-
acterizes the sets given by the operation ∗ for elements of the extended condition.
The role of the function g will be played by δ2 or by e.
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Lemma 2.6. Let p = (Dp, hp, ip) ∈ Pf and let Dq ∈ [ω2]
<ω, hq : Dq → ℘(Dq) and

g : dom(g) → Dp be such that

(i) Dp ⊆ Dq, dom(g) ⊆ Dq,
(ii) for all ξ ∈ Dp ∩ dom(g) we have g(ξ) = ξ,
(iii) for all ξ ∈ Dp, hq(ξ) = hp(ξ) ∪ g−1[hp(ξ)].

Then, for all ξ, η ∈ Dp, ξ < η, we have that

(hq(ξ) ∗ hq(η)) ∩Dp = hp(ξ) ∗ hp(η)

and
(hq(ξ) ∗ hq(η)) ∩ (Dq \Dp) = g−1[hp(ξ) ∗ hp(η)] ∩ (Dq \Dp).

Proof. Since ξ, η ∈ Dp, ξ < η, by (ii) we have that ξ ∈ hp(η) if and only if ξ ∈ hq(η),
so (ii) obviously gives (hq(ξ) ∗ hq(η)) ∩Dp = hp(ξ) ∗ hp(η).

Now suppose ξ ∈ hq(η), so ξ ∈ hp(η) and so by (iii),

(hq(ξ) \ hq(η)) ∩ (Dq \Dp) = (hq(ξ) ∩ (Dq \Dp)) \ (hq(η) ∩ (Dq \Dp))

= (g−1[hp(ξ)]∩(Dq \Dp))\(g−1[hp(η)]∩(Dq \Dp)) = g−1[hp(ξ)\hp(η)]∩(Dq \Dp).

On the other hand, if ξ /∈ hq(η), then ξ /∈ hp(η) and so by (iii),

(hq(ξ) ∩ hq(η)) ∩ (Dq \Dp) = (hq(ξ) ∩ (Dq \Dp)) ∩ (hq(η) ∩ (Dq \Dp))

= (g−1[hp(ξ)]∩(Dq\Dp))∩(g−1[hp(η)]∩(Dq\Dp)) = g−1[hp(ξ)∩hp(η)]∩(Dq\Dp),

concluding the proof of the lemma. �

Now we go to our key lemma: a strong hypothesis about the behaviour of the
function f allows us to amalgamate two isomorphic conditions, one lower than the
other, into a common extension q in such a way that h(ξ) ∩Dq ⊆ h[e(ξ)] ∩Dq for
ξ in the domain of the lower of the two conditions.

Lemma 2.7. Let p1 = (D1, h1, i1), p2 = (D2, h2, i2) ∈ Pf be two isomorphic
conditions and suppose p1 is lower than p2. Let e : D1 → D2 be the order-preserving
bijective function and assume that

(A) if ξ, η ∈ D1 ∩D2 and ξ �= η, then i1({ξ, η}) = i2({ξ, η});
(B) for all ζ ∈ D1 ∩D2, all ξ ∈ D1 \D2 and all η ∈ D2 \D1:

(i) if ζ < ξ, then f({ζ, η}) ⊆ f({ξ, η});
(ii) D1 ∩ ξ ∩ η ⊆ f({ξ, η}).

Then there is q ∈ Pf , q ≤ p1, p2, such that for all ξ ∈ D1 and all η ∈ D2:

ξ ∈ hq(η) if and only if e(ξ) ∈ h2(η).

Proof. We define q = (Dq, hq, iq) by: Dq = D1 ∪D2;

hq(ξ) =

{
h1(ξ) ∪ δ−1

2 [h1(ξ)] if ξ ∈ D1,
h2(ξ) ∪ e−1[h2(ξ)] if ξ ∈ D2,

and

iq({ξ, η}) =

⎧
⎨

⎩

i1({ξ, η}) if ξ, η ∈ D1,
i2({ξ, η}) if ξ, η ∈ D2,
f({ξ, η}) ∩Dq otherwise.

Note that (A) implies that the set iq({ξ, η}) is well-defined for any ξ, η ∈ D1 ∩D2,
ξ �= η; clearly iq is well-defined for the other pairs. Also, if ξ ∈ D1∩D2, then the set
hq(ξ) is well-defined because both of the conditions reduce to hq(ξ) = h1(ξ)∪h2(ξ)
by Lemmas 2.5 and 2.2(c).
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We have to show that q ∈ Pf , i.e., that q satisfies conditions 1, 2 and 3 from
Definition 1.2. The fact that q satisfies conditions 1.2.1 and 1.2.3(c) follows directly
from the definition of q and from the fact that p1, p2 ∈ Pf . Condition 1.2.2 is
satisfied because p1, p2 ∈ Pf and the functions e and δ2 are nondecreasing. In what
follows we will be using Lemma 2.6 for p = p1, p2 and g = δ2, e, respectively. The
hypothesis of the lemma is satisfied for these objects by 2.4(b) and 2.1(b).

Now we check conditions 1.2.3(a) and (b). Let ξ, η ∈ Dq, ξ < η, and consider
the following cases:

Case 1. ξ, η ∈ D1.
It follows from the definition of q and from Lemma 2.6 that

(hq(ξ) ∗ hq(η)) ∩D1 = h1(ξ) ∗ h1(η)

and

(hq(ξ) ∗ hq(η)) ∩ (D2 \D1) = δ−1
2 [h1(ξ) ∗ h1(η)] ∩ (D2 \D1).

Now let ζ ∈ hq(ξ) ∗ hq(η).

Subcase 1.1. ζ ∈ D1.
In this subcase, ζ ∈ h1(ξ) ∗ h1(η) and there is γ ∈ i1({ξ, η}) = iq({ξ, η}) such

that ζ ∈ h1(γ) ⊆ hq(γ), as we wanted.

Subcase 1.2. ζ ∈ D2 \D1.
In this subcase, δ2(ζ) ∈ h1(ξ) ∗ h1(η) and, since δ2(ζ), ξ, η ∈ D1 and p1 ∈ Pf ,

there is γ ∈ i1({ξ, η}) = iq({ξ, η}) such that δ2(ζ) ∈ h1(γ). Since γ ∈ D1, it follows
by the definition of q that ζ ∈ hq(γ), as we wanted.

Case 2. ξ, η ∈ D2.
It follows from the definition of q and from Lemma 2.6 that

(hq(ξ) ∗ hq(η)) ∩D1 = h1(ξ) ∗ h1(η)

and

(hq(ξ) ∗ hq(η)) ∩ (D2 \D1) = e−1[h1(ξ) ∗ h1(η)] ∩ (D2 \D1).

Now let ζ ∈ hq(ξ) ∗ hq(η).

Subcase 2.1. ζ ∈ D1 \D2.
In this subcase, e(ζ) ∈ h2(ξ) ∗h2(η) and, since e(ζ), ξ, η ∈ D2 and p2 ∈ Pf , there

is γ ∈ i2({ξ, η}) = iq({ξ, η}) such that e(ζ) ∈ h2(γ). Since γ ∈ D2, it follows by
the definition of q that ζ ∈ hq(γ), as we wanted.

Subcase 2.2. ζ ∈ D2.
In this subcase, ζ ∈ h2(ξ) ∗ h2(η) and there is γ ∈ i2({ξ, η}) = iq({ξ, η}) such

that ζ ∈ h2(γ) ⊆ hq(γ), as we wanted.

Case 3. ξ ∈ D1 \D2 and η ∈ D2 \D1.
Here we fix ζ ∈ hq(ξ) ∗ hq(η) and we consider the following subcases:

Subcase 3.1. ζ ∈ D1.
In this subcase, ζ ∈ D1 ∩ ξ ∩ η and it follows from (B)(ii) that ζ ∈ f({ξ, η}).

Hence, ζ ∈ D1∩ f({ξ, η}) ⊆ Dq ∩ f({ξ, η}) = iq({ξ, η}). Taking γ = ζ, we conclude
that ζ ∈ hq(γ) and γ ∈ iq({ξ, η}), as we wanted.
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Subcase 3.2. ζ ∈ D2 \D1.
First note that, regardless of the fact whether hq(ξ) ∗ hq(η) = hq(ξ) ∩ hq(η) or

hq(ξ)∗hq(η) = hq(ξ)\hq(η), the assumption ζ ∈ hq(ξ)∗hq(η) implies that ζ ∈ hq(ξ).
In this subcase, it follows from the definition of hq(ξ) that δ2(ζ) ∈ h1(ξ), so that

δ2(ζ) ∈ D1∩ξ∩η, and it follows from (B)(ii) that δ2(ζ) ∈ f({ξ, η})∩Dq = iq({ξ, η}).
By the definition of δ2(ζ), ζ ∈ h2(δ2(ζ)) ⊆ hq(δ2(ζ)). Taking γ = δ2(ζ), we have
that ζ ∈ hq(γ) and γ ∈ iq({ξ, η}), concluding the proof of this subcase.

Case 4. ξ ∈ D2 \D1 and η ∈ D1 \D2.
Again we fix ζ ∈ hq(ξ) ∗ hq(η) and we consider the following subcases:

Subcase 4.1. ζ ∈ D1.
The proof in this subcase follows identically to the proof of Subcase 3.1.

Subcase 4.2.1 ζ ∈ D2 \D1. We start this last subcase by proving the following:

Fact 1. {ζ, ξ}∩ dom(δ2) is a nonempty set such that min δ2[{ζ, ξ}] < η and if both
ζ and ξ are in dom(δ2), then δ2(ζ) �= δ2(ξ).

Proof of Fact 1. First remark that, from the definition of ∗, it follows that if ξ /∈
hq(η), then ζ ∈ hq(ξ) ∗hq(η) = hq(ξ)∩hq(η) and therefore ζ ∈ hq(η). Analogously,
if ξ ∈ hq(η), then ζ ∈ hq(ξ) ∗ hq(η) = hq(ξ) \ hq(η) and therefore ζ /∈ hq(η). So,

|{ζ, ξ} ∩ hq(η)| = 1.

From the definition of q we have that, since ξ, ζ �∈ D1 and η ∈ D1 in this subcase,
the above means that

|{ζ, ξ} ∩ δ−1
2 [h1(η)]| = 1,

so that {ζ, ξ}∩dom(δ2) is a nonempty set. The above observation also implies that
δ2[{ζ, ξ}] ∩ h1(η) �= ∅ and so, min δ2[{ζ, ξ}] ≤ η. Now since η /∈ D2 and the range
of δ2 is included in D1 ∩D2, the inequality must be strict.

Finally, we have seen that ζ ∈ hq(η) if and only if ξ /∈ hq(η) and so, if both ζ and
ξ are in the domain of δ2, it follows that δ2(ζ) ∈ h1(η) if and only if δ2(ξ) /∈ h1(η),
so that δ2(ζ) �= δ2(ξ), concluding the proof of Fact 1.

Take θ = min{δ2(ξ), δ2(ζ)} and note that θ �= ξ since ξ ∈ D2 \D1 and the range
of δ2 is included in D1 ∩D2. We go now to the following subcases:

Subcase 4.2.1. θ < ξ.
Here, θ �= δ2(ξ) and therefore δ2(ζ) = θ ∈ D1 ∩ ξ ∩ η. From condition (B)(ii), it

follows that δ2(ζ) ∈ f({ξ, η}) ∩ Dq = iq({ξ, η}). Since ζ ∈ h2(δ2(ζ)) ⊆ hq(δ2(ζ)),
taking γ = δ2(ζ), we have that ζ ∈ hq(γ) and γ ∈ iq({ξ, η}), as we wanted.

Subcase 4.2.2. θ > ξ.
Note that ζ ∈ hq(ξ) ∗ hq(η) ⊆ hq(ξ). Since ζ and ξ satisfying the hypothesis of

Case 4.2 are in D2 \ D1, it follows from the definition of hq that ζ ∈ h2(ξ). To
finish, let us show the following:

Fact 2. ζ ∈ h2(ξ) ∗ h2(θ).

1This case is similar to Subcase 2.2 in the proof of Claim 2.7.2 of [11].
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Proof of Fact 2. First suppose θ = δ2(ξ). If ζ �∈ dom(δ2), then ζ /∈ h2(δ2(ξ)). If
ζ ∈ dom(δ2), from Fact 1 and the minimality of δ2(ζ), it follows that ζ /∈ h2(δ2(ξ)).
Since ξ ∈ h2(δ2(ξ)), we have that ζ ∈ h2(ξ) \ h2(δ2(ξ)) = h2(ξ) ∗ h2(θ).

Now suppose θ = δ2(ζ). Analogously we prove that ξ /∈ h2(δ2(ζ)) and ζ ∈
h2(ξ) ∩ h2(δ2(ζ)) = h2(ξ) ∗ h2(θ), concluding the proof of Fact 2.

Finally, since p2 ∈ Pf , there is γ ∈ i2({ξ, θ}) such that ζ ∈ h2(γ) ⊆ hq(γ). By
condition (B)(i), which can be used by Fact 1, we have that

i2({ξ, θ}) ⊆ f({ξ, θ}) ∩D2 ⊆ f({ξ, η}) ∩Dq = iq({ξ, η}).
Hence, γ ∈ iq({ξ, η}) and ζ ∈ hq(γ), concluding the proof of Subcase 4.2, Case 4
and thus concluding the proof of Claim 2.

Now that we know that q ∈ Pf , let us check the other conclusions: it follows
easily from the definition of q and Lemma 2.5 that q ≤ p1 and analogously it follows
from the definition of q and Lemma 2.4 that q ≤ p2.

Finally, we verify the condition we want q to satisfy, that is, ξ ∈ h2(η)∪e−1[h2(η)]
if and only if e(ξ) ∈ h2(η): let ξ ∈ D1 and η ∈ D2 and consider again the following
cases:

Case 1. ξ ∈ D1 ∩D2.
It follows from the fact that in this case e(ξ) = ξ.

Case 2. ξ ∈ D1 \D2.
In this case, ξ ∈ h2(η) ∪ e−1[h2(η)] if and only if ξ ∈ e−1[h2(η)] if and only if

e(ξ) ∈ h2(η), concluding the proof of the lemma. �

3. The main results

To apply the key lemma proved in the previous section, the function f on which
the forcing Pf depends must satisfy a stronger version of the property Δ:

Definition 3.1. A function f : [ω2]
2 → [ω2]

≤ω has the strong property Δ if
f({ξ, η}) ⊆ min{ξ, η} for all {ξ, η} ∈ [ω2]

2 and for any uncountable Δ-system A
of finite subsets of ω2, there are distinct a, b ∈ A and an order-preserving bijection
e : a → b which is the identity on a ∩ b and such that ξ ≤ e(ξ) for all ξ ∈ a and for
any τ ∈ a ∩ b, any ξ ∈ a \ b and any η ∈ b \ a we have:

1) a ∩min{ξ, η} ⊆ f({ξ, η}),
2) τ < ξ ⇒ f({τ, η}) ⊆ f({ξ, η}),
3) τ < η ⇒ f({τ, ξ}) ⊆ f({ξ, η}).

Finally we arrive at the main result of this paper.

Theorem 3.2. If f : [ω2]
2 → [ω2]

≤ω has the strong property Δ, then V Pf satisfies
“for all n ∈ N, Kn

f is hereditarily separable”.

Proof. We prove this by induction on n ∈ N: in V Pf , fix n ∈ N and suppose that
for all 0 ≤ i < n, Ki

f is hereditarily separable (take K0
f = {∗}) and let us show

that Kn
f is hereditarily separable. We will be using a well-known fact that a regular

space is hereditarily separable if and only if it has no uncountable left-separated
sequence (see Theorem 3.1 of [24]).

In V , suppose (ẋα)α<ω1
is a sequence of names such that Pf forces that (ẋα)α<ω1

is a left-separated sequence in Kn
f of cardinality ℵ1 and for each α < ω1, we have

that ẋα = (ẋα
1 , . . . , ẋ

α
n), where each ẋα

i is a name for an element of Kf .
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Notice that if

Pf � ∃1 ≤ i ≤ n, ∃X ⊆ ω1, |X| = ℵ1 such that ∀α, β ∈ X, ẋα
i = ẋβ

i ,

then

Pf � ∃1 ≤ i ≤ n, ∃X ⊆ ω1, |X| = ℵ1 such that ((ẋα
1 , . . . , ẋ

α
i−1, ẋ

α
i+1, . . . , ẋ

α
n))α∈X

is a left-separated sequence in Kn−1
f ,

contradicting the inductive hypothesis. Therefore, we can assume without loss of
generality that Pf forces that for all 1 ≤ i ≤ n and all α < β < ω1, ẋ

α
i �= ẋi

β and
ẋα
i ∈ Lf = Kf \ {∗}.
By assertion (+) following Definition 1.4, for each α < ω1, there are names

Ḟα
1 , . . . , Ḟ

α
n for finite subsets of ω2 such that Pf forces that

∀α < ω1 ∀1 ≤ i ≤ n ẋα
i ∈ h(ẋα

i ) \
⋃

ξ∈Ḟα
i

h(ξ)

and
∀α < β < ω1 ∃1 ≤ i ≤ n ẋα

i /∈ h(ẋβ
i ) \

⋃

ξ∈Ḟβ
i

h(ξ).

For each α < ω1, let pα = (Dα, hα, iα) ∈ Pf , x
α
1 , . . . , x

α
n ∈ ω2 and Fα

1 , . . . , F
α
n ⊆

ω2 be finite such that

pα � ∀1 ≤ i ≤ n ẋα
i = x̌α

i and Ḟα
i = F̌α

i .

By Lemma 2.2 of [11], we can assume without loss of generality that for all
α < ω1 and all 1 ≤ i ≤ n, Fα

i ⊆ Dα and xα
i ∈ Dα.

By the Δ-system Lemma, we can assume as well that (Dα)α<ω1
forms a Δ-

system with root D. Since for each pair {ξ, η} ⊆ D and each α < ω1, we have that
iα({ξ, η}) ∈ [f({ξ, η})]<ω, we may assume that for all α < β < ω1, if ξ, η ∈ D,
ξ �= η, then iα({ξ, η}) = iβ({ξ, η}).

By thinning out, we can assume without loss of generality that (Dα)α<ω1
forms

a Δ-system with root D such that for every α < β < ω1:

• pα is isomorphic to pβ;
• pα is lower than pβ;
• if eαβ : Dα → Dβ is the order-preserving bijective function, then eαβ(x

α
i ) =

xβ
i , for all 1 ≤ i ≤ n.

Finally, we may assume that for all 1 ≤ i ≤ n we have: either xα
i = xβ

i for all
α < β < ω1, or xα

i /∈ D for all α < ω1, and actually the second case holds by our
initial assumption about the sequence.

Since f has the strong property Δ, there are α < β < ω1 such that for all ζ ∈ D,
all ξ ∈ Dα \D and all η ∈ Dβ \D:

(i) Dα ∩ ξ ∩ η ⊆ f({ξ, η});
(ii) if ζ < ξ, then f({ζ, η}) ⊆ f({ξ, η});
(iii) if ζ < η, then f({ζ, ξ}) ⊆ f({ξ, η}).
Note that pα and pβ satisfy the hypothesis of Lemma 2.7. Hence, there is

q ≤ pα, pβ in Pf such that for all ξ ∈ Dα and all η ∈ Dβ ,

ξ ∈ hq(η) if and only if eαβ(ξ) ∈ hpβ
(η).

Then, for all 1 ≤ i ≤ n and all ξ ∈ Dβ , we have that

xα
i ∈ hq(ξ) if and only if xβ

i ∈ hpβ
(ξ).
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So we have that

xα
i ∈ hq(x

β
i ) \

⋃

ξ∈Fβ
i

hq(ξ).

But q ≤ pα, pβ and then

q � ∀1 ≤ i ≤ n, ẋα
i = x̌α

i , ẋβ
i = x̌β

i and Ḟ β
i = F̌ β

i .

Therefore,

q � ∀1 ≤ i ≤ n, ẋα
i = x̌α

i ∈ h(x̌β
i ) \

⋃

ξ∈F̌β
i

h(ξ) = h(ẋβ
i ) \

⋃

ξ∈Ḟβ
i

h(ξ),

contradicting the hypothesis about ẋα
i , ẋ

β
i and Ḟ β

i . �

Corollary 3.3. It is relatively consistent with ZFC that there is a hereditarily
separable compact scattered space of height ω2.

Proof. Since each level of the Cantor-Bendixson decomposition of Kf is a discrete
subset of Kf , it follows that every level of it is countable. But |Kf | = ℵ2 and Kf =
⋃

α<ht(Kf )
K

(α)
f \K(α+1)

f , so that ht(Kf ) ≥ ω2. It is easy to see that
⋂

α<ω2
K

(α)
f =

{∗} concluding that ht(Kf ) = ω2. �

Corollary 3.4. It is relatively consistent with ZFC that there is a hereditarily
separable compact space with hereditary Lindelöf degree equal to ℵ2. In particular, it
is relatively consistent with ZFC that there is a compact space K such that hL(K) �≤
hd(K)+.

Proof. It follows from the fact that hL(Kf ) ≤ |Kf | = ℵ2 and that {Kf \K(α)
f : α <

ω2} is an open covering of Kf \ {∗} which does not admit a subcovering of strictly
smaller cardinality. �

Corollary 3.5. It is relatively consistent with ZFC that there is an Asplund space
C(K) of density ℵ2 which does not admit any Fréchet smooth renorming and which
does not contain an uncountable biorthogonal system.

Proof. Since every finite power of Kf is hereditarily separable, Lemma 4.37 and
Theorem 4.38 of [6] imply that C(Kf ) is hereditarily Lindelöf relative to its point-
wise convergence topology. But for compact scattered spaces K, the pointwise
convergence topology and the weak topology of C(K) coincide (see Theorem 7.4 of
[20]), so that C(Kf ) is hereditarily Lindelöf relative to its weak topology.

Now, if C(Kf ) admits a Fréchet smooth renorming, by Corollaries 8.34 (due to
Mazur [18]) and 8.36 of [6] (due to Jiménez Sevilla and Moreno [10]) it contains an
uncountable bounded subset A such that for every x0 ∈ A, x0 is not in the (norm-)
closed convex hull of A \ {x0}, that is, x0 /∈ conv(A \ {x0}). Since the weak and
norm convex closures coincide in Banach spaces, A turns out to be an uncountable
discrete family of C(Kf ) relative to its weak topology, which contradicts the fact
that C(Kf ) is hereditarily Lindelöf relative to its weak topology.

Now, if C(Kf ) admits an uncountable biorthogonal system (xα, ϕα)α<ω1
⊆

C(Kf ) × C(Kf )
∗, then {xα : α < ω1} is an uncountable discrete family of C(Kf )

relative to its weak topology, contradicting the fact that C(Kf ) is hereditarily Lin-
delöf relative to its weak topology. �
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One should compare the above corollary to Theorem 4.41 of [6] (due to Os-
taszewski [21]) and to Corollary 8.37 of [6] (due to Jiménez Sevilla and Moreno
[10]).

4. The existence of the required function f

In this section we prove the consistency of the existence of a function with the
strong property Δ. It turns out that we are even able to prove the consistency
of the existence of such a function with its range included in the family of finite
(rather than countable) subsets of ω2. The method is quite involved but, as shown
at the end of this section, forcings preserving CH (as in [2]) cannot serve for this
purpose even if we were interested in a function with its range included in countable
subsets of ω2.

4.1. Forcing with side conditions in Velleman’s simplified morasses. To
construct a forcing which adds the required auxiliary function on pairs of ω2 we
will need a family of countable subsets of ω2 with some strong properties. The
following proposition establishes a list of the most useful properties:

Proposition 4.1. It is relatively consistent with ZFC+CH that there exists a family
F ⊆ [ω2]

ω which satisfies the following properties:

1) (F ,⊆) is well-founded (thus, one can talk about rank(X) for X ∈ F).
2) F is stationary in [ω2]

ω (see [1]).
3) If α ∈ X,Y ∈ F and rank(X) ≤ rank(Y ), then X ∩ α ⊆ Y ∩ α.

If M is a countable elementary submodel of H(ω3) containing ω1, ω2,F and X =
M ∩ ω2 ∈ F , then

4) M ∩ ω1 = rank(X).
5) Y ⊂ X, Y ∈ F implies Y ∈ M .
6) X1, ..., Xn ∈ F for n ∈ N and rank(Xi) < rank(X) for 1 ≤ i ≤ n implies that

there is Z ∈ F such that Z ∈ M and X ∩ (X1 ∪ ... ∪Xn) ⊆ Z.

Proof. We will prove that a simplified Velleman’s (ω1, 1)-morass (see [30]) which
is a stationary coding set (see [31]) satisfies the above properties. The proof relies
heavily on the properties of Velleman’s morasses obtained in [15]. We will often
refer to this paper; in particular, we adopt definitions of simplified morass and
stationary coding set from this paper (Section 2). The consistency of the existence
of such morasses can be immediately obtained from the corresponding proof for
semimorasses in [14], Theorem 3, Section 2.

1) follows from Definition 2.1 of [15] and 2) from the fact that F is assumed to
be a stationary coding set. To prove 3) apply 2.5 of [15]. Now 4) is Fact 2.7 of [15]
and 5) is Fact 2.6 of [15]. To obtain 6) apply Fact 2.8 of [15] to each Xi obtaining
Z(Xi) such that Z(Xi) ∈ M ∩ F and Xi ∩X ⊆ Z(Xi). Now use the elementarity
of M and the directedness of F (see Definition 2.1 of [15]) to obtain Z as in 6). �

Now we will adopt a few facts from [16] and [15] concerning forcing with side con-
ditions in F . As explained in these papers, to use elements of F as side conditions
means to use forcings P whose conditions are of the form (p,A) where p is a finite
condition of a natural forcing adding the structure in question and A is a finite sub-
set of F . This is like using models as side conditions in the method of forcing with
models as side conditions developed by Todorcevic (see [27]). The order is given by
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the forcing order on the first coordinate and inverse inclusion on the second coor-
dinate. In addition we require the existence of some natural projections of p onto
the elements of A as a part of the definition of the forcing notion. The properties
1) - 6) above allow us to perform many maneuvers with ease; also the definitions
are simpler. This method appears to be equivalent to the variant of Todorcevic’s
method where one employs matrices of models (see [28], Section 4, for an example
with detailed definitions). The price we need to pay for this convenience is that P
is not proper (unlike Todorcevic’s forcings,) but only F-proper, i.e., there is a club
C ⊆ [ω2]

ω such that for models M ≺ H(ω3) such that M ∈ F ∩ C and p ∈ P ∩M ,
there are (P,M)-generic conditions stronger than p. As F may be assumed to be
stationary, F-properness implies the preservation of ω1 (for a proof as for proper
forcings, see [1]). The preservation of bigger cardinals follows from the ω2-chain
condition. Note that the fact that the forcing is not proper but preserves cardinals
is no limitation in the applications that one seeks here, i.e., consistent existence of
structures of sizes bigger than ω1. Let us describe basic notions related to forcing
with side conditions in F that we will use.

Definition 4.2. Suppose F ⊆ [ω2]
ω. We say that a forcing notion P is F-proper

if there is θ > (2|P |)+ and a club set C ⊆ [H(θ)]ω such that whenever p ∈ M ∈ C
and M ∩ ω2 ∈ F , then there is a (P,M)-generic p0 ≤ p; i.e., D ∩ M is predense
below p0 for every D ∈ M which is dense in P .

Fact 4.3. Suppose F ⊆ [ω2]
ω is a stationary set and P is an F-proper forcing

notion. Then P preserves ω1.

Proof. The proof is a straightforward version of Shelah’s paradigmatic proof of the
preservation of ω1 by proper forcings (see [26] or [1]). �

The following definition and lemmas are formulations of well-known techniques
(originated in Shelah’s use of elementary submodels in forcing) and will simplify
our further arguments.

Definition 4.4. Let P be a notion of forcing, q ∈ P and let θ > (2|P |)+. Suppose
M ≺ H(θ) and P, π1, ..., πk ∈ M . We say that a formula φ(x0, x1, ..., xk) well
reflects q in (M ;π1, ..., πk) whenever the following are satisfied:

i) φ(q, π1, ..., πk) holds in H(θ);
ii) whenever s ∈ M is such that φ(s, π1, ..., πk) holds in M , then q and s are

compatible.

Definition 4.5. Suppose F ⊆ [ω2]
ω and suppose P is a notion of forcing. We say

that P is simply F-proper if there is θ such that whenever

a) p ∈ P ,
b) M ≺ H(θ), M countable,
c) p, P, F ∈ M ,
d) M ∩ ω2 ∈ F ,

then there is p0 ≤ p such that if q ≥ p0, then there are π1, ..., πk ∈ M and a formula
φ(x0, x1, ..., xk) which well reflects q in (M,π1, ..., πk).

Lemma 4.6. If P is simply F-proper, then P is F-proper.

Proof. We will prove that whenever M, p are as in a) - d) of Definition 4.5, then p0
is a (P,M)-generic condition. Letting D ∈ M be dense, we will show that D ∩M
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is predense below p0. Letting q ≤ p0, we may w.l.o.g. assume that q ∈ D. Let
π1, ..., πk ∈ M and φ(x0, x1, ..., xk) be such that φ(x0, x1, ..., xk) well reflects q in
(M,π1, ..., πk). By i) of Definition 4.4, we have that φ(q, π1, ...πk) in H(θ). By
its elementarity, M satisfies the formula “∃x ∈ P φ(x, π1, ...πk) & x ∈ D”. So let
s ∈ M witness this fact. Now by Definition 4.4ii), s and q are compatible, so D∩M
contains a condition compatible with q, which proves that D∩M is predense below
q, which completes the proof. �

4.2. Adding a function with the strong property Δ. Fix a family F ⊆ [ω2]
ω

satisfying 1) - 6) of Proposition 4.1. We will assume familiarity of the reader with
elementary submodels of structures H(θ). In particular we will make use of facts
such as that countable elements of such models are their subsets or that such models
contain ω. See [5] for more on this subject. We consider the following forcing P
whose conditions p are of the form: p = (ap, fp, Ap), where

a) ap ∈ [ω2]
<ω;

b) fp : [ap]
2 → [ω2]

<ω;
c) Ap ∈ [F ]<ω;
d) fp(α, β) ⊆

⋂
{X : X ∈ Ap, α, β ∈ X} ∩min{α, β} for any distinct α, β ∈ ap.

The order is just the inverse inclusion, i.e., p ≤ q if and only if ap ⊇ aq, fp ⊇ fq,
Ap ⊇ Aq.

Fact 4.7. P is simply F-proper.

Proof. Let θ = ω3 and let M and p be as in a) - d) of Definition 4.5. The existence
of such an M follows from the stationarity of F . Let X0 = M ∩ ω2. Let p0 =
(ap, fp, Ap ∪ {X0}). Finally let q ≤ p0. The proof consists of using Lemma 4.6 and
finding the parameters π1, ..., πk ∈ M and a formula φ(x0, x1, ..., xk) which well
reflects q in (M,π1, ..., πk).

Define q|M = (aq ∩ M, fq|M,Aq ∩ M). Introduce the notation δ = M ∩ ω1 =
rank(M), where the second equality follows from 4) of Proposition 4.1. Note that
Aq ∩M = Aq|M = {X ∈ Aq : X ⊂ X0}. This follows from 5) of Proposition 4.1.
The fact that [M ]<ω ⊆ M implies that aq|M , Aq|M ∈ M . Also, as d) of the definition
of the forcing is satisfied for q and α, β ∈ aq, we have that fq(α, β) ⊆ X0 = M ∩ω2

for α, β ∈ aq ∩X0. So, we may conclude that fq|M ∈ M ; in other words, we have
q|M ∈ M ∩ P . It is clear that q|M ≤ p. By 6) of Proposition 4.1 and the fact that
[M ]<ω ⊆ M , in M there is a Z ∈ F such that

⋃
{X ∩ M : rank(X) < δ, X ∈

Aq} ⊆ Z. Let φ(x0, x1, x2, x3, x4) be the formula which says that x0 is a condition
of the partial order x4 which extends in x4 the condition x3 and such that the
difference between the first coordinate of x0 and x2 is disjoint from x1.

Claim. φ(x0, x1, x2, x3, x4) well reflects q in (M,Z, aq|M , q|M,P ).

Proof of the Claim. It is clear that φ(q, Z, aq|M , q|M,P ) holds in H(ω3). Now let
s ∈ M be a condition satisfying φ(s, Z, aq|M , q|M,P ); i.e., s extends in P the
condition q|M and as \aq|M is disjoint from Z. Define the common extension r of q
and s as follows: ar = as ∪ aq, fr = fs ∪ fq ∪ h, Ar = As ∪Aq, where h({α, β}) = ∅
for {α, β} ∈ [as ∪ aq]

2 − ([as]
2 ∪ [aq]

2). Such an fr is a function on [ar]
2 since

q|M ≥ q, s. Clearly all clauses of the definition of the forcing P but d) are trivially
satisfied by r. So let us prove d). Letting α, β ∈ ar and X ∈ Ar, we will consider
a few cases.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THIN-VERY TALL COMPACT SCATTERED SPACES WHICH ARE HS 515

Case 1. α, β ∈ as, X ∈ As.
This is trivial because s ∈ P .

Case 2. α, β ∈ aq, X ∈ Aq.
This is trivial because q ∈ P .

Case 3. α, β ∈ as, X ∈ Aq.
Since φ(s, Z, aq|M , q|M,P ) holds in M we have that either rank(X) ≥ δ =

rank(M ∩ ω2) = rank(X0), in which case d) is satisfied because fr({α, β}) =
fs({α, β}) ⊆ X0 ∩min{α, β} ⊆ X ∩min{α, β} by d) for s and 3) of Proposition 4.1
or rank(X) < δ and then by the definition of φ and Z we get that α, β ∈ as ∩ aq,
so we are again in Case 2.

Case 4. α, β ∈ aq, X ∈ As.
This means that α, β ∈ M , because s ∈ M , i.e., α, β ∈ as ∩ aq, so we are again

in Case 1.

Case 5. α ∈ as \ aq and β ∈ aq \ as.
Then h({α, β}) = ∅.
The proof of the claim completes the proof of Fact 4.7. �

Definition 4.8. For p ∈ P , call the set ap ∪ f [[ap]
2] ∪

⋃
Ap the support of p and

denote it by supp(p).

Definition 4.9. We say that two conditions p, q of P are isomorphic (via π :
supp(p) → supp(q)) if π : supp(p) → supp(q) is an order-preserving bijection
constant on supp(p) ∩ supp(q) and

i) π[ap] = aq;
ii) {π[X] : X ∈ Ap} = Aq;
iii) fq({π(α), π(β)}) = π[fp({α, β})] for all α, β ∈ ap.

Lemma 4.10. Suppose p, q ∈ P are isomorphic via π : supp(p) → supp(q). Then
they are compatible.

Proof. Define the common extension r of p and q as follows: ar = ap ∪ aq, fr =
fp∪fq∪h, Ar = Ap∪Aq, where h({α, β}) = ∅ for {α, β} ∈ [ap∪aq]

2−([ap]
2∪ [aq]

2).
The only nonautomatic condition of the definition of P which needs to be checked
is d).

Case 1. α, β ∈ ar.
If X ∈ Ar, we are trivially done. If X ∈ Aq and α, β ∈ X, then α, β ∈

supp(p) ∩ supp(q); hence α, β ∈ ap ∩ aq and hence again use d) for q.

Case 2. α, β ∈ aq.
This is similar to the previous case.

Case 3. α ∈ ar \ aq, β ∈ aq \ ar.
In this case h is empty. �

Fact 4.11. Assuming CH, the forcing P is ω2-c.c. Thus by Fact 4.7, Lemma 4.6
and Fact 4.3, P preserves cardinals.

Proof. By the previous lemma the proof is a standard application of the Δ-system
lemma to the sequence of supports {supp(pξ) : ξ < ω2} of some conditions pξ ∈ P
under our cardinal arithmetic assumption. �
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Theorem 4.12. In V P there is a function f : [ω2]
2 → [ω2]

<ω with the strong
property Δ.

Proof. Clearly, we claim that f =
⋃
{fp : p ∈ G} defines such a function, where G

is a P -generic over V . Let ḟ be a name for it.
Fix a set A = {ȧα : α < ω1} of P -names for elements of an uncountable Δ-system

of n-tuples ȧ = {ȧi : i < n} of elements of ω2 for which there are bijections e as
in Definition 3.1 (any uncountable Δ-system has such an uncountable subsystem).
Fix a condition p ∈ P .

Take a model M ≺ H(ω3) such that M ∩ ω2 = X0 ∈ F and p ∈ P ∩M ; F ∈ M
and {ȧα : α < ω1} ∈ M . We will show that there are α1 < α2 < ω1 and r ≤ p such
that r forces 1), 2), 3) of Definition 3.1 for ȧα1 and ȧα2 .

First take a condition p0 ≤ p as in Fact 4.7, i.e., ap0
= ap, fp0

= fp, Ap0
= Ap ∪

X0. Take q ≤ p0 and α1 ∈ ω1 such that there is b such that b \M �= ∅, q � ȧα1 = b̌
and b ⊆ aq. This can be done as {ȧα : α < ω1} is a sequence of names for an
uncountable Δ-system of sets and |M | = ω. Proceed as in the proof of Fact 4.7;
i.e., choose Z and φ as in Fact 4.7. So, we have φ(q, Z, aq|M , q|M,P ) in H(ω3) and
so by the elementarity of M , we can find an s and α2 such that φ(s, Z, aq|M , q|M,P )
holds in M and moreover there is a such that a \ (b ∩M) ∈ [M \ Z]<ω and such
that s � ȧα2 = ǎ and a ⊆ as. Now we will obtain another amalgamation r of s and
q which will force 1), 2) and 3) of Definition 3.1. Let ar = as ∪ aq, fr = fs ∪ fq ∪h.
For ξ ∈ as \ aq and η ∈ aq \ as:
(**) h({ξ, η}) = [A ∪B ∪ C] ∩D,

where

A = a ∩min{ξ, η},

B =
⋃

{fs({τ, ξ}) : τ ∈ a ∩ b, τ < η},

C =
⋃

{fq({τ, η}) : τ ∈ a ∩ b, τ < ξ},

D = min{ξ, η} ∩
⋂

{X ∈ Aq : ξ, η ∈ X, rank(X) ≥ δ}.

First let us check that r is a common extension of q and s. The proof also
follows the cases as in the Claim in the proof of Fact 4.7. All are checked in the
same manner except for Case 5 where one may assume that X ∈ Aq as β �∈ M .
This time the inclusion in the set D guarantees that d) holds in Case 5.

Now we will check 1), 2) and 3) of Definition 3.1 for a, b as above and fr. This

will be enough since r � ȧα1 = b̌, ȧα2 = ǎ and r � fr ⊆ ḟ . Suppose ξ ∈ a \ b and
η ∈ b \ a. By the form of the definition of fr({ξ, η}) = h({ξ, η}) it will be enough
to prove that the sets A, B and C are actually included in min{ξ, η} ∩X for any
X ∈ Aq such that rank(X) ≥ δ and ξ, η ∈ X. So, let X ∈ Aq be any element such
that rank(X) ≥ δ and ξ, η ∈ X.

For 1) of Definition 3.1, note that since X0 = M ∩ω2 and rank(X0) = δ we have
that M ∩min{ξ, η} is included in X by 3) of Proposition 4.1. Hence, as a ⊆ M , we
have a ∩min{ξ, η} ⊆ min{ξ, η} ∩X; that is, we obtain 1).

To get 2) of Definition 3.1 assume that τ ∈ a ∩ b and τ < ξ; hence min{τ, η} ≤
min{ξ, η}. Note again, by 3) of Proposition 4.1, that M ∩ ξ ⊆ X ∩ ξ, which implies
in this case that τ ∈ X. Hence, since τ, η ∈ aq, by d) of the definition of the forcing,
we have that fq({τ, η}) ⊆ X ∩min{τ, η} ⊆ X ∩min{ξ, η}, so we obtain 2).
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To get 3) of Definition 3.1 assume that τ ∈ a ∩ b and τ < η; hence min{τ, ξ} ≤
min{ξ, η}. We have that τ, ξ ∈ M ∩ξ, and again M ∩ξ ⊆ X. Hence, since ξ, τ ∈ as,
by d) of the definition of the forcing, and the fact that s ∈ M , we have that
fs({τ, ξ}) ∩min{τ, ξ} ⊆ X ∩min{τ, ξ} ⊆ X ∩min{ξ, η}, so we obtain 3). �

Remark 4.13. For any k ≤ ω and any uncountable Δ-system one can have k sets
satisfying 1), 2) and 3) of Definition 3.1. This follows from the Dushnik-Miller
theorem; see [9], Theorem 9.7.

4.3. CH and the strong property Δ. In this section we prove that CH implies
that there is no function f such as in the previous section, even if we allow f to
take countable sets as values. This also proves that the strong property Δ cannot
be obtained as in Baumgartner and Shelah [2], that is, by a forcing which preserves
CH.

Proposition 4.14. (CH) There is no f : [ω2]
2 → [ω2]

ω such that for every Δ-
system A of finite subsets of ω2 of cardinality ℵ1, there exist distinct a, b ∈ A such
that

∗) ∀ξ ∈ a \ b ∀η ∈ b \ a a ∩ ξ ∩ η ⊆ f({ξ, η}).

Proof. Suppose that f : [ω2]
2 → [ω2]

ω. For an A ⊆ ω2 and ξ ∈ ω2 \A define

fA,ξ : A → [A]ω, fA,ξ(η) = f({η, ξ}) ∩ A ∀η ∈ A.

Let M ≺ H(ω3) be closed under its countable subsets (here we use CH) |M | = ω1,
ω1 ⊆ M ; ω1, ω2, f ∈ M and such that sup(M ∩ ω2) = γ has an uncountable
cofinality.

By recursion construct a sequence (αξ, βξ)ξ<ω1
which satisfies:

1) ω1 < αξ, βξ ∈ M ∩ γ;
2) αξ < βξ < αη for all ξ < η;
3) fAη,βη

= fAη ,γ , where Aη = {αξ, βξ : ξ < η};
4) αη �∈ f({βη, γ}).

To justify that this construction can be carried out assume that we have Aη

satisfying 1)-4) and let us show how to obtain αη, βη. As Aη ⊆ M and M is closed
under its countable sets we have Aη ∈ M . Also fAη,γ ∈ M as M is closed under
countable sets. Hence, by the elementarity there is βη ∈ M \ sup(Aη) such that
fAη,βη

= fAη,γ and cf(βη) = ω1. Now f({βη, γ}) ∩ M is in M again, so using
the fact that cf(βη) = ω1 we can find αη ∈ M satisfying Aη < αη < βη and
αη �∈ f({βη, γ}), which completes the construction.

Now define γη < ω1 such that for ξ < η < ω1 we have

γξ < γη �∈
⋃

{f({βξ, βη}) : ξ < η}.

Finally define A = {{γξ, αξ, βξ} : ξ < ω1}. Suppose ξ < η. Note that, as by 4),
αξ �∈ f({βξ, γ}) and by 3), f({βξ, γ}) = f({βξ, βη}), we have

αξ ∈ (βξ ∩ βη) \ f({βξ, βη}).
But on the other hand, by the definition of γη, we have

γη ∈ (βξ ∩ βη) \ f({βξ, βη}),
which shows that the inclusion *) of the proposition holds for no a, b ∈ A. �
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