
A Brief Survey on Resource Allocation in Service
Oriented Grids

Daniel M. Batista and Nelson L. S. da Fonseca
Institute of Computing

State University of Campinas
Avenida Albert Einstein, 1251 – 13084-971 – Campinas – SP – Brazil

Email: {batista, nfonseca}@ic.unicamp.br

Abstract— Grids are systems that involve coordinate resource
sharing and problem solving in heterogeneous dynamic environ-
ments. Resource allocation is central to service provisioning in
grids. In this paper, a brief survey of resource allocation of twelve
existing systems is presented. Moreover, directions for future
research are suggested.

I. INTRODUCTION

Grids are systems that involve coordinated resource sharing
and problem solving in heterogeneous dynamic environments
to meet the needs of a generation of researchers requiring
large amounts of bandwidth and more powerful computational
resources [1]. Grids enable virtual organizations / computing
environment which allows the offering of a variety of services.
This has motivated the development of different grid systems
for highly demanding services and applications. Although in
its infancy, cooperative problem solving via grids has become
a reality, and various areas [2] [3] [4] [5] have benefited from
this novel technology.

Depending on the main type of service a grid offers, it
can be classified as: computational grid, access grid, data
grid or datacentric grid [6]. Computational grids provide high
performance computing; access grids allow the access to
a small number of specific resources; data grids store and
move large data sets; and datacentric grids enable distributed
repositories of data that cannot be stored in a single one.

Grids are typically composed of heterogeneous resources.
The availability of these resources fluctuates during the exe-
cution of a grid application due to the lack of ownership
of resources by the application. Moreover, grid applications
typically demand large amount of resources and have diverse
quality of service requirements. Thus, the ability to allocate
resources and to cope with fluctuations of the availability of
these resources is central to the provisioning of services in
grid networks. Adaptive scheduling and dynamic scheduling
[7] deal with such fluctuation by scheduling tasks composing
an application just before the instant when the task should
initiate. However, changes occurred during a task execution
are not accounted for.

Existing grid systems differ by the way resources are
allocated to furnish the desired quality of service. This paper
briefly surveys aspects of resource allocation in grid systems.
Moreover, it points out directions for future research on service
provisioning in grid networks. This paper differs from previous

surveys on resource allocation for grid networks by the larger
number of systems surveyed as well as by the report on their
performance. The survey in [8] focus in data grid, whereas
the survey in [9] considers only applications described by
workflows. Moreover, the survey in [10] neither takes into
account heterogeneous resources nor describes approaches to
deal with fluctuation of resource availability.

This paper is organized as follows: Section II introduces the
problem of resource allocation in grid networks. Section III
presents a survey of aspects of resource allocation in current
systems. Section IV briefly compare the proposals surveyed.
Finally, Section V points out some directions for future
research.

II. RESOURCE ALLOCATION IN GRID NETWORKS

The allocation of resources to a grid application involves
several actions. Scheduling maps the tasks composing an
application to the available resources. Code migration transfers
the code of a task and its computational context to a host
where it will be executed. Data transmission transfers, between
two remote hosts, the data needed by a task. Monitoring
keeps track of resources availability and forecasting tries to
predict the application performance. Figure 1 [11], illustrates a
proposal for resource allocation by showing the flow of actions
taken in a scheme based on monitoring. The scheme involves
the following steps:

1-) Mapping the application description onto the graph
describing the grid resources and production of a schedule for
the beginning of task execution and data transfer; 2-) Transfer
of the codes and data to the hosts where the tasks will run. The
execution of the tasks begins as soon as transfer is completed;
3-) Monitoring the resources of the grid to detect any variation
in the availability of hosts and links; 4-) Gathering of the data
collected in Step 3 and comparison with the scenario used for
previous task scheduling. If no change is detected, periodic
monitoring of the grid (Step 3) is continued; 5-) Production
of a new scheduling considering the current grid state. Only
the unfinished tasks of the application must be scheduled; 6-)
Verification of whether the schedule derived is the same as
the current one; 7-) Comparison of the cost of the solution
derived in Step 5 with the cost of the current solution. The
cost of the solution derived in Step 5 should include the cost
of migration of the tasks. If the predicted schedule length



Fig. 1. Procedure of Resources Engineering for Grids

produced by the new schedule is greater than that obtained
by the current schedule, monitoring the grid resources (Step
3) shall continue. The cost of migration of a task involves the
time needed to complete the execution, as well as the time to
transfer the data. A task is only worth moving if a reduction
in execution time of the entire application compensates for
the cost; 8-) Migration of tasks to the designated hosts on the
basis of the most recent schedule.

III. EXISTING GRIDS

This section provides a brief overview of twelve existing
grid systems and how resource allocation is pursued in each
system.

A. NWS

The Network Weather Service (NWS) [12] is a distributed
system used by several grid systems for producing short
term performance predictions of computational and network
resources. It involves monitoring and prediction but does not
include (re)scheduling of tasks.

Current implementation of NWS collects measurements
on the availability of CPU, TCP connection establishment
time, end-to-end latency and available bandwidth. A set of
different time series are applied to recent collected data and
the one which produced the most accurate result is used
to predict performance in the short term. The frequency at
which probes are sent for measuring the grid resources is
periodically adjusted in order to minimize the interference

with the application. Moreover, it is sent with a frequency
to produce representative measurement data sets. Sensors are
organized in a hierarchical manner to optimize the generation
of predicted values.

NWS works on small time scales and it does work well for
long term predictions. Therefore, it is not proper to applica-
tions which takes hours to run. Besides that, uncertainties on
applications demands are not accounted in prediction. Errors
in estimating the execution time on the order of 25% were
reported. Moreover, NWS produces graphics for bandwidth
availability predictions in which the differentiation between
predicted and measured values are not easy to evaluate.

B. GRACE

The GRid Architecture for Computational Economy
(GRACE) [13] allocates resource on the basis of supply and
demand dynamics. A resource broker deals with resource
discovery and adaptation of resource allocation given changes
in availability. It presents the grid to the users as a single
computational system. The Nimrod/G resource broker is
recommended and it was used in experiments conducted.

GRACE allows the monitoring of several parameters, in-
cluding: CPU process power, memory, storage capacity and
network bandwidth. Moreover, detailed measurements about
software libraries access and memory pages can be generated.

Performance of GRACE was evaluated on the EcoGrid,
a testbed which covers resources in four continents. CPU
intensive applications were executed during a one-hour period.
A reduction of the order of 30% on the cost due to intelligent
utilization of resources was observed. However, the major
drawback of this proposal is the lack of flexibility to adjust
the resource allocation given changes of resource availability.

C. Cactus Worm

The Cactus Worm system [14] employs code migration and
monitoring to allow applications to adapt its resource allo-
cation when required performance level is not achieved. The
Cactus Worm system employs the Globus Toolkit Monitoring
and Discovery System (MDS) [15] to monitor the current re-
source status. The Condor middleware matchmaking algorithm
schedules tasks to resources considering hosts memory and
link bandwidth availability.

Migration can use intermediate nodes, allowing, in this
way, data-transfer between non-connected hosts. However,
intermediate nodes can become a bottleneck. Cactus Worm
does not deal with uncertainties. Is was evaluated on the
GrADS testbed, a grid composed of American universities.
Experimental results show the advantage of Cactus Worm
adaptive mechanism. However, there is no concluding data
on the performance of the whole system.

D. Framework for Dynamic Grid Environments

The framework presented in [16] was target to promote
changes when fault occurs as well as when resource avai-
lability increases. It was evaluated on TRGP testbed and a
decrease of execution time of the order of 30% was observed.



Experiments were conducted involving only CPU intensive
applications and, therefore, there is a need to consider data
intensive applications to derive broader conclusions on its
performance.

E. Migration Framework for Grids

The migration framework for grids presented in [17], adopts
a policy which determines that migration should be pursued
in case the gain in the execution time exceeds 30% of the
estimated one, which is derived by using a pre-defined model.
Link bandwidth and processing power are the major metrics
used in this estimation. The NWS system is employed in this
framework. It was was tested on GrADS testbed. An appli-
cation run several times and a gain of 70% in the execution
time was obtained. Similar gain values were found when the
availability of resources increases. The major drawback of this
proposal is the need of CPU time to produce the estimations
given the model adopted.

F. Wren

The Wren system [18] uses both passive and active mea-
surement. Passive measurement is carried out when applica-
tions are executing and active measurements when either no
application is running or when the network load is low. The
major contribution of this proposal is the introduction of active
probing with low overhead. No mechanism for dealing with
uncertainties and (re)scheduling were derived. It is our best
knowledge that no experimental results are available.

G. GridWay

The GridWay system [19] utilizes the Globus middleware
and the Framework for Dynamic Grid Environments (Sub-
section III-D) to build a system capable of adapting itself to
environment changes, specially to CPU-intensive applications.
Application requirements, bandwidth availability, migration
overhead and processing power of potential new host are
considered in the migration decision making process. Uncer-
tainties on the application requirements and on estimations
are not accounted in the decision process. Although not
mandatory, the NWS is used but no forecasting of resource
availability is carried out. Experiments with CPU-intensive
applications pointed out a gain in execution time of about
15%. Manual migration, contrary to non-migration decisions,
led to performance degradation.

H. G-QoSM

The Grid-QoS Management (G-QoSM) framework [20]
allocates resources based on the Service Level Agreement
made between users and providers. The grid is seen as capable
of furnishing QoS and three classes similar to the classes
of Internet Diffserv QoS framework are employed: the QoS
guaranteed class, the QoS controlled-load class and the best
effort one. Both performance degradation and incoming new
services are adopted in the reallocation of resources. The
Network Resource Manager (NRM) is employed to estimate
the available bandwidth and the information gathering pro-
cedure of the Globus middleware is used to monitor the

availability of processing power. Sampling of intra domain
resources is more frequent than the sampling of inter domain
resources. Although only link bandwidth and processing power
are accounted for, G-QoSM is supposed to be able to monitor
several QoS-related metrics. Both uncertainty on resource
availability and on application demands are not considered.
Moreover, G-QoSM does not involve forecasting.

I. VNET and VTTIF

In the system presented in [21], the grid network is seen as
an overlay network and the VNET and the Virtual Topology
and Traffic Inference Framework (VTTIF) mechanisms are
used for managing and for defining the grid topology, res-
pectively. Adaptation to resource availability is carried out by
dynamically changing the overlay network topology which has
an initial configuration of a star. VTTIF monitors the traffic
pattern passively and measurement results dictate topology
changes. Only the communication pattern is considered in
rearranging the overlay topology. In [21], no information is
provided about initial scheduling and mechanisms to deal with
application and resource availability uncertainties. A grid to
evaluate the concept was built. It was observed that gains
varying from 20 to 50% in execution time were achieved after
the changes in topology. These changes took on the average
about one minute to complete.

J. GHS

The Grid Harvest Service (GHS) [22], as the NWS system
(Subsection III-A), focuses on monitoring and prediction of the
grid state. The purpose of GHS is to achieve higher levels of
scalability and precision of predictions than the ones obtained
by the NWS system, specially for applications which run for
long periods. Passive and active monitoring techniques are
used to evaluate the end-to-end bandwidth availability and
neural networks are used to predict the available bandwidth
and latency experienced. GHS re-schedules tasks to enhance
the performance of applications. Two scheduling algorithms
try to achieve such goal. One schedules tasks in order to
minimize mean difference of execution time of tasks and the
other one tries to maximize the number of tasks mapped onto
a single resource. Experimental results point out the advantage
of using GHS when compared to both the NWS system and to
the AppLeS scheduler [23] in relation to the gain of execution
time.

K. Workflow Based Approach (WBA)

The algorithm proposed in [24] is oriented to workflow ba-
sed applications which are data intensive. Changes on resource
availability trigger the re-scheduling of tasks but no migration
of process context of processes is carried out. The schedule
produced by the Task Based Approach guides the scheduling
of tasks but it does not consider dependencies in the workflow.
Schedulers take into account existing processing power and
bandwidth. Simulations using the NS-2 simulator indicate the
need to adopt mechanisms for dealing with uncertainties on
the estimation of resource availability. Execution time half of



TABLE I

COMPARISON OF MECHANISMS IN TERMS OF SCHEDULING, MIGRATION, UNCERTAINTY HANDLING AND PERFORMANCE BASED EXPERIMENTS

Ref Scheduling Triggering Reactions to change Rescheduling Treatment of uncertainty Performance Results

[12]
– Frequency of measurements – – Prediction of hosts Measurements in non-grid

i) adaptive to CPU state hosts and links
ii) constant to network

[13]
Not specified Rules based on the Not specified Not specified – Measurements on testbed
(Can use Nimrod/G) application performance

[14]
Requirements Rules based on the Migration (can use Any host with better – Measurements on testbed
matching (Condor) application performance intermediate node) performance

[16]

Greedy i) New better resources Migration or re-execution Greedy – Measurements on testbed
ii) Performance degradation of task
iii) Resource faults
iv) Change in application requirement
v) User decision

[17]
Requirements i) New better resources Migration if gain higher Requirements On applications Measurements on testbed
matching ii) Performance degradation than 30% matching

[18] – Frequency of measurements – – – –

[19]
Requirements i) New better resources Migration if gain > Requirements – Measurements on testbed
matching threshold matching

[20]

Requirements i) Infeasibility of support QoS Adjust of allocation Requirements – Scenario
matching ii) Release of previously occupied (does not mention matching not detailed

resources migration)
iii) QoS degradation

[21]
Not specified Changes in traffic of the virtual Topology adaptation Not specified Inference of virtual Measurements on testbed

topology topology

[22]
Host capacity based Rules based on Migration to idle To first host found which Prediction of hosts state Measurements in two
heuristics link and host status resources support the requirements grids

[24]
Workflow based Not specified Not specified Workflow based Mechanism not scalable Simulations on
heuristics heuristics NS-2

[25]
Cycle elimination and i) Execution fault Migration to better Cycle elimination and Ameliorate negative Measurements on testbed
genetic algorithm ii) Performance degradation resources genetic algorithm impact of wrong decisions

employing specific models

those produced when the grid does not employs WBA were
found.

L. Dynamic Scheduler of Scientific Workflows

The dynamic scheduler presented in [25] is able to schedule
tasks described by graph with cycles, by eliminating cycles
first. The scheduler uses genetic optimizations and can be
parallelized. Uncertainties on the applications demands are
assumed when predicting the execution times. Migration de-
cisions are taken in case the observed execution time exceeds
the predicted value. No monitoring is employed. Experimental
results indicate that a 25% reduction on the execution time is
possible.

IV. COMPARISON OF EXISTING PROPOSALS

Table I displays the main aspects of resource allocation of
the proposals surveyed for service provisioning. Most of the
proposals considers processing power and link bandwidth to
(re)-schedule tasks. This is not sufficient for all types of grid
applications, specially those requiring large amount of storage
space and those requiring low end-to-end latencies such as
interactive visualization.

Several proposals use the NWS system which was shown to
be ineffective for applications requiring long execution times.
Furthermore, existing systems are oriented to specific types of
applications which implies on the lack of transparency to grid
users. Moreover, only the G-QoSM system takes into account
classes of services and QoS requirements in the resource
allocation process. Besides that, uncertainties on applications
demands are largely ignored in the proposals surveyed which
can make ineffective resource allocation/scheduling.

V. CONCLUSIONS AND RESEARCH TOPICS

The emerging technologies of grid networks will allow a
diversity of highly demanding new applications and services
which were not possible before. Resource allocation is the

key to effective and efficient service provisioning. This paper
surveyed the resource allocation schemes in twelve existing
grid network proposals.

However, several challenges need to be overcome in order to
make these systems transparent for service provisioning. One
major challenge is to make grids general enough to efficiently
accommodate a large spectrum of applications, releasing users
from the need to understand the limits and capabilities of
specific existing systems.

A critical aspect to all of the proposals presented is the
lack of mechanism to deal with uncertainties on applications
demands which can seriously degrade the system performance.
Finally, there is an urgent need to adopt standard benchmarks,
to compare existing proposals and to assess specific resource
allocation mechanisms for service provisioning.

REFERENCES

[1] I. Foster, “What is the Grid? A Three Point Checklist,” GRIDToday,
vol. 1, no. 6, Jul 2002. [Online]. Available: {http://www-fp.mcs.anl.
gov/∼foster/Articles/WhatIsTheGrid.pdf}

[2] W. Bethel, C. Siegerist, J. Shalf, P. Shetty, T. Jankun-Kelly, O. Kreylos,
and K.-L. Ma, “VisPortal: Deploying Grid-Enabled Visualization Tools
through a Web-Portal Interface,” Lawrence Berkeley National Labora-
tory, Tech. Rep. LBNL-52940, Jun 2003.

[3] “iVDGL - International Virtual Data Grid Laboratory,” 2006, http:
//www.ivdgl.org/. Accessed at 28 Jun 2007.

[4] “LCG - LHC Computing Grid Project,” 2007, http://lcg.web.cern.ch/
LCG/. Accessed at 28 Jun 2007.

[5] “Earth System Grid (ESG),” http://www.earthsystemgrid.org/. Accessed
at 28 Jun 2007.

[6] D. B. Skillicorn, “Motivating Computational Grids,” in 2nd
IEEE/ACM International Symposium on Cluster Computing and
the Grid(CCGRID’02), May 2002, pp. 401–406.

[7] T. L. Casavant and J. G. Kuhl, “A Taxonomy of Scheduling in General-
Purpose Distributed Computing Systems,” IEEE Transactions on Soft-
ware Engineering, vol. 14, no. 2, pp. 141–154, Fev 1988.

[8] E. Laure, H. Stockinger, and K. Stockinger, “Performance Engineering in
Data Grids,” Concurrency and Computation: Practice and Experience,
vol. 17, no. 2–4, pp. 171–191, 2005.



[9] J. Yu and R. Buyya, “A Taxonomy of Workflow Management Systems
for Grid Computing,” Grid Computing and Distributed Systems Labo-
ratory, University of Melbourne, Tech. Rep. GRIDS-TR-2005-1, Mar
2005.

[10] K. Krauter, R. Buyya, and M. Maheswaran, “A Taxonomy and Survey
of Grid Resource Management Systems for Distributed Computing,”
Software: Practice and Experience (SPE), vol. 32,, no. 2, pp. 135–164,
Fev 2002.

[11] D. M. Batista, N. L. S. da Fonseca, F. Granelli, and D. Kliazovich, “Self-
Adjusting Grid Networks,” in Proceedings of the IEEE International
Conference on Communications – ICC 2007, Jun 2007.

[12] R. Wolski, N. T. Spring, and J. Hayes, “The Network Weather Service:
a Distributed Resource Performance Forecasting Service for Metacom-
puting,” Future Generation Computer Systems, vol. 15, no. 5–6, pp.
757–768, 1999.

[13] R. Buyya, D. Abramson, and J. Giddy, “A Case for Economy Grid
Architecture for Service Oriented Grid Computing,” in Proceedings of
the 15th International Parallel and Distributed Processing Symposium,
Abr 2001, pp. 776–790.

[14] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke,
E. Seidel, and J. Shalf, “The Cactus Worm: Experiments with Dynamic
Resource Discovery and Allocation in a Grid Environment,” Interna-
tional Journal of High Performance Computing Applications, vol. 15,
no. 4, pp. 345–358, Nov. 2001.

[15] “About the Globus Toolkit,” http://www.globus.org/toolkit/about.html.
Acessed at 08 Ago 2007.

[16] E. Huedo, R. S. Montero, and I. M. Llrorent, “An Experimental
Framework for Executing Applications in Dynamic Grid Environments,”
NASA Langley Research Center, Tech. Rep. 2002-43, 2002.

[17] S. S. Vadhiyar and J. J. Dongarra, “A Performance Oriented Migration
Framework for the Grid,” in 3rd IEEE/ACM International Symposium
on Cluster Computing and the Grid(CCGRID’03), 2003, pp. 130–137.

[18] B. B. Lowekamp, “Combining Active and Passive Network Measure-
ments to Build Scalable Monitoring Systems on the Grid,” SIGMETRICS
Performation Evaluation Review, vol. 30, no. 4, pp. 19–26, 2003.

[19] R. S. Montero, E. Huedo, and I. M. Llorente, “Grid Resource Selection
for Opportunistic Job Migration,” in Proceedings of the 9th International
Euro-Par Conference. Springer Berlin / Heidelberg, 2003, pp. 366–373.

[20] R. Al-Ali, A. Hafid, O. Rana, and D. Walker, “QoS Adaptation
in Service-Oriented Grids,” in Proceedings of the 1st International
Workshop on Middleware for Grid Computing (MGC2003), 2003.

[21] A. I. Sundararaj, A. Gupta, and P. A. Dinda, “Dynamic Topology
Adaptation of Virtual Networks of Virtual Machines,” in LCR ’04:
Proceedings of the 7th workshop on Workshop on languages, compilers,
and runtime support for scalable systems. New York, NY, USA: ACM
Press, 2004, pp. 1–8.

[22] X. Sun and M. Wu, “GHS: A Performance System of Grid Computing,”
in 19th IEEE International Parallel and Distributed Processing Sym-
posium, 2005, http://doi.ieeecomputersociety.org/10.1109/IPDPS.2005.
234. Accessed at 21/05/2006.

[23] F. Berman, R. Wolski, H. Casanova, W. W. Cirne, H. H. Dail, M. Faer-
man, S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen,
N. Spring, A. Su, and D. Zagorodnov, “Adaptive computing on the Grid
using AppLeS,” IEEE Transactions on Parallel and Distributed Systems,
vol. 14, pp. 369–382, Apr 2003.

[24] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Ken-
nedy, “Task Scheduling Strategies for Workflow-based Applications in
Grids,” in IEEE International Symposium on Cluster Computing and
Grids (CCGRID’05), vol. 2, May 2005, pp. 759–767.

[25] R. Prodan and T. Fahringer, “Dynamic Scheduling of Scientific Work-
flow Application on the Grid: a Case Study,” in SAC’05: Proceedings
of the 2005 ACM symposium on Applied computing. New York, NY,
USA: ACM Press, 2005, pp. 687–694.


