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Abstract. We prove that every isometry between two combinatorial spaces
is determined by a permutation of the canonical unit basis combined with a
change of signs. As a consequence, we show that in the case of Schreier spaces,
all the isometries are given by a change of signs of the elements of the basis.
Our results hold for both the real and the complex cases.

1. Introduction

For a full survey of isometry groups on Banach spaces we refer to the books of
Fleming and Jamison [5,6]. In this paper we concentrate on the study of isometry
groups of certain sequence spaces called combinatorial.

Classical results guarantee that (surjective) isometries of the sequence spaces c0
or �p, 1 ≤ p < ∞, p �= 2, are determined by a permutation of the elements of the
canonical unit basis and a change of sign of these vectors (see, e.g., [10, Theorem
9.8.3 and Theorem 9.8.5] or [9, Proposition 2.f.14]). So the isometry groups of these
spaces are rich in some sense. At the other side of the spectrum, it was proved in
[3] and [4] that the isometry groups on James space J2, and the generalized James
space Jp, are trivial, i.e., the only isometries are plus or minus the identity. Recently,
it has been shown by Antunes, Beanland, and Viet Chu [1] that the real Schreier
spaces of finite order have a structure which is nontrivial but more rigid than the
ones on c0 or �p: isometries of these spaces correspond to a change of signs of
the elements of the canonical unit basis. In this paper we generalize this result to
higher-order Schreier spaces and more general combinatorial spaces, in both the
real and the complex cases, in some cases obtaining forms of rigidity which are
intermediate between the c0 or �p example and the Schreier example. This answers
a question posed by K. Beanland in a private conversation. We also characterize the
isometries that may arise between two different combinatorial spaces, determining
when two combinatorial spaces are or are not isometric.

In what follows, we consider spaces with either real or complex scalars. In this
context, we call a scalar of modulus 1 a sign (so simply ±1 in the real case).
Recall that for a given regular family F (i.e., hereditary, compact, and spreading;
see Definition 1) of finite subsets of N, the combinatorial Banach space XF is the
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completion of c00, the vector space of finitely supported scalar sequences, with
respect to the norm:

‖x‖ = sup

{∑
i∈F

|x(i)| : F ∈ F
}
.

The sequence of unit vectors (en)n forms an unconditional Schauder basis, and XF
is c0-saturated (see [7]), so, in particular, it contains no copies of �1. Therefore the
basis (en)n is shrinking (see Theorem 1.c.9 in [9]), and hence (e∗n)n is a Schauder
basis of the dual space X∗

F .
The simplest examples of regular families are the families [N]≤n of all subsets of

N of cardinality at most n for some fixed n ∈ N. More interesting examples are the
Schreier family

S := {F ∈ [N]<ω : |F | ≤ minF} ∪ {∅}
and its versions of higher order, which will be considered in Section 4.

Given two combinatorial spaces XF and XG and a surjective isometry T : X∗
F →

X∗
G between the corresponding dual spaces, we can use the classical fact that ex-

treme points of the unit balls are preserved by T to analyze the expansion of each
Te∗i =

∑
j α

i
je

∗
j . This is the analysis we make in Section 3 to prove our main result

(Theorem 10), which states that if F and G are regular families, then T is induced
by what we call a signed permutation, i.e., for every i ∈ N, Te∗i = θie

∗
π(i) for some

permutation π : N → N and some sequence of signs (θi)i. Since the adjoint op-
erator of an isometry is an isometry, it follows, in particular, that any isometry
T : XF → XG is also induced by a signed permutation.

Together with the fact that surjective isometries between Banach spaces preserve
extreme points of the unit balls, we are going to use extensively in our arguments
the following description of the extreme points of the dual ball of a combinatorial
space:

Ext(X∗
F) =

{∑
i∈F

θie
∗
i : F ∈ FMAX and (θi)i∈F is a sequence of signs

}
,

where FMAX denotes the family of maximal elements of F with respect to inclusion.
Since this characterization of extreme points holds in the real case (see [1, 8]) but
was not known in the complex case, we shall give a proof for complex combinatorial
spaces; see Proposition 5. Our proof includes the real case and seems to be simpler
than the original proof.

Classical examples of combinatorial spaces are the spaces XSα
associated to the

so-called generalized Schreier families Sα, for α < ω1. As a consequence of our
main result and specific properties of these families, we prove in Section 4 that any
isometry T of X∗

Sα
acts on the canonical unit basis as a change of signs, that is,

Te∗i = θie
∗
i for some sequence of signs (θi)i.

2. Preliminaries

We start with the combinatorial background for our results.

2.1. Regular families. Let [N]<ω denote the family of all finite subsets of N,
and by a family we always mean a family of finite subsets of N which contains all
singletons. We denote by FMAX the family of maximal elements of a family F
with respect to inclusion.
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Definition 1. We say that a given family F is regular if it satisfies the following
three conditions:

• F is hereditary (closed under subsets);
• F is compact as a subset of 2N, where each element of F is identified with
its characteristic function;

• F is spreading, that is, if F ∈ F and σ : F → N is such that σ(n) ≥ n for
every n ∈ F , then σ(F ) ∈ F .

An easy property shared by regular families and which will be frequently used
is the fact that any element can be extended “to the right” to a maximal one, as
in the following lemma.

Lemma 2. If F is a regular family and F ∈ F , then for every infinite set N ⊆ N,
there is F ⊆ E ∈ FMAX such that E \ F ⊆ N .

Proof. Given F ∈ F \FMAX and N ⊆ N infinite let F � E1 ∈ F and spread E1 to
some F1 in such a way that F � F1 ∈ F and F1\F ⊆ N . If F1 ∈ FMAX we are done.
If not, let F1 � E2 ∈ F and spread E2 to some F2 in such a way that F1 � F2 ∈ F
and F2 \ F1 ⊆ N , so that F2 \ F ⊆ N . Repeat this process until achieving some
F ⊆ Fn ∈ FMAX such that Fn \ F ⊆ N . This will necessarily happen, as if not,
(Fn)n will be a strictly increasing chain of elements of F converging to the infinite
set Y =

⋃
n∈N

Fn /∈ F , contradicting the compactness of F . �

Lemma 3. Suppose F is a regular family, and let n ∈ N with {n} /∈ FMAX . Then
we can find a sequence of finite sets n < G1 < G2 < ... such that for any i ∈ N,
|Gi| ≤ |Gi+1| and Gi ∪ {n} ∈ FMAX .

Proof. By Lemma 2, we can find F1 ∈ FMAX such that n = minF1. Clearly,
|F1| ≥ 2, and let G1 := F1 \ {n}. Using that F is spreading, we can find F ′

2 ∈ F
such that |F1| = |F ′

2|, n = minF ′
2, and G1 < F ′

2 \ {n}. Next, from Lemma 2, it
follows that we can “fill in” F ′

2 to the right, if necessary, to obtain a set F2 ∈ FMAX .
Let G2 := F2 \ {n}, and clearly |G1| ≤ |G2|. Continuing in this manner we obtain
the conclusion of the lemma. �
2.2. Extreme points in the dual space. Denote by K the field of scalars R or
C. We say that a subset N of a Banach space X is sign invariant if for any sign
θ ∈ K, we have θN = N . We recall a very classical lemma in its real/complex
version.

Lemma 4. Let X be a Banach space over K, and let N ⊆ BX∗ be a sign invariant
norming set for X. Then

BX∗ = conv(N)
w∗

.

Proof. Denote S := conv(N)
w∗

and note that S is sign invariant. Assume by
contradiction that the conclusion is false and pick f ∈ BX∗ \ S. S is convex,
w∗-compact, and disjoint from {f} (which is convex and w∗-closed). From the
Hahn–Banach separation theorem we have that there exists x ∈ X and a real
number t such that

Re(g(x)) < t < Re(f(x)), for all g ∈ S.

Multiplying a given g ∈ S by the appropriate sign we may assume that Re(g(x)) =
|g(x)|. Since S is sign invariant, we have

|g(x)| < t < Re(f(x)), for all g ∈ S.
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Taking the supremum over all g ∈ N , we obtain the contradiction

‖x‖ < Re(f(x)) ≤ |f(x)| ≤ ‖f‖‖x‖ ≤ ‖x‖,
which finishes the proof. �

Proposition 5. If F is a regular family, then

Ext(X∗
F) =

{∑
i∈F

θie
∗
i : F ∈ FMAX and (θi)i∈F is a sequence of signs

}
.

Proof. Let N := {
∑

i∈F θie
∗
i : F ∈ FMAX , |θi| = 1}, and let M := {

∑
i∈F θie

∗
i :

F ∈ F , |θi| = 1}. Note that M is norming for XF and is sign invariant. From

Lemma 4 it follows that BX∗
F
= conv(M)

w∗

. We claim that M is w∗-closed. Then

both M and BX∗
F
= conv(M)

w∗
are compact in the locally convex space (X∗

F , w
∗),

so by Milman’s theorem (see [11, Theorem 3.25]), every extreme point of BX∗
F
lies

in M .
Since N ⊆ Ext(BX∗

F
) and no x ∈ M \ N is an extreme point (any such x is

easily written as the middle point of two different points of N), it follows that
Ext(BX∗

F
) = N .

To prove the claim we note that if a sequence of points of M converges w∗ to
some y, then the compactness of F implies that the support of y belongs to F . The
w∗ convergence implies coordinatewise convergence, and so each nonzero coordinate
of y must be a sign, which concludes the proof of the claim. �

3. Isometries between combinatorial spaces

Let T : X∗
F → X∗

G be an operator between duals of combinatorial spaces XF
and XG , sending extreme points of the unit ball of X∗

F to extreme points of the
unit ball of X∗

G . Our goal is to show that for any i ∈ N, Te∗i is of the form∑
j∈Ai

θije
∗
j , for finite subsets Ai of N and sequences of signs (θij)j∈Ai

(Proposition

9). Then, assuming T is a surjective isometry, we prove that T is induced by a
signed permutation.

Since

Ext(X∗
F) =

{∑
i∈F

θie
∗
i : F ∈ FMAX and (θi)i∈F is a sequence of signs

}
,

it follows that if x∗ ∈ Ext(X∗
F), then for any i ∈ N, |x∗(ei)| ∈ {0, 1}.

Lemma 6. Suppose n ∈ N, {n} /∈ FMAX , and let k ∈ Supp(Te∗n) such that
|αn

k | �= 1. Then |αn
k | = 1

2 , and for any F ∈ FMAX such that n ∈ F , there exists a

unique m ∈ F \ {n} such that |αm
k | = 1

2 . Moreover, αj
k = 0 for all j ∈ F \ {n,m}.

Proof. Let F ∈ FMAX such that n ∈ F . If for all j ∈ F \ {n}, k /∈ Supp(Te∗j),
then we have

T (
∑
j∈F

e∗j )(ek) =
∑
j∈F

Te∗j (ek) = αn
k .

Since |αn
k | /∈ {0, 1}, it follows that T (

∑
j∈F e∗j ) /∈ Ext(X∗

G), contradicting the fact

that
∑

j∈F e∗j ∈ Ext(X∗
F) and T preserves extreme points. Therefore there exists

m ∈ F , m �= n, such that k ∈ Supp(Te∗m). Consider (θj)j∈F as a sequence of signs
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such that for any j ∈ F we have θjα
j
k ≥ 0. Since

∑
j∈F θje

∗
j ∈ Ext(X∗

F ), it follows

that T (
∑

j∈F θje
∗
j ) ∈ Ext(X∗

G), and hence

(1) T (
∑
j∈F

θje
∗
j )(ek) =

∑
j∈F

θjTe
∗
j (ek) =

∑
j∈F

θjα
j
k = 1

as all θjα
j
k are nonnegative and at least two, namely θnα

n
k and θmαm

k , are positive.
On the other hand

∑
j∈F\{n} θje

∗
j − θne

∗
n is also an extreme point whose image

by T has real value in ek, and hence

(2)
∑

j∈F\{n}
θjTe

∗
j (ek)− θnTe

∗
n(ek) =

∑
j∈F\{n}

θjα
j
k − θnα

n
k ∈ {−1, 0, 1}.

From (1), (2), and the fact that θnα
n
k and θmαm

k are positive, it follows easily

that
∑

j∈F\{n} θjα
j
k − θnα

n
k = 0, and solving for θnα

n
k we obtain that θnα

n
k = 1

2 .

In a similar manner, reversing the roles of n and m we obtain that θmαm
k = 1

2

as well. Plugging these values into (1), and taking into account that all θjα
j
k are

nonnegative, it follows that αj
k = 0 for all j ∈ F \ {n,m}. �

Lemma 7. Suppose n ∈ N, {n} /∈ FMAX , and let k ∈ Supp(Te∗n) such that
|αn

k | = 1. Then for any F ∈ FMAX such that n ∈ F , and for any j ∈ F \ {n},
αj
k = 0.

Proof. Pick F ∈FMAX such that n∈F , and consider the extreme points
∑

j∈F θje
∗
j ,

where (θj)j∈F are choices of signs such that θjα
j
k is nonnegative for all j ∈ F . Since

T (
∑

j∈F θje
∗
j ) is also an extreme point, it follows that

θnα
n
k +

∑
j∈F\{n}

θjα
j
k ∈ {−1, 0, 1},

for all signs (θj)j∈F . Clearly this is only possible if αj
k = 0 for all j ∈ F \ {n}. �

Lemma 8. For any finitely supported x∗ =
∑

i∈A θie
∗
i ∈ X∗

F with |θi| = 1, we have
that ‖x∗‖ = 1 if and only if A ∈ F (and ‖x∗‖ > 1 otherwise).

Proof. Since each ei ∈ XF has norm 1 and |x∗(ei)| = |θi| = 1 for i ∈ A, clearly
‖x∗‖ ≥ 1.

If A ∈ F , then given x =
∑

j αjej ∈ XF such that ‖x‖F = 1, we have that∑
j∈A |αj | ≤ 1, so that

|x∗(x)| ≤
∑
i∈A

|θi| · |αi| =
∑
i∈A

|αi| ≤ 1.

Therefore, ‖x∗‖ ≤ 1.
Conversely, if A /∈ F , then |A| ≥ 2, so let x = 1

|A|−1

∑
i∈A θ̄iei and notice that

‖x‖ ≤ 1 and

x∗(x) =
1

|A| − 1

∑
i∈A

θiθ̄i =
1

|A| − 1

∑
i∈A

|θi|2 =
|A|

|A| − 1
> 1,

so that ‖x∗‖ > 1. �
Proposition 9. Let T : X∗

F → X∗
G preserve extreme points, where F ,G are regular

families. Then the vectors Te∗i , i ∈ N, are of the form
∑

j∈Ai
θije

∗
j for sets Ai ∈ G

of N and signs θij.
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Proof. With the previous notation, we are going to show first that for any n ∈ N

and any k ∈ N we have |αn
k | �= 1

2 . Fix n ∈ N arbitrary and note first that if

{n} ∈ FMAX , then e∗n is an extreme point, and hence so is Te∗n, and it follows that
for any k ∈ N we have that |Te∗n(ek)| = |αn

k | ∈ {0, 1}. When {n} /∈ FMAX , assume
towards a contradiction that there exists k ∈ N such that |αn

k | = 1
2 . We are going

to consider separately two cases: when n belongs to a maximal set of size at least
three, and when n belongs only to maximal sets of size two.

Case 1 (There exists F ∈ FMAX such that n ∈ F and |F | ≥ 3). In this case,
construct a sequence as in Lemma 3, starting with G1 := F \ {n}. It follows
that for each i ∈ N, |Gi| ≥ 2. Since |αn

k | = 1
2 , and for any i ∈ N we have that

Gi ∪ {n} ∈ FMAX and |Gi| ≥ 2, from Lemma 6 we conclude that there exists a
sequence pi ∈ Gi, i ∈ N, such that αpi

k = 0. From Lemma 2, there is E ∈ FMAX

such that E ⊆ {n, p1, p2, . . . } and n = minE. However,

|T (
∑
j∈E

e∗j )(ek)| = |αn
k +

∑
pi∈E\{n}

αpi

k | = |αn
k | =

1

2
,

contradicting the fact that T (
∑

j∈E e∗j ) is an extreme point.

Case 2 (For any F ∈ FMAX such that n ∈ F , |F | = 2). Assume there exists
m > n such that {n,m} ∈ FMAX and m belongs to a maximal set of size at least
3. Then it follows from Lemma 6 that |αm

k | = 1
2 , and from Case 1, applied to m, we

obtain a contradiction. Hence, we may also assume that for any m > n such that
{n,m} ∈ FMAX , only m belongs to maximal sets of size 2. Construct a sequence
of sets n < G1 < G2 < . . . as in Lemma 3. Then we must have that each Gi is a
singleton, so we obtain a sequence n < q1 < q2 < . . . such that {n, qi} ∈ FMAX

for all i ∈ N. Also, from Lemma 6, we conclude that |αqi
k | = 1

2 for all i ∈ N. From
spreading we have that {qi, qj} ∈ F for all i < j, and since no qi belongs to a
maximal set of size at least 3, it follows that actually {qi, qj} ∈ FMAX for all i < j.

For each i write T (e∗qi) =
1
2εie

∗
k+

1
2y

∗
i +z∗i , where εi is a sign, the three vectors are

disjointly supported (possibly y∗i or z∗i is 0), and y∗i and z∗i only have coordinates
of modulus 1 on their support. In the complex case, we note that T (θie

∗
qi + θje

∗
qj ),

being an extreme point for all signs θi, θj , contradicts the fact that its k-coordinate
is 1

2 (θiεi + θjεj), which can assume values of modulus different from 0 and 1. In
the real case, passing to a subsequence we may assume that εi is constant, and
without loss of generality, equal to 1. From the fact that for i �= j, T (e∗qi ± e∗qj )

must be an extreme point and therefore does not have ± 1
2 coordinates, we deduce

that the support of y∗i is some finite set C independent of i and that z∗i is disjointly
supported from k, from y∗i , and from all other z∗j . Since C is finite we find i �= j
such that y∗i = y∗j , and we compute

T (e∗pi
+ e∗pj

) = e∗k + y∗i + z∗i + z∗j

and

T (e∗pi
− e∗pj

) = +z∗i − z∗j ,

and so the second vector has support strictly included in the support of the first
one. But this contradicts that both must belong to GMAX .

The fact that Ai ∈ G follows from Lemma 8. �
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Theorem 10. Let T : X∗
F → X∗

G be an isometry, where F ,G are regular families.
Then there exists a permutation π : N → N and a sequence of signs (θi)i such that
Te∗i = θie

∗
π(i) for all i ∈ N.

Proof. Note first that if {i, k} ∈ F and i �= k, then SuppTe∗i∩SuppTe∗k = ∅. Indeed,
from Proposition 9, |(Te∗i )(ek)|, |(Te∗k)(ek)| ∈ {0, 1}. Hence, for a given j, let θi and
θk be signs such that θi(Te

∗
i )(ej) = |(Te∗i )(ej)| and θk(Te

∗
k)(ej) = |(Te∗k)(ej)|. Since

‖θie∗i + θke
∗
k‖ = 1, we have that θi(Te

∗
i )(ej) + θk(Te

∗
k)(ej) ≤ ‖θiTe∗i + θkTe

∗
k‖ = 1,

so that |(Te∗i )(ek)|, |(Te∗k)(ek)| cannot both be 1. This guarantees that the supports
are disjoint. Of course, a similar fact holds true for a pair {j, l} ∈ G and T−1.

We are going to show that for any n ∈ N, the support of Te∗n is a singleton. From
the fact that T is a bijection, the conclusion of the theorem follows immediately.

Fix n ∈ N arbitrary, and from Proposition 9 it follows that we can write

Te∗n =
∑
i∈A

θie
∗
i ,

where θi are signs and A ∈ G. From the hereditary property we have that for any
j, l ∈ A, j �= l, the set {j, l} ∈ G. Therefore, from the remark at the beginning of
the proof, we conclude that T−1e∗j and T−1e∗l have disjoint support. Hence

⋃
i∈A

Supp(T−1e∗i ) = Supp

(∑
i∈A

θiT
−1e∗i

)
= Supp

(
T−1

∑
i∈A

θie
∗
i

)
= {n}.

Therefore |A| ≤ |
⋃

i∈A Supp(T−1e∗i )| = 1, and from this it follows immediately
that A is a singleton, as claimed. This finishes the proof. �

The following example shows that a bounded operator that sends extreme points
to extreme points and vectors of disjoint support to vectors of disjoint support is
not necessarily given by a permutation of the basis.

Example 11. The map T defined on the dual of the Schreier space by T (e∗n) =
e∗2n + e∗2n+1 sends extreme points to extreme points, sends disjoint supports to
disjoint supports, but is not induced by a signed permutation.

Proof. For n ≥ 1 any sum of e∗i supported on some F such that |F | = minF = n
has image supported on some F ′ such that |F ′| = 2n = min |F ′|. �
Corollary 12. Assume F ,G are regular families. Then TFAE:

(i) XF and XG are isometric;
(ii) X∗

F and X∗
G are isometric;

(iii) there is a permutation π of N such that GMAX = {π(F ) : F ∈ FMAX};
(iv) there is a permutation π of N such that G = {π(F ) : F ∈ F}.

Proof.
(i) implies (ii) for any two Banach spaces.
It follows from Theorem 10 that if T : X∗

F → X∗
G is an isometry, then it is

induced by a signed permutation. Since T takes extreme points to extreme points,
in particular, we get that F ∈ FMAX if and only if π(F ) ∈ GMAX .

(iii) trivially implies (iv).
Finally, if π is a permutation of N such that G = {π(F ) : F ∈ F}, it is easy to

see that T : XF → XG defined by T (
∑

i λiei) =
∑

i λieπ(i) is an onto isometry. �
The following remark is immediate from the corollary above.
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Remark 13. Assume F is a regular family. Then T : XF → XF is an onto isometry
if and only if Tei = θieπ(i) for some permutation π of N such that F = {π(F ) : F ∈
F}.

4. Isometries of Schreier spaces

Definition 14. Given a countable ordinal α, we define the Schreier family of order
α inductively as follows:

• S1 = S;
• Sα+1 = {

⋃k
j=1 Ej : Ej ∈ Sα and {minEj : 1 ≤ j ≤ k} ∈ S} ∪ {∅};

• Sα = {F ∈ [N]<ω : F ∈ Sαn
for some n ≤ minF} ∪ {∅}, if α is a limit

ordinal and (αn)n is a fixed increasing sequence of ordinals converging to
α.

Note that the sequence of Schreier families (Sα)α<ω1
depends on the choice of

the sequences (αn)n converging to each limit ordinal α. It is a well-known fact [2]
that Schreier families are regular families, so that we may apply the results from
the previous section to these families.

Lemma 15. Let E and F be two maximal sets in Sα, where α < ω1. If F is a
spreading of E, then minE = minF .

Proof. We are going to prove the statement by transfinite induction. It clearly
holds true for S1, and assuming it holds for Sβ, for all β < α, we will prove it for
Sα.

Case 1 (α is a successor ordinal, hence α = β+1 for some β < ω1). Let E =
⋃k

j=1 Ej

for some Ej ∈ Sβ, Ej < Ej+1, and {minEj : 1 ≤ j ≤ k} ∈ S. Since E is maximal,
k = minE1 = minE. Let σ : E → F be the order-preserving bijection, and, since F
is a spreading of E, then σ(n) ≥ n for every n ∈ E. In particular, Fj := σ(Ej) ∈ Sβ,
as Sβ is spreading, and {minFj : 1 ≤ j ≤ k} ∈ S, as S is spreading. Since F is
maximal, we get that minF = minF1 = k = minE.

Case 2 (α is a limit ordinal). Let n < minE be such that E ∈ Sαn
. Since F is a

spreading of E, we get that F ∈ Sαn
. The maximality of E and F in Sα implies,

by Lemma 2 of Sαn
, that they are both also maximal in Sαn

. By the inductive
hypothesis, we get that minE = minF . �

Theorem 16. Let T : X∗
Sα

→ X∗
Sα

be an isometry. Then there exists a sequence
of signs (θi)i such that for any i ∈ N, Te∗i = θie

∗
i .

Proof. Fix T : X∗
Sα

→ X∗
Sα

, and from Theorem 10 we have that there exists a
permutation π : N → N and a sequence of signs (θi)i such that Te∗i = θie

∗
π(i).

Assume towards a contradiction that the conclusion is not true, and let k0 be the
smallest integer such that p0 := π(k0) �= k0. Note that from the proof of Theorem
10 follows that π sends maximal singletons to maximal singletons, and since {1} is
the only maximal singleton in Sα we have that k0 > 1 and {k0} /∈ SMAX

α . From
the minimality of k0 we also have that p0 > k0.

Pick k1 > k0 such that p1 := π(k1) ≥ k1 and p1 > p0. Note that we can
always do that, since any permutation will contain an increasing sequence, and we
can go far enough along that sequence to pick a suitable k1. Continuing in this
manner we construct infinite sequences {k0, k1, k2, . . . } and {p0, p1, p2, . . . } such
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that pi := π(ki) and {p0, p1, p2, . . . } is a spreading of {k0, k1, k2, . . . }. From the
barrier property, we can find an initial segment E ⊂ {k0, k1, k2, . . . } such that
E ∈ SMAX

α . Since T sends extreme points to extreme points, and E ∈ SMAX
α ,

it follows that π(E) ∈ SMAX
α as well. Hence, from Lemma 15 we must have that

minE = minπ(E). That is, k0 = p0, which contradicts the initial assumption.
This finishes the proof. �

5. Final remarks

Theorem 10 guarantees that all the isometries of a combinatorial space or its
dual are determined by a permutation of the elements of the basis and a change of
signs. A natural and general question which remains open is the following.

Question 17. For which combinatorial spaces can we explicitly describe the group
of its isometries?

In Section 4 we described the group of the isometries on Schreier spaces, showing
that the identity is the only permutation allowed. The following example illustrates
an intermediate situation where more permutations are allowed, though not all of
them.

Example 18. Given an increasing sequence (kn)n such that k0 = 0, let

F = {F ∈ [N]<ω : |F | ≤ n, where kn−1 ≤ minF < kn}.
Then T : X∗

F → X∗
F is an isometry if and only if there is a permutation π of N such

that for all n ∈ N, π(In) = In and T (e∗n) = ±e∗π(n), where In = [kn, kn+1[.

Proof. It is easy to see that F is hereditary and spreading, and to prove compactness
one should follow similar arguments to the Schreier families. Moreover, one easily
sees that FMAX is a barrier.

Given an isometry T : X∗
F → X∗

F , by Theorem 10, there exists a permutation
π : N → N such that T (e∗n) = ±e∗π(n) for every n ∈ N. Note that from the proof

of Theorem 10 it follows that π(F ) ∈ FMAX iff F ∈ FMAX . On the other hand,
F ∈ FMAX iff |F | = n for the unique n such that kn−1 ≤ minF < kn. It follows
easily that π(In) = In.

Conversely, given a permutation π of N such that ∀n ∈ N π(In) = In, we have
that F = {π(F ) : F ∈ F}. Hence, if T (e∗n) = ±e∗π(n) for every n ∈ N, one can take

T to be the linear operator that takes e∗n to e∗π(n), and it is easy to see that T is an

isometry. �
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UPMC, Case 247, 4 place Jussieu, 75252 Paris Cedex 05, France

Email address: ferenczi@ime.usp.br

Department of Mathematics and Statistics, MacEwan University, 10700-104 Avenue

Edmonton, Alberta, T5J 4S2, Canada

Email address: tcaciuca@macewan.ca

https://www.ams.org/mathscinet-getitem?mr=983378
https://www.ams.org/mathscinet-getitem?mr=2921688
https://www.ams.org/mathscinet-getitem?mr=1957004
https://www.ams.org/mathscinet-getitem?mr=2361284
https://www.ams.org/mathscinet-getitem?mr=509400
https://www.ams.org/mathscinet-getitem?mr=0500056
https://www.ams.org/mathscinet-getitem?mr=0438074
https://www.ams.org/mathscinet-getitem?mr=1157815

	1. Introduction
	2. Preliminaries
	2.1. Regular families
	2.2. Extreme points in the dual space

	3. Isometries between combinatorial spaces
	4. Isometries of Schreier spaces
	5. Final remarks
	Acknowledgments
	References

