Lista 4 de MAT 103

Administração Noturno - FEA-USP - 10. sem. 2011 - Turmas 21 e 22

Profa. Maria Izabel Ramalho Martins

I. Construindo mais gráficos

1. Esboce o gráfico das funções indicadas abaixo, utilizando para tanto o roteiro exibido na 3a. lista.

a.
$$f(x) = \frac{x^2 - x}{x + 1}$$

b.
$$f(x) = \frac{x^3}{x^2 + 1}$$

a.
$$f(x) = \frac{x^2 - x}{x + 1}$$
 b. $f(x) = \frac{x^3}{x^2 + 1}$ **c.** $f(x) = \frac{x^3 - x + 1}{x^2}$

II. Sobre primitivação

- **0.1.** Definição: Dada uma função y = f(x), definida em um intervalo I, chamase uma primitiva ou antiderivada de f a uma função F, definida em I, tal que F'(x) = f(x), para todo $x \in I$.
- **0.2.** Um exemplo: Dada $f(x) = x^2$, uma primitiva de f é a função $F(x) = \frac{x^3}{3}$, pois sua derivada é a f.

Além disso, temos que a família de todas as funções primitivas de $f(x) = x^2$, é a família da forma $\frac{x^3}{3} + c$, para $c \in \mathbb{R}$. Tal família é denominada integral indefinida

de
$$f(x) = x^2$$
 e denotada por $\int x^2 dx = \frac{x^3}{3} + c$.

0.3. Propriedades Sejam f e g funções que admitem primitivas e $\alpha \in \mathbb{R}$, então

i.
$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$
; ii. $\int \alpha f(x) dx = \alpha \int f(x) dx$.

ii.
$$\int \alpha f(x)dx = \alpha \int f(x) dx.$$

1. Calcule as integrais indefinidas (ou primitivas) indicadas abaixo:

a.
$$\int (x^3 + 1) dx$$

a.
$$\int (x^3 + 1) \ dx$$
 b. $\int \frac{2x^2 - 3x + 1}{x^2} \ dx$ **c.** $\int \frac{2x - \sqrt[3]{x}}{3x} \ dx$ **d.** $\int \left(\frac{x}{4} - \frac{2}{\sqrt{x}}\right) \ dx$

$$\mathbf{c.} \int \frac{2x - \sqrt[3]{x}}{3x} \, dx$$

$$\mathbf{d.} \int \left(\frac{x}{4} - \frac{2}{\sqrt{x}}\right) \, dx$$

$$e. \int e^{2x} dx$$

$$\mathbf{f.} \int e^{-x} \ dx$$

e.
$$\int e^{2x} dx$$
 f. $\int e^{-x} dx$ **g.** $\int \left(x \sqrt[3]{x} + \frac{e^x}{3}\right) dx$

Observação: Para os ítens e, f acima, tente achar uma primitiva usando a definição.

III . Áreas - Uma aplicação das Integrais Definidas

- 1. Calcule a área da região plana (desenhe a região cuja área é pedida.)
- a. compreendida entre o eixo x, a curva $y = x^2 x$ e as retas x = 1 e x = 2.
- **b.** compreendida entre o eixo x e a curva $y = x^2 x$.
- c. delimitada pelo eixo x, pelas retas x = 0 e x = 2 e a curva $y = x^2 x$.
- 2. Esboce as curvas indicadas abaixo e calcule a área da região do plano delimitada por elas:
- **a.** $y = x^2$ e y = 2x.
- **b.** $y = x^2 x 2$ e y = x, com $x \ge 0$.
- **c.** $y = x^2$ e $y = -x^2 + 4x$.