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`∞-sums and the Banach space `∞/c0

by

Christina Brech (São Paulo) and Piotr Koszmider (Warszawa)

Abstract. This paper is concerned with the isomorphic structure of the Banach space
`∞/c0 and how it depends on combinatorial tools whose existence is consistent with but
not provable from the usual axioms of ZFC. Our main global result is that it is consistent
that `∞/c0 does not have an orthogonal `∞-decomposition, that is, it is not of the form
`∞(X) for any Banach space X. The main local result is that it is consistent that `∞(c0(c))
does not embed isomorphically into `∞/c0, where c is the cardinality of the continuum,
while `∞ and c0(c) always do embed quite canonically. This should be compared with the
results of Drewnowski and Roberts that under the assumption of the continuum hypothesis
`∞/c0 is isomorphic to its `∞-sum and in particular it contains an isomorphic copy of all
Banach spaces of the form `∞(X) for any subspace X of `∞/c0.

1. Introduction. Drewnowski and Roberts proved in [4] that, assuming
the Continuum Hypothesis (abbreviated CH), the Banach space `∞/c0 is
isomorphic to its `∞-sum denoted `∞(`∞/c0). They concluded that under
the assumption of CH the Banach space `∞/c0 is primary, that is, given a
decomposition `∞/c0 = A⊕B, one of the spaces A or B must be isomorphic
to `∞/c0. The proof relies on the Pełczyński decomposition method and on
another striking result from [4] (not requiring CH) which says that one of the
factors A or B as above must contain a complemented subspace isomorphic
to `∞/c0. Another conclusion was that `∞(`∞/c0)/c0(`∞/c0) is isomorphic
to `∞/c0 under the assumption of CH.

In this paper we show that some of the above statements cannot be proved
without some additional set-theoretic assumptions. Namely, for any cardinal
κ ≥ ω2, the following statements all hold in the Cohen model obtained by
adding κ-many Cohen reals to a model of CH (c denotes the cardinality of
the continuum):

(a) `∞(c0(ω2)) does not embed isomorphically into `∞/c0,
(b) `∞(c0(c)) does not embed isomorphically into `∞/c0,
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(c) `∞(`∞/c0) does not embed isomorphically into `∞/c0,
(d) `∞/c0 is not isomorphic to `∞(X) for any Banach space X,
(e) `∞(`∞/c0)/c0(`∞/c0) is not isomorphic to `∞/c0.

Below we show that (a) easily implies the other statements and so later
we will focus on proving (a). Indeed, (a) implies (b) simply because c ≥ ω2

in those models. (c) follows from (b) and the fact that `∞/c0 contains
an isometric copy of c0(c) (e.g., the closure of the space spanned by the
classes of the characteristic functions of elements of a family {Aξ : ξ < c}
of infinite subsets of N whose pairwise intersections are finite). To deduce
(d) from (c), notice that if `∞/c0 were isomorphic to `∞(X) for some Ba-
nach space X, then `∞(`∞/c0) would be isomorphic to `∞(`∞(X)) which
in turn is isomorphic to `∞(X) and hence to `∞/c0, contradicting (c). Fi-
nally (e) follows from (c) alone, because `∞(`∞/c0) embeds isometrically
into `∞(`∞/c0)/c0(`∞/c0). Indeed, consider a partition of N into pairwise
disjoint infinite sets (Ai : i ∈ N) and for each x ∈ `∞(`∞/c0) consider
x̄ ∈ `∞(`∞/c0) such that x̄(n) = x(i) if and only if n ∈ Ai. Note that
T : `∞(`∞/c0) → `∞(`∞/c0) given by T (x) = x̄ is an isometric embedding.
Moreover it gives an isometric embedding while composed with the quotient
map from `∞(`∞/c0) onto `∞(`∞/c0)/c0(`∞/c0).

We emphasize an interesting phenomenon that follows from the gap which
may exist between the number of added Cohen reals and ω2: even when c
is very large, meaning that `∞/c0 has large density, still it may not contain
an isomorphic copy of `∞(c0(ω2)) while it always contains quite canonical
copies of both `∞ and c0(ω2).

It remains unknown if `∞/c0 is primary in the above models and in
general if the primariness of `∞/c0 can be proved without additional set-
theoretic assumptions. It would also be interesing to derive the above state-
ments in a more axiomatic way as in [12] or [10].

Another problem mentioned in [4] remains open as well (including in the
Cohen model), namely if `∞/c0 has the Schroeder–Bernstein property, that is,
if there exists a complemented subspaceX of `∞/c0, nonisomorphic to `∞/c0
but which contains a complemented isomorphic copy of `∞/c0. The Pełczyński
decompositionmethodand the existenceof an isomorphismbetween `∞/c0 and
`∞(`∞/c0) imply that `∞/c0 has the Schroeder–Bernstein property assuming
CH. On the other hand, the nonprimariness of `∞/c0 would imply that it does
not have the Schroeder–Bernstein property as observed in [4]. It could be noted
that after the first example of aBanach spacewithout the Schroeder–Bernstein
property was given in [6], an example of the form C(K), like all the spaces
considered in this paper, was constructed as well (see [9]).

Our results (a)–(c) can also be seen in a different light. It is well-known
that assuming CH the space `∞/c0 is isometrically universal for all Banach
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spaces of density not greater than c. It has been proved by the present authors
in [1] that this is not the case in the Cohen model, even in the isomorphic
sense. The results (a)–(c) show that `∞(c0(c)) or `∞(`∞/c0) can be added
to a recently growing list of Banach spaces that consistently do not embed
into `∞/c0 (see [2], [10], [12] or [1, Section 3]). A new feature of the examples
provided in this paper is that they are neither obtained from a well-ordering
of the continuum nor a generically constructed object like those in the above
mentioned papers.

The paper exploits the isometry `∞/c0 ≡ C(N∗) where N∗ = βN \N and
βN is the Čech–Stone compactification of the integers, and the isomorphism
between the Boolean algebras of clopen subsets of N∗ and ℘(N)/Fin. The
latter is a structure that can be well handled by infinitary combinatorial
methods.

In Section 2 we present some consequences of the assumption that `∞/c0
contains an isomorphic copy of `∞(c0(λ)) for some cardinal λ ≥ ω2. They
can be understood as a reduction of the behaviour of a linear operator T :
C(N∗) → C(N∗) to a topological phenomenon in terms of separations of
a rich family of clopen sets of N∗. This can be seen as a property of the
Boolean algebra ℘(N)/Fin. Section 3 contains the key lemma (Lemma 3.1)
which shows that in the Cohen model the above property of ℘(N)/Fin does
not hold. The proof of this key lemma is inspired by the proof of A. Dow [3,
Theorem 4.5] that the boundary of a zero set in N∗ is not a retract of N∗ in
the Cohen model. The reader unfamiliar with forcing may skip the proof of
the lemma and read the rest of the paper.

The undefined notation of the paper is fairly standard. Undefined notions
related to set theory and independence proofs can be found in [11] and
those related to Banach spaces in [5]. In particular we will be using the
following version of the Hajnal free-set lemma (cf. [8, Theorem 19.2]): For
every cardinal λ > ω1 and a function F from λ into countable subsets of λ
there is S ⊆ λ of cardinality λ such that F (α) ∩ S ⊆ {α} for all α ∈ S.

Let us now introduce some particular notation concerning the spaces we
consider here. Given A ⊆ N, let us denote by [A] its equivalence class in
℘(N)/Fin, by A∗ the corresponding clopen set of βN and by [A]∗ the clopen
set of N∗ = βN \ N corresponding to [A].

Given x ∈ `∞, let us denote by [x] its equivalence class in `∞/c0. We
will use the isometries `∞ ≡ C(βN) and `∞/c0 ≡ C(N∗) and identify each
bounded sequence with its extension to βN and each class y = [x] of bounded
sequences in `∞/c0 with the restriction to N∗ of an extension of x to βN.

Given a cardinal λ, by a partial function from N into a subset Γ of λ we
mean a function whose domain is a (nonempty) subset A of N and whose
image is contained in Γ . We will identify such a function σ : A→ Γ with its



178 C. Brech and P. Koszmider

graph inside N × λ. Given two such functions σ, τ , we say they are disjoint
if their graphs are disjoint.

For m,n ∈ N, α, β ∈ λ and a partial function σ from N into a subset Γ ,
let

1n,α(m)(β) =

{
1 if (n, α) = (m,β),
0 otherwise,

1σ(m)(β) =

{
1 if (m,β) ∈ σ,
0 otherwise,

and notice that 1n,α, 1σ ∈ `∞(c0(λ)) and they can be thought of as the char-
acteristic functions of {(n, α)} and of the graph of σ inside N×λ respectively.

Some of the problems addressed in this paper were considered in [7] un-
der different set-theoretic assumptions. Unfortunately the forthcoming paper
announced there which was to contain the proofs of the statements instead
of their sketches has not appeared yet. Also the statements and arguments
outlined in [7, p. 303] concerning the Cohen model contradict our results.

2. Facts on isomorphic embeddings of l∞(c0(λ)) into `∞/c0

Lemma 2.1. Suppose y ∈ `∞/c0 \ {0} and A ⊆ N is infinite such that
y|[A]∗ 6≡ 0. Then there is an infinite B ⊆ A and r ∈ R \ {0} such that
‖y|[A]∗‖ ≤ 2|r| and y|[B]∗ ≡ r.

Proof. Let x = (xn)n∈N ∈ `∞ be such that y = [x]. Since B′ = {n ∈
A : ‖y|[A]∗‖ ≤ 2|xn|} is infinite and {xn : n ∈ B′} is bounded, there is an
infinite B ⊆ B′ such that (xn)n∈B converges to some r ∈ R \ {0}. Notice
that ‖y|[A]∗‖ ≤ 2|r| and y|[B]∗ ≡ r.

Theorem 2.2. Assume λ ≥ ω2 and T : `∞(c0(λ)) → `∞/c0 is an iso-
morphic embedding. Then there is Γ ∈ [λ]λ and for each (n, α) ∈ N×Γ there
is an infinite set En,α ⊆ N and rn,α ∈ R such that

|rn,α| ≥ ‖T (1n,α)‖/2
and if σ : N→ Γ is one-to-one, then

T (1σ)|[En,α]∗ ≡
{
rn,α if (n, α) ∈ σ,
0 if α ∈ Γ \ Im(σ).

Proof. For each n ∈ N and each α ∈ λ, by Lemma 2.1 there is rn,α ∈ R
and an infinite set E′n,α ⊆ N such that

|rn,α| ≥ ‖T (1n,α)‖/2
and T (1n,α)|[E′n,α]∗ ≡ rn,α.

Claim. For every (n, α) ∈ N× λ, there is a countable set Xn,α ⊆ λ and
an infinite set En,α ⊆∗ E′n,α such that whenever σ is a partial function from
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N into λ \Xn,α, then
T (1σ)|[En,α]∗ ≡ 0.

Proof of the claim. Suppose the claim fails for (n, α) ∈ N × λ. We will
carry out a transfinite inductive construction of length ω1 that will lead to
the conclusion that the operator T is not bounded, which is a contradiction.
We construct for each ξ < ω1 an infinite set Fξ ⊆ N, rξ ∈ R \ {0} and a
partial function σξ from N into λ such that

(1) Fη ⊆∗ Fξ ⊆∗ E′n,α for all ξ < η < ω1,
(2) σξ ∩ ση = ∅ for all ξ < η < ω1,
(3) T (1σξ)|[Fξ]∗ ≡ rξ for all ξ < ω1.

Given ξ < ω1, suppose we have already constructed (Fη)η<ξ, (rη)η<ξ and
(ση)η<ξ as above. Let F ′ξ ⊆ N be an infinite set such that F ′ξ ⊆∗ Fη for every
η < ξ. Since Λ =

⋃
{Im(ση) : η < ξ} is a countable subset of λ, by our

hypothesis there is a partial function σξ from N into λ \ Λ such that

T (1σξ)|[F
′
ξ]
∗ 6≡ 0,

and using Lemma 2.1 we find Fξ ⊆ F ′ξ infinite and rξ ∈ R \ {0} such that

T (1σξ)|[Fξ]
∗ ≡ rξ.

This concludes the inductive construction of objects satisfying (1)–(3).
We can now find some ε > 0 for which Rε = {ξ < ω1 : |rξ| ≥ ε}

is infinite (uncountable, actually), and splitting Rε into two sets, we may
assume without loss of generality that either rξ ≥ ε for every ξ ∈ Rε or
−rξ ≥ ε for every ξ ∈ Rε.

Fix m ∈ N such that m ·ε > ‖T‖. Choose ξ1 < · · · < ξm in Rε and notice
that |

∑
i≤m rξi | ≥ mε > ‖T‖.

Since the σξi ’s are pairwise disjoint, we get∥∥∥∑
i≤m

1σξi

∥∥∥ = 1

but ∥∥∥T(∑
i≤m

1σξi

)∥∥∥ ≥ ∥∥∥T(∑
i≤m

1σξi

)∣∣∣[Fξm ]∗
∥∥∥ ≥ ∣∣∣∑

i≤m
rξi

∣∣∣ > ‖T‖,
which is a contradiction and completes the proof of the claim.

For each α ∈ λ, let Xα =
⋃
n∈NXn,α and notice that Xα is a countable

subset of λ such that for every n ∈ N, there is an infinite set En,α ⊆ E′n,α
such that for every σ : N→ λ \Xα, we have

(2.1) T (1σ)|[En,α]∗ ≡ 0.

Now apply the Hajnal free-set lemma [8, Theorem 19.2] to obtain Γ ⊆ λ
of cardinality λ such that Xα ∩ Γ ⊆ {α} for each α ∈ Γ . This implies that
for distinct α, β ∈ Γ , α /∈ Xβ .
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Given σ ∈ N→ Γ which is one-to-one, notice that for distinct n, n′ ∈ N,
σ(n) /∈ Xσ(n′), which guarantees that Im(σ \ {(n, σ(n))}) ∩ Xσ(n) = ∅. For
each (n, α) ∈ ω × Γ let us consider two cases. If (n, α) ∈ σ, then

T (1σ)|[En,α]∗ = T (1n,α)|[En,α]∗ + T (1σ\{(n,α)})|[En,α]∗ ≡ rn,α,
where the last equality follows from (2.1) and the choice of En,α.

If α ∈ Γ \ Im(σ), it follows from (2.1) that T (1σ)|[En,α]∗ ≡ 0.

Although the above theorem is sufficient for our applications, let us note
that it has the following more elegant version:

Corollary 2.3. Assume λ ≥ ω2 and T : `∞(c0(λ)) → `∞/c0 is an
isomorphic embedding. Then there is an isomorphic embedding T ′ : `∞(c0(λ))
→ `∞/c0 and for each (n, α) ∈ N × λ there is an infinite set En,α ⊆ N and
rn,α ∈ R such that

|rn,α| ≥ ‖T ′(1n,α)‖/2
and for all (n, α) ∈ N× λ, if σ : N→ λ, then

T ′(1σ)|[En,α]∗ ≡
{
rn,α if (n, α) ∈ σ,
0 otherwise.

Proof. Let Γ ⊆ λ of cardinality λ and an infinite set En,α ⊆ N and
rn,α ∈ R for each (n, α) ∈ N× Γ be as in Theorem 2.2.

Let (Γn)n∈N be a partition of Γ into countably many sets of cardinality
λ and enumerate each Γn as Γn = {γnβ : β < λ}.

Define S : `∞(c0(λ))→ `∞(c0(λ)) by

S(f)(n)(β) =

{
f(n)(α) if β = γnα,
0 otherwise.

Notice that S has the following properties:

• S is an isometric embedding.
• If σ : N → λ, then S(1σ) = 1s(σ) where s(σ) = {(n, γnα) : (n, α) ∈ σ},

so that s(σ) : N→ λ is one-to-one, Im(s(σ)) ⊆ Γ and γn,α ∈ Im(s(σ))
if and only if (n, α) ∈ σ.

Let T ′ = T ◦ S, E′n,α = En,γnα and r′n,α = rn,γnα . Given α < λ and n ∈ N,

|r′n,α| = |rn,γnα | ≥ ‖T (1n,γnα)‖/2 = ‖T (S(1n,α))‖/2 = ‖T ′(1n,α)‖/2.
Also, given any σ : N→ λ and (n, α) ∈ N× λ, we have:

• if (n, α) ∈ σ, then
T ′(1σ)|[E′n,α]∗ = T (S(1σ))|[En,γnα ]∗ = rn,γnα = r′n,α,

• if (n, α) /∈ σ, then γnα /∈ Im(s(σ)) so that

T ′(1σ)|[E′n,α]∗ = T (1s(σ))|[En,γnα ]∗ = 0.
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This concludes the proof that T ′ is an isomorphic embedding with the re-
quired properties.

3. The forcing argument. The next lemma still holds if we replace ω2

by any regular cardinal λ with ω2 ≤ λ ≤ κ. To simplify the notation we state
it in this weaker form, which is sufficient for our purposes. Fn<ω(κ, 2) denotes
the Cohen forcing which adds κ many Cohen reals to a model of CH, that
is, the forcing formed by partial functions whose domains are finite subsets
of κ and whose ranges are included in 2 = {0, 1}, ordered by extension of
functions.

Lemma 3.1. Let V be a model of CH, κ ≥ ω2 and P = Fn<ω(κ, 2). In
V P, if (En,α : (n, α) ∈ N×ω2) are infinite subsets of N and for each σ ∈ ωN

2 ,
Bσ is a subset of N such that

∀(n, α) ∈ σ En,α ⊆∗ Bσ,
then there is a pairwise disjoint subset Σ ⊂ ωN

2 of cardinality ω2 such
that {Bσ : σ ∈ Σ} has the finite intersection property, that is, for every
σ1, . . . , σm ∈ Σ, Bσ1 ∩ · · · ∩Bσm is infinite.

Proof. In V , for (n, α) ∈ N × ω2 let Ėn,α be a nice name for an infinite
subset of N.

For each n ∈ N and α ∈ ω2, let Sn,α = supp(Ėn,α), which are countable
subsets of κ since P is ccc and we may assume without loss of generality that
they are all infinite.

By CH and the ∆-system lemma, we may find a pairwise disjoint family
(An)n∈ω ⊆ [ω2]

ω2 such that
• for each n ∈ N, (Sn,α)α∈An is a ∆-system with root ∆n.
Let ∆ =

⋃
n∈N∆n; since this is a countable set, by a further thinning

out of each An, we may assume that
• for every α ∈ An, ∆ ∩ (Sn,α \∆n) = ∅, i.e. ∆ ∩ Sn,α = ∆n.
Using CH, we may also assume that for each α < β in An there is a

bijection πn,α,β : Sn,α → Sn,β such that
• πn,α,β|∆n = id,
• πn,α,β(Ėn,α) = Ėn,β (here πn,α,β denotes the automorphism of P ob-

tained by lifting πn,α,β).
Inductively choose, for ξ < ω2, functions σξ ∈ ωN

2 such that
• σξ(n) ∈ An for each n ∈ N,
• for all distinct (ξ, n), (η,m) ∈ ω2 × N,

(Sn,σξ(n) \∆n) ∩ (Sm,ση(m) \∆m) = ∅,
• for all ξ < η < ω2, supn∈N σξ(n) < minn∈N ση(n), so that σξ ∩ ση = ∅.
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For each ξ < ω2, let Ḃξ be a name for a subset of N as in the hypothesis
of the lemma, that is, such that

P  ∀(n, α) ∈ σ̌ξ Ėn,α ⊆∗ Ḃσξ ,

and let ḣξ be a nice name such that

P  ḣξ : N→ N is such that ∀(n, α) ∈ σ̌ξ Ėn,α \ ḣξ(n) ⊆ Ḃσξ .

Let Rξ = supp(ḣξ) and Sξ =
⋃
n∈N(Sn,σξ(n) \∆n) and notice that the Sξ’s

are pairwise disjoint countable subsets of κ. Using CH and the ∆-system
lemma, by a further thinning out there is A ⊆ ω2 of cardinality ω2 such that

• (Rξ)ξ∈A is a ∆-system with root R,
• for all ξ ∈ A, ∆ ∩ (Rξ \R) = ∅.

If we apply Hajnal’s free set lemma [8, Theorem 19.2] to the family of sets
Xξ = {η ∈ A : Sξ∩Rη 6= ∅}, for ξ ∈ A, we obtain a subset of A of cardinality
ω2—which we will call A to simplify the notation—such that Xξ ∩A ⊆ {ξ},
which implies that

• for all distinct ξ, η ∈ A, Sξ ∩Rη = ∅.
Fix m ∈ N and ξ1 < · · · < ξm from A and let us prove that

P  Ḃσξ1 ∩ · · · ∩ Ḃσξm is infinite,

so that {Bσξ : ξ ∈ A} has the finite intersection property. Otherwise, there
are p ∈ P and l ∈ N such that

p  Ḃσξ1 ∩ · · · ∩ Ḃσξm ⊆ ľ.
Given n ∈ N we say that q ∈ P is n-symmetric if

πn,σξi (n),σξj (n)
(q|Sn,σξi (n)) = q|Sn,σξj (n) for all 1 ≤ i < j ≤ m.

Fix n ∈ N such that dom(p)∩Sn,σξi (n) ⊆ ∆n for all 1 ≤ i ≤ m and notice
that p is n-symmetric, because p|Sn,σξi (n) ⊆ p|∆n and πn,σξi (n),σξj (n)

|∆n =

id∆n . Let us find q ≤ p which is n-symmetric and k1, . . . , km ∈ N such that
q  ḣξi(ň) = ǩi. To do so, we will construct conditions pm ≤ pm−1 ≤ · · · ≤
p1 ≤ p and k1, . . . , km ∈ N such that each pi is n-symmetric and for all
1 ≤ i ≤ m, pi  ḣξi(ň) = ǩi. Let p0 = p.

Given 1 ≤ i ≤ m, let qi ≤ pi−1 and ki ∈ N be such that qi  ḣξi(ň) = ǩi
and dom(qi)\dom(pi−1) ⊆ Rξi . This can be done because ḣξi is a nice name
with support Rξi . Let

pi = qi ∪
⋃

1≤j≤m
πn,σξi (n),σξj (n)

(qi|Sn,σξi (n)),

where πn,σξi (n),σξi (n) = id.

Claim. pi ∈ P, that is, pi is a well-defined function.
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Proof of the claim. First of all, notice that

qi ≤ qi|Sn,σξi (n) = πn,σξi (n),σξi (n)
(qi|Sn,σξi (n))

since πn,σξi (n),σξi (n) = id, and

dom(pi) ⊆ dom(pi−1) ∪Rξi ∪
⋃
{Sn,σξj (n) : 1 ≤ j ≤ m, j 6= i}

since πn,σξi (n),σξj (n)[Sn,σξi (n)] = Sn,σξj (n)
and dom(qi) ⊆ dom(pi−1) ∪ Rξi .

Fix α ∈ dom(pi) and let us analyse a few cases.
If α ∈ Sn,σξj (n)

\ ∆n for some j 6= i, since Sξj ∩ Rξi = ∅, we see
that α /∈ Rξi . So, if α /∈ dom(pi−1), the only possible value for pi(α) is
πn,σξi (n),σξj (n)

(qi|Sn,σξi (n))(α), and hence it is well-defined. If α ∈ dom(pi−1),
the possible values for pi(α) are those of πn,σξi (n),σξj (n)(qi|Sn,σξi (n))(α) and
pi−1(α), in which case we have

pi−1(α) = πn,σξi (n),σξj (n)
(pi−1)(α) = πn,σξi (n),σξj (n)

(qi|Sn,σξi (n))(α),

where the first equality follows from the fact that pi−1 is n-symmetric, and
the second, from the fact that qi ≤ pi−1.

If α ∈ ∆n, then

qi(α) = πn,σξi (n),σξi (n)
(qi|Sn,σξi (n))(α)

and

πn,σξi (n),σξi (n)
(qi|Sn,σξi (n))(α) = πn,σξi (n),σξj (n)

(qi|Sn,σξi (n))(α)

for all j 6= i, because πn,σξi (n),σξj (n)|∆n = id∆n . Hence, pi(α) is well-defined.
Finally, if α /∈

⋃
i 6=j Sn,σξj (n)

, then the only possible value for pi(α) is
qi(α) and it is therefore well-defined.

This concludes the proof of the claim.

Notice that pi is n-symmetric and, since pi ≤ qi, pi  ḣξi(ň) = ǩi, as we
wanted.

Now pm is an n-symmetric condition such that

pm  ∀1 ≤ i ≤ m ḣξi(ň) = ǩi.

Since P forces that Ėn,σξ1 (n) is infinite, let n0 > max{k1, . . . , km, l} and
r1 ≤ pm be such that r1  n0 ∈ Ėn,σξ1 (n) and dom(r1)\dom(pm) ⊆ Sn,σξ1 (n).
Let

r = r1 ∪
⋃

2≤j≤m
πn,σξ1 (n),σξj (n)

(r1)

and notice that r ∈ P, r ≤ p and

r  ň0 ∈ (Ėn,ξ1 \ ḣξ1(n)) ∩ · · · ∩ (Ėn,ξm \ ḣξm(n)),
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so that
r  ň0 ∈ Ḃσξ1 ∩ · · · ∩ Ḃσξm ,

which contradicts our assumption since n0 > l. This concludes the proof.

Theorem 3.2. Let V be a model of CH, κ ≥ ω2 and P = Fn<ω(κ, 2). In
V P there is no isomorphic embedding T : `∞(c0(ω2))→ `∞/c0.

Proof. We work in V P and suppose by contradiction that there is T as
above; we will get a contradiction with the fact that T is bounded. Let ε > 0
be such that 1/‖T−1‖ > ε.

By Corollary 2.3 we may assume that for each (n, α) ∈ N × ω2 there is
an infinite set En,α ⊆ N and rn,α ∈ R such that

|rn,α| ≥
‖T (1n,α)‖

2
≥ 1

2‖T−1‖
>
ε

2

and for all n ∈ N and all α ∈ ω2, if σ : N→ ω2, then

T (1σ)|[En,α]∗ ≡
{
rn,α if (n, α) ∈ σ,
0 otherwise.

For each σ : N→ ω2, fix any representative xσ ∈ `∞ of T (1σ) and let

Bσ = {k ∈ N : |xσ(k)| > ε/4}.
Then Bσ’s are as in the hypothesis of Lemma 3.1.

Given m ∈ N such that ‖T‖ < mε/4, by Lemma 3.1 there are pairwise
disjoint functions σ1, . . . , σ2m ∈ ωN

2 such that

B = Bσ1 ∩ · · · ∩Bσ2m is infinite.

Given u ∈ [B]∗, let 1 ≤ j1 < · · · < jm ≤ 2m be such that T (1σji )(u) are
either all positive or all negative. Then∣∣∣T( m∑

i=1

1σji

)
(u)
∣∣∣ ≥ mε

4
> ‖T‖,

which contradicts the fact that ‖
∑m

i=1 1σji‖ = 1 and concludes the proof.

Note that apparently we did not use in the above proof the entire strength
of Corollary 2.3, namely we did not use the fact that T (1σ)|En,α ≡ 0 when
(n, α) 6∈ σ. However this is used within the proof of Corollary 2.3 to conclude
that T (1σ)|En,α ≡ rn,α when (n, α) ∈ σ.
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