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1 Introduction

Grid Networks (Grids) were designed to provide a distributed computational infrastructure for advanced
science and engineering [14] [11]. They involve coordinated resource sharing and problem solving in het-
erogeneous dynamic environments to meet the needs of a generation of researchers requiring large amounts
of bandwidth and more powerful computational resources. Although in its infancy, cooperative problem
solving via grids has become a reality, and various areas from aircraft engineering to bioinformatics have
benefited from this novel technology. Grids are expected to evolve from pure research information processing
to e-commerce, as has happened with the World Wide Web.

Central to grid processing is the scheduling of application tasks to resources. The scheduling problem
is an NP-hard problem [22], and feasible solutions in real time require either heuristics or approximations.
Moreover, the computational complexity increases due to the need to account for heterogeneous resources
and irregular topologies, in contrast to what happens in multiprocessor systems.

The lack of resource ownership by grid schedulers and fluctuations in resource availability require mecha-
nisms which will enable grids to adjust themselves to cope with fluctuations. A sudden increase in link load
can, for example, increase the time for the transfer of data between the computers where two tasks reside,
thus leading to the necessity of relocating the tasks to a third computer. Furthermore, the lack of a central
controller implies a need for self-adaptation. The ability to discover, monitor and manage the use of network
resources is fundamental for the autonomous operation of a grid.

Adaptive scheduling and dynamic scheduling are two different approaches which try to adapt requirements
of an application to the available resources. Adaptive scheduling deals with unforeseen resource demands at
the scheduling time whereas dynamic scheduling tries to ameliorate the impact of fluctuations on resource
availability by not scheduling at once all the tasks composing an application. In the latter approach, decisions
about resource allocation to a task are postponed to the moment at which its dependencies are resolved.
However, both adaptive scheduling and dynamic scheduling do not address three important issues: i) the
production of feasible schedules in a reasonable amount of time when compared to the application execution
time; ii) the impact of network links availability on the execution time of an application; and iii) the necessity
to migrate code for decreasing the execution time of an application.

To overcome these challenges, this paper proposes a procedure for enabling grid applications composed
by dependent tasks to adapt themselves to resource availability. This procedure involves task scheduling,
resource monitoring and task migration, and its goal is to decrease the execution time of grid applications.
The procedure involves the concept of self-adjustment as in Traffic Engineering for networks [2].

The procedure for self-adjustment differs from other approaches in the literature [1] [18] [28] by considering
the fluctuation of bandwidth availability. It is most appropriate to applications composed of dependent tasks
with a huge demand of data transfer, which is typical of e-science applications.

An additional contribution of this paper is a set of schedulers offering solutions which differ in terms of
their schedule length as well as computational complexity. The distinguished aspect of this set of schedulers
is the consideration of time requirements to produce feasible schedules. Their performance is then evaluated
considering various network topologies and task dependencies.

This paper is organized as following. Section 2 introduces the proposed procedure for self-adjustment.
Section 3 introduces eight novel schedulers. Section 4 shows numerical examples. Section 5 discusses related
works and Section 6 provides some conclusions.

2 Procedure for Self-Adjustment of Resource Allocation

Key to the performance of grid applications is the choice of resources composing the virtual organization
(computing system) to be used to execute the application. This choice is made by schedulers. Figure 1 [25]
illustrates the phases in the execution of a grid application. The bottom of the left side of Figure 1 illustrates
the steps needed for scheduling.

Determination of resource availability and application needs constitutes the first phase of the process.
The main question in scheduling is how to map the tasks of an application onto resources so that the
execution time of the application, called schedule length, is minimized. The procedure introduced in this
paper considers applications whose tasks can be described as Direct Acyclic Graphs (DAGs) in which vertices
represent the tasks to be performed and the arcs the dependence between two tasks. The weights of the
arcs represent the amount of data to be exchanged by the tasks and the weights of the vertices the amount
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Figure 1: A grid scheduling process

of processing required for a task. Several e-science applications, such as those in astronomy and simulation
of molecular dynamics, can be represented with DAGs. Figure 2 illustrates the DAG of a visualization
application (remote rendering) [23] that will be used to illustrate the procedure for self-adjustment.
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Figure 2: A grid application DAG

In this paper, CPU and bandwidth demands are considered. Other demands are not taking into account.
However, this does not limit the contribution of the paper, yet make it easier to illustrate.

After the tasks are allocated to hosts (grid nodes) according to a schedule, tasks are executed until all
have been terminated. However, due to the lack of ownership of resources, their availability can change
dynamically due to other loads on the grid. Thus, the original schedule may become sub-optimal. If, for
instance, the load of a processor decreases, this processor may become an interesting choice for decreasing
the execution time of the application. Therefore, if changes in resource availability lead to changes in the
predicted schedule length, the schedule should be redefined so that a shorter schedule than those originally
predicted can be achieved. Indeed, the procedure for self-adjustment enables grid applications to adapt
themselves to current resource availability [4] [5] [8].

In order to provide this capability, it is necessary to monitor the network resources periodically and
perform code migration accordingly. Code migration aims at reducing the execution time of a single appli-
cation. The target is not the overall optimization of the utilization of the grid resources. The benefit of
potential migrations is always balanced with the overhead to realize it. The cost of migration is accounted
in all potential rescheduling of tasks. The accountability of code migration and bandwidth availability for
data transfer represent a unique aspect of the proposed procedure. Note that information about resource
availability can be shared by all applications of the grid.

The present proposal involves the following steps:

• Step 1 Map the DAG describing the tasks that represent an application to the graph describing the
network resources. Produce a schedule for the beginning of task execution and data transfer;

• Step 2 Migrate the task codes and data to the hosts where the tasks will run. The execution of the
tasks begins as soon as migration is completed;

3



• Step 3 Monitor the resources of the grid to detect any variation in availability of resources, either
decrease or increase;

• Step 4 Gather the data collected in Step 3 and compare it to the scenario used for previous scheduling
of tasks. If no change is detected, continue monitoring the grid periodically (Step 3);

• Step 5 Derive a new DAG representing current computation and data transfer demand and produce a
schedule for these tasks;

• Step 6 Check whether the schedule derived is equal to the current one;

• Step 7 Compare the cost of the solution derived in Step 5 with the cost of the current solution. The
cost of the solution derived in Step 5 should include the cost of migration of tasks. If the predicted
schedule length produced by the new schedule is greater than that obtained by the current schedule,
continue monitoring the grid resources (Step 3). The cost of migration of a task involves the time
needed to complete the execution, as well as the time to transfer data. A task is only worth moving if
a reduction in execution time compensates for the cost;

• Step 8 Migrate tasks to the designated hosts on the basis of the most recent schedule.

Figure 3 shows a diagram portraying the procedure for self-adjustment of resource allocation.
The mapping of tasks to grid nodes and their scheduling (Step 1) demands efficient schedulers. Section 3

will introduce eight novel schedulers for dealing with heterogeneous resources in a grid [7] [6].
In Steps 2 and 8, code and data migration can be performed using existing protocols, such as FTP and

GridFTP [10]. It is assumed in Step 8 that it is possible to resume the execution of an interrupted task.
One method for the resume of task execution is provided in [24]. Techniques for monitoring the available
bandwidth [20] as well for predicting the network capacity with low computational overhead are available
[29] [27] and can be used in Step 3.

The same schedulers used for the initial scheduling of the Application (Step 1) can be used for the
rescheduling and migration of tasks due to changes in resource availability (Steps 5, 6 and 7). Rescheduling
decisions consider resource availability and current execution status besides the initial schedule. Algorithm 1
implements Steps 5 to 7 and it uses the same scheduler used in Step 1.

Algorithm 1 Tasks rescheduling and migration

Input: Previous schedule; DAG with set of tasks J ; Description of current resource availability status; Current time;
Scheduler.

1: for each task i ∈ J in execution do

2: Assign the number of instructions already executed to the weight of task i.
3: Create a task i′ with weight equal to the backlog of instructions yet to be executed of i.
4: Move all the outgoing arcs of i to i′.
5: Create an arc ii′ with weight equivalent to the amount of bytes that need to be transferred in case task i

migrates.
6: Assign to the variable h the id of the host to which the task i was mapped previously to the rescheduling

decision.
7: Create a new constraint to Scheduler to force task i to be scheduled to h.
8: end for

9: for each task k ∈ J which either has already completed execution or is presently receiving data from others tasks
do

10: Assign to the variable h the id of the host to which the task k was mapped previously to the rescheduling
decision.

11: Create a new constraint to Scheduler to force task k to be scheduled to h.
12: end for

13: Execute the Scheduler with the new constraints and the new DAG.
14: for each task i ∈ J in execution do

15: if host to which i′ be mapped 6= host to which i was mapped previously to the rescheduling decision then

16: Migrate task i to the new host.
17: end if

18: end for
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Figure 3: A Flow Diagram of the Procedure for Self-Adjustment of Resource Allocation

Algorithm 1 works on a modified DAGs of an application which represent the evolution of the execution
up to a certain time. For each task i in execution, a new task i′ represent the current execution status.
Tasks that have already finished their execution are kept at the node they finished. Tasks receiving data
from tasks they depend on are also kept in the same node. Task i will migrate only if task i′ is mapped to
a different resource than the one task i is mapped.

The self-adjusting capacity allows great flexibility and can be introduced in middlewares for grids such
as [1] [18] [28]. Figure 4 illustrates the introduction of the procedure for self-adjustment into the scheme
proposed in [25] which is represented on both sides of the figure. Note that according to the procedure
in [25], once a task is scheduled to a host, it is executed until completion regardless of the fluctuation of
resources availability. The central part of the figure is the procedure introduced here and it replaces the
dashed part of the scheme in [25].

The procedure for self-adjustment can be considered a multilayer one. In [15], a layered architecture for
grid networks was proposed. Figure 5 illustrates the mapping of this architecture to the layers of that of the
Internet. The Resource layer serves as an intermediary between the application and the infrastructure of the
grid. One of its main functionalities is the evaluation of application requirements as well as the gathering
of information about the status of shared resources. The Collective layer is responsible for the selection of
resources to meet the application requirements, as well as the allocation of these resources. The combination
of these two layers corresponds to the Application layer in Internet architecture. The Connectivity layer,
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Figure 4: Inclusion of Procedure for Self-Adjustment in the process shown in Figure 1

which houses protocols for communication and data transfer, corresponds to a combination of the Transport
and Internet layers of the architecture of the Internet. The Fabric layer is then responsible for communication
at the link level.

Figure 5: Relationship between Grid and Internet architectures

Table 1 shows that the procedure for self-adjustment involves three layers in the Grid Architecture, that,
in turn, are mapped to three layers of the Internet Architecture.

Step Grid Architecture Layer Internet Architecture Layer

Monitoring – Steps 3 and 4
Collective

Application
Resource

Rescheduling – Steps 5 to 7
Collective

Application
Resource

Migration – Step 8 Connectivity
Transport
Internet

Table 1: Relationship between steps and layers

3 Grid Schedulers

The problem of scheduling tasks to heterogeneous resources is a well-known NP-hard problem, and various
sub-optimal solutions that can be achieved in a reasonable amount of time have been proposed. This
section introduces eight different schedulers for the grid scheduling problem. They differ in the length of the
schedule produced, as well as in the time required to derive them. Such diversity allows the selection of the
best possible schedule produced under time requirements. Schedulers which execute fast can be employed
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in Step 1 whereas those which gives schedules closer to the optimum one can be used in Steps 5 through 7,
since those steps usually involves fewer tasks.

The aim of all the schedulers presented is the minimization of execution time for grid applications under
the following restrictions:

• The execution of a task should begin only after the completion of all the other tasks which the task
depends on, as well as only after the reception of all data sent by these tasks;

• Each task can be mapped to only one host;

• Two dependent tasks can only be mapped to hosts which have a connecting link (each host is assumed
to have a virtual link to itself with zero cost associated with that link);

• Each host can execute only a single task at anyone time.

The schedules produced by six of the eight schedulers proposed are derived from the solution of mixed/inte-
ger linear programming (LP) problems. Three of these schedulers consider time to be a continuous variable
(∈ R+) whereas the other three consider it as a discrete variable (∈ Z+). The choice involves a certain
trade-off between execution time and the schedule length. Although the discretization of time introduces
approximation and a consequent loss of precision, under certain circumstances, this loss may not be signif-
icant, and the saving of time can be quite attractive. The exact solution for a mixed/integer programming
problem for both continuous and discrete time are derived and the other four schedulers are derived by
employing two different relaxation techniques to the exact LP problems.

The schedulers which consider time as a continuous variable are formulated as a mixed linear programming
problem whereas those that considers time as a discrete variable are formulated as integer linear programming
problem. In these problems, variables Xi,k define the mapping of tasks to hosts; Xi,k is 1 if the ith task is
mapped to kth host; otherwise, it is 0.

Although solving exact linear programming problems with integrality constraints leads to optimal or
quasi-optimal solutions, it may take a very long time. An alternative is the obtainment of partial fractional
solutions by considering relaxation of integrality constraints, with the option of conversion of these solutions
to integer ones. In this case, the variables (Xi,k) are defined in the interval [0, 1]. Techniques for the relaxation
of integrality constraints adopt randomized rounding techniques, in which the value of the variable Xi,k is
the probability of the ith task being mapped to the kth host. Two different randomized rounding techniques
were adopted to define two different algorithms. Algorithm 2 solves a linear programming problem once,
with the value of the variables used as probabilities for a series of drawings, each defining a different schedule;
the one yielding the shortest schedule is selected as the solution. In Algorithm 3, an Iterative Randomized
Rounding procedure is adopted. In each step of this algorithm, an LP is solved, and the task with the highest
probability values is definitely mapped to a host. Each one of the iterations of Algorithm 3 ends when no
more tasks are left to be mapped to a host.

Algorithm 2 Randomized Rounding

Input: Relaxation of Linear Program LP to schedule the set of tasks J in the set of hosts H; P=Number of drawings.
Output: Schedule of J in H.

1: Let X be the fractional optimum solution of LP, where X = (Xi,k).
2: for P times do

3: for each task i ∈ J do

4: Let the probability of mapping the task i to the host k be Xi,k.
5: Select a host where the task i should be executed based on the previous mapping probability.
6: end for

7: Obtain the starting time for each task, considering the finishing time of the tasks on which it depends.
8: Keep this schedule if it is the shortest one.
9: end for

10: Return the shortest schedule.

The other two schedulers are based on random drawing. The schedule is the one of those produced during
a series of drawings that minimizes the schedule length. The first step of each iteration of these algorithms
is the assignment of an initial value to the variables Xi,k. The actual starting values constitute the only
difference between the two algorithms. In one, it is based on a probability that is uniformly distributed
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Algorithm 3 Iterative Randomized Rounding

Input: Relaxation of Linear Program LP to schedule the set of tasks J in the set of hosts H; Q=Number of iterations.
Output: Schedule of J in H.

1: for Q times do

2: Let LP be the original linear program given in the input.
3: Let X be the fractional optimum solution of LP, where X = (Xi,k).
4: for each task i ∈ J do

5: Let the probability of mapping the task i to the host k be Xi,k.
6: Select a host to execute the task based on the mapping probability value.
7: Add to the LP the constraint that the task i must be mapped to the host k.
8: Let X be the fractional optimum solution of this new LP.
9: end for

10: Keep this schedule if it is the shortest one.
11: end for

12: Return the shortest schedule.

among the hosts, whereas in the other, it somehow translates the characteristics of tasks and hosts, and
will be denominated “grid aware”. In both algorithms, the dependency constraints shown in the DAG,
the network topology and the resource capacity are observed. Moreover, these algorithms produce different
schedule lengths itself as well as for their own execution time. The one using “grid aware” initial values
tends to run for longer periods, but produces shorter schedule length.

Hosts are labelled from 1 to m, while tasks are identified by labels from 1 to n. Tasks are processed
according to a topological order of the input DAG, each with a single input task and a single output one.
DAGs failing to satisfy this condition because they have more than one input or output task can be easily
modified by considering two null tasks with zero processing time and communication weight [21]. Some
characteristics of the DAGs are:

• n: number of tasks (n ∈ N);

• Ii: processing demand of the ith task, expressed as number of instructions to be processed by the task
i (Ii ∈ R+);

• Bi,j : number of bytes transmitted between the ith task and the jth task (Bi,j ∈ R+);

• D: set of arcs {ij : i < j and there exists an arc from vertex i to vertex j in the DAG};

• s0: starting time of the input task. For all examples in this paper, s0 = 0.

Moreover, grid resources composed of hosts and links have the following characteristics:

• m: number of existing hosts (m ∈ N);

• TI k: time the kth host takes to execute 1 instruction (TI k ∈ R+);

• TBk,l: time for transmitting 1 bit on the link connecting the kth host and the lth host (TBk,l ∈ R+);

• N : set {kl : host k is linked to host l}. In particular, kk ∈ N for any host k and if kl ∈ N then we
also have lk ∈ N ;

• δ(k): set of hosts linked to the kth host in the network, including the host k itself.

Moreover, Tmax, is the time that the application would take to execute serially all the tasks in the fastest
host, i.e., Tmax = (minTI )

∑n
i=1 Ii, where minTI is the lowest value of TI . J = {1, . . . , n} is the set of

existing tasks of an application and H = {1, . . . ,m} is the set of hosts.
The remainder of this section is organized as follows. Subsection 3.1 introduces a formulation using

continuous time variables whereas Subsection 3.2 presents the formulation with discrete time variables.
Subsection 3.3 introduces a scheduler based on random drawing that assigns uniform probability values to
the initial values. Subsection 3.4 presents the algorithm which assigns values to the initial probabilities that
takes the grid constraints into consideration. Subsection 3.5 provides an evaluation of the schedulers.
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3.1 LP Formulation with Time as a Continuous Variable

This approach adopts a mixed linear programming formulation for the grid scheduling problem:

Minimize (In

m∑

k=1

TI kXn,k) + sn

such that

si ≥ s0 for i ∈ J ; (C1)

sj ≥ si +
∑

k∈H

[(IiTI kXi,k)+

∑

l∈δ(k)

(Bi,jTBk,lVAi,k,j,l)] for i, j ∈ J , ij ∈ D; (C2)

sj ≥ si +
∑

k∈H

(IiTI kVAi,k,j,k) − y(1 − Pi,j) for i, j ∈ J , i 6= j, (C3)

ij /∈ D, ji /∈ D;

si ≥ sj +
∑

k∈H

(IjTI kVAj,k,i,k) − yPi,j for i, j ∈ J , i 6= j, (C4)

ij /∈ D, ji /∈ D;

∑

k∈H

Xi,k = 1 for i ∈ J ; (C5)

∑

k∈H

∑

l∈δ(k)

VAi,k,j,l = 1 for i, j ∈ J , ij ∈ D; (C6)

2VAi,k,j,l ≤ Xi,k + Xj,l for i, j ∈ J , ij ∈ D, (C7)
k, l ∈ H, kl ∈ N ;

VAi,k,j,l − Xi,k − Xj,l ≥ −1 for i, j ∈ J , ij ∈ D, (C8)
k, l ∈ H, kl ∈ N ;

2VAi,k,j,k ≤ Xi,k + Xj,k for i, j ∈ J , i 6= j, (C9)
ij /∈ D, ji /∈ D, k ∈ H;

VAi,k,j,k − Xi,k − Xj,k ≥ −1 for i, j ∈ J , i 6= j, (C10)
ij /∈ D, ji /∈ D, k ∈ H;

VAi,k,j,l,Xi,k, Pi,j ∈ {0, 1} for i, j ∈ J , k, l ∈ H. (C11)

The relaxation of the above problem consists of replacing {0, 1} in the constraints (C11) by the interval
[0, 1].

The constraints in (C1) state that all tasks must start after time s0. The constraints in (C2) specify that
a task will start only after all tasks dependent on it have been completed and the relevant data transferred.
Constraints (C3) and (C4) state that if two independent tasks are scheduled to the same host, one of them
will be fully executed before the start of the other. The binary variable Pi,j has value 1 if the ith task is
executed first (in which case constraint (C4) is satisfied) and 0 if the jth task is executed first (constraint
(C3) is satisfied). The constant y is a large positive number (e.g., Tmax). Constraint (C5) states that the
tasks must be scheduled to some host (k). Constraint (C6) specifies that there should be a single tuple
(i, k, j, l) such that the ith and jth tasks are scheduled to the kth and to the lth hosts, respectively.

Constraints (C7), (C8), (C9) and (C10) determine that VAi,k,j,l is 1 if and only if Xi,k + Xj,l is 2.
The value of these two variables indicates that tasks with a dependency relationship should be mapped to
interconnected hosts.
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The final scheduling is established by the value of the following variables:

• Xi,k, which has the value 1 if the ith task is mapped to the kth host; otherwise it is 0 (Xi,k ∈ {0, 1});

• si, which sets the starting time of the ith task (si ∈ R+).

This formulation must account for a maximum of (m2

2 + 3m
2 + 3)n2 − (m2

2 + 3m
2 + 1)n constraints, and

(m2 + 1)n2 + (m + 1)n variables. The scheduler based on the exact solution of this problem involving
mixed linear programming with a continuous time variable is denominated MLPCT. There are two more
versions of MLPCT, one involving Algorithm 2 based on randomized rounding (CT-RR) and the other using
Algorithm 3 based on iterative randomized rounding (CT-IRR).

Since MLPCT does not make any approximation, its execution time is quite larger than the execution
time of the others schedulers. Although this make MLPCT inappropriate to real applications, the schedule
it produces is quite useful for comparing with the schedule produced by the schedulers.

3.2 LP Formulation with Time as a Discrete Variable

This formulation considers discrete intervals of time and treats the scheduling problem as an integer linear
programming problem, and is formulated as follows:

Minimize fn

such that

∑

t∈T

∑

k∈H

xj,t,k = 1 for j ∈ J ; (D1)

fj =
∑

t∈T

∑

k∈H

t xj,t,k for j ∈ J ; (D2)

xj,t,k = 0 for j ∈ J , k ∈ H, (D3)
t ∈ {1, . . . , ⌈IjTI k⌉};

∑

k∈δ(l)

⌈t−IjTI l−Bi,jTBk,l⌉∑

s=1

xi,s,k ≥
t∑

s=1

xj,s,l for i, j ∈ J , ij ∈ D, (D4)

for l ∈ H, t ∈ T ;

∑

j∈J

⌈t+IjTIk−1⌉∑

s=t

xj,s,k ≤ 1 for k ∈ H, t ∈ T , (D5)

t ≤ ⌈Tmax − IjTI k⌉;

∑

l∈H

VAj,l = 1 for j ∈ {2, . . . , n}; (D6)

(|{i : ij ∈ D}| + 1)VAj,l ≤
∑

t∈T

xj,t,l+

∑

i:ij∈D

∑

k∈δ(l)

∑

t∈T

xi,t,k for j ∈ {2, . . . , n}, (D7)

l ∈ H;

|{i : ij ∈ D}| + VAj,l ≥
∑

t∈T

xj,t,l+

∑

i:ij∈D

∑

k∈δ(l)

∑

t∈T

xi,t,k for j ∈ {2, . . . , n}, (D8)

l ∈ H;
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VAj,l, xj,t,l ∈ {0, 1} for j ∈ J , l ∈ H, t ∈ T . (D9)

for convenience, the following notations are used: T = {1, . . . , Tmax} and Xi,k is defined as
∑Tmax

t=1 xi,k,t.
The schedule is established by the value of the following variables:

• xi,t,k: Binary variable that assumes a value of 1 if the ith task finished at time t in the host k; otherwise
this variable assumes a value of 0;

• fi: Variable that stores the time at which the execution of the ith task is finished (fi ∈ N
∗).

The relaxation of the discrete time formulation consists of changing the set {0, 1} of the constraints in
(D9) to the interval [0, 1].

The constraints in (D1) specify that a task must be executed at one time in a single host. The constraints
in (D2) establish the finishing time for all the tasks, and the constraints in (D3) determine that a task (j)
cannot terminate until it has been executed in the host k. The constraints in (D4) establish that if the ith

task executes in the lth host before the jth task does, and that the jth task is finished at time t, then the
time when the ith task finished its execution is at most t minus the execution time of the jth task minus
the time needed to transfer data between these two tasks. The constraints in (D5) establish that there is at
most one task in execution at any one host at a specific time, while the constraints in (D6) guarantee that
a task be scheduled to a single host at any one time, while the constraints in (D7) and (D8) determine that
dependent tasks are mapped to hosts interconnected.

The accuracy of the results obtained by using this formulation depends on the interval width used in the
discretization of the timeline. The wider the interval is, the faster the execution; but, the lower the accuracy.

This formulation involves a maximum of (n2 + n + 2)m
2 Tmax + (2n − 2)m + 3n − 1 constraints and

(mTmax + m + 1)n variables. The scheduler based on an exact solution of the integer linear programming
with a discrete time variable is denominated as ILPDT. Again, two versions of schedulers with relaxation are
presented, one involving Algorithm 2 with randomized rounding (DT-RR) and the other using Algorithm 3
with iterative randomized rounding (DT-IRR).

3.3 Random Drawing with Uniform Probabilities

The seventh scheduler is based on a algorithm involving random probabilities of task assignment to hosts. It
uses an uniform probability distribution to assign tasks to hosts. The distribution is subject to dependency
relationships established in the tasks DAG, the network topology and resources capacity. The scheduler is
denoted as RDU and the algorithm is shown in Algorithm 4.

Algorithm 4 Random Drawing with Uniform Probability Distribution

Input: DAG with set of tasks J ; Description of current resource availability status H; P=Number of drawings.
Output: Schedule of J in H

1: for P times do

2: Set the probability value for scheduling each task to a host as 1/m.
3: for each task i ∈ J do

4: Assign randomly a host k ∈ H to the task i, using the previously defined probability value.
5: Normalize the probability values of the tasks dependent on the ith task, considering that this probability for

a tasks dependent on the ith task is null if it is assigned to a host with no link to the host to which the ith

task is mapped.
6: Compute the starting time of the ith task considering the finishing time of all tasks dependent on it, as well

as the time required to transfer data from the dependent task to the ith task.
7: end for

8: Keep this schedule in case it is the shortest one produced so far.
9: end for

10: Return the shortest schedule.

3.4 Drawing Using Distribution involving Grid-aware Probability Values

This scheduler differs from the one in the previous subsection by the probability values used for the assignment
of tasks to hosts. The following rules are considered to derive the probability values:
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• The probability that a task will be executed in a given host is proportional to the processing rate of
all available hosts;

• The probability of execution of a task by a given host is proportional to the number of links connecting
it to other hosts, as well as to their available bandwidth;

• The lower the level of a task in a DAG, the higher is the probability that the task will be assigned to
a host with a high available processing rate;

• The larger the number of edges in a DAG, the higher is the probability that a given task will be
assigned to a host with large number of links connecting it to other hosts;

• The greater the amount of data a task needs to transfer, the higher is the probability that the task
will be assigned to a host with high capacity links;

• The larger the number of instructions involved in a task, the higher is the probability that the task
will be assigned to a host with a large available processing rate.

This set of rules is denominated “set of rules 1” in Algorithm 5. The first two rules define the initial
probability of mapping the ith task to the kth host, given by:

Xi,k = (

1
TIk

Pm

j=0
1

TIj

×
1

3
) + (

|δ(k)| − 1
Pm

j=1 |δ(j)| − m
×

1

3
) + (

P

l∈δ(k)−{k}
1

TBk,l
Pm

j=1

P

l∈δ(j)−{j}
1

TBj,l

×
1

3
) (1)

If the criteria used were limited to grid resources, hosts with greater availability of processing rates and
bandwidths would be utilized all the time, whereas hosts with less capacity would be idle. To avoid such an
unbalance which would lead to unsatisfactory results, the characteristics of tasks also need to be considered,
as in list scheduling approaches [19] [21]. Consequently, the probability value in Equation 1 is redefined to
each task considering the last four rules defined above.

This DG scheduler is presented in Algorithm 5.

Algorithm 5 Drawing using Distribution involving “Grid-Aware” Probabilities Values

Input: DAG with set of tasks J ; Description of current resource availability status H; P=Number of drawings.
Output: Schedule of J in H

1: for P times do

2: Set the probability for scheduling a task to a host on the basis of the “set of rules 1”.
3: Redefine the probabilities on the basis of the last four rules.
4: for each task i ∈ J do

5: Select randomly the host k ∈ H for the execution of the ith task.
6: Normalize the probability values of the tasks dependent on the ith task.
7: Compute the starting time of the ith task considering the finishing time of all tasks dependent on it, as well

as the time required to transfer data from these tasks to the ith task.
8: end for

9: Consider this schedule if it produces the shortest execution time so far.
10: end for

11: Return the schedule with the shortest schedule.

3.5 Comparison of Schedulers Efficiency

Various network topologies and tasks DAGs were used to compare schedulers proposed here. Results of the
experiments involving the DAG shown in Figure 6 are representative of those obtained in other experiments
and will be presented in this section. The criteria used for comparison are the speedup (the ratio between
the time to a serial execution of the tasks in the processor with the greatest available processing rate and the
time for task execution using a specific schedule) and the execution time required to produce that schedule.
A workstation equipped with a Pentium 4, 3.2 GHz CPU with 2GB RAM was used in the experiments.
The software Xpress[12] was employed to solve the linear programming problems. Computer programs were
developed using the C language.
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Figure 6: Tasks DAG used in the experiments

Various topologies were generated using the Doar-Leslie method [13] by changing the number of hosts,
the network connectivity (vertex degree) and the ratio between the longest and the shortest edge. This
method generates graphs which are similar to real network topologies. It requires as input the number of
nodes (∈ N

∗), the ratio between the number of long edges and the number of short ones (∈ (0, 1]) and the
connectivity of the graph nodes (∈ (0, 1]). The length of the edges is related to the weights of the edges.
In this paper, the weight of the edges means bandwidth availability. Values of connectivity close to 1 gives
complete graphs.

If not stated otherwise, the network used has 50 hosts, network degree 0.5 and ratio between longest and
shortest edge 0.9. The processing rate of the hosts follows a uniform probability distribution function in the
interval (0.4, 2]. The capacity of the network links varied in the interval (0, 5], according to the Doar-Leslie
method. The weights of the DAG arcs in Figure 6 were in the interval [4, 5], whereas the weight of the
vertices varied in the interval [45, 53]. Furthermore, excepting Algorithm 3, the number of random selections
(P) is 10,000. For this algorithm, the number of random selections (Q) is 1 since long execution time were
experienced with other values.

For schedulers which considers time as a discrete variable, it is advisable to use a discretizing value which
corresponds to a fraction of the serial execution time of the DAG. Preliminary experiments indicate that
6.25% is a good choice, corresponding to a time unity of 8 minutes.

In the evaluation of the schedulers, their execution time and speedup as a function of the number of
nodes, network connectivity and the edge weights are compared.

Tables 2 and 3 show the results when the number of nodes (hosts) is varied. Table 2 presents the
performance of the proposed schedulers as a function of the number of hosts. The performance of MLPCT is
not shown since, it requires much longer execution time when compared to the other schedulers, as expected.
For a 40 host network, for example, MLPCT took over one hour to generate a schedule, whereas ILPDT
took 12.3 seconds. The schedule producing the largest speedup for each number of hosts is written in bold.
The ratio between other speedup values and the largest one (100% ∗ (speedup/largest speedup)) is shown
as percentage in the table. ILPDT produced the largest speedup for most of the experiments, followed by
CT-RR. Schedulers based on the relaxation in Algorithm 3 (CT-IRR and DT-IRR) produced the smallest
speedup among the schedulers based on linear programming. This poor performance can be explained by
the single random selection of the mapping probabilities in Algorithm 3 (Q=1). For schedulers based on
random drawing, DG provides better schedules than does RDU since the initial probability values of the
former consider both grid and task constraints.

Hosts
Speedup

CT-RR CT-IRR DT-RR DT-IRR ILPDT RDU DG
10 77.72% 77.72% 99.31% 77.55% 98.51% 99.07% 1.289432

40 89.21% 73.36% 99.86% 73.26% 1.365060 81.79% 85.10%
70 1.556116 64.34% 91.51% 82.48% 99.38% 77.25% 84.52%
100 1.534463 65.55% 97.73% 65.17% 94.18% 70.73% 79.10%
130 94.38% 66.71% 91.73% 66.23% 1.509969 69.67% 75.53%
160 93.43% 62.23% 91.33% 62.11% 1.610028 68.26% 73.84%
190 62.49% 62.49% 81.82% 62.27% 1.606021 65.29% 74.71%

Table 2: Speedup as a function of the number of hosts

The execution time of schedulers based on linear programming, portrayed in Table 3, increases as the
number of hosts increases with the largest speedups achieved by schedulers which took longer to generate the
schedule. Clearly, this does not happens with schedulers based on random drawing. The use of algorithms

13



Hosts
Execution time (seconds)

CT-RR CT-IRR DT-RR DT-IRR ILPDT RDU DG
10 0.28 0.05 0.52 0.21 0.17 0.08 0.07

40 3.64 0.64 1.63 2.00 12.30 0.60 0.48
70 16.87 2.47 5.14 5.19 4.38 1.80 1.38
100 78.02 7.32 10.02 9.55 17.80 3.40 2.56
130 71.12 19.92 17.29 23.96 81.31 5.86 4.49
160 119.98 55.83 26.16 33.18 24.85 8.56 6.54
190 345.77 82.04 25.64 32.05 134.03 11.89 8.98

Table 3: Execution time as a function of the number of hosts

based on integrality relaxation led to lower execution times than did their exact counterparts. For a 190-host
network, ILPDT took 134.03 seconds while DT-RR took 25.64 seconds. Moreover, the execution time of
schedulers based on integrality relaxation does not increase as fast as the exact ones do. Discretization of
time plays a key role in decreasing the execution time as can be seen in the comparison of the time demanded
by CT-RR with that required by its discrete time counterpart (DT-RR).

Table 4 shows the speedup and Table 5 shows the execution time of the proposed schedulers as a function
of network connectivity. This connectivity is expressed as a number in the interval [0, 1], a fully-connected
network having connectivity of 1.0. As in the experiments reported in Table 2 and Table 3, ILPDT and
DT-RR generally produce the best schedules. DG did generated two of the largest speedups. Again,
the schedulers based on Algorithm 3 (CT-IRR and DT-IRR) provided the smallest speedup. When the
connectivity increases, the execution time typically decreases more than it does when the number of hosts
increases. The largest speed up is no longer associated with the longest execution time, as happened when
the number of hosts was varied.

Conect.
Speedup

CT-RR CT-IRR DT-RR DT-IRR ILPDT RDU DG
0.1 71.06% 71.06% 84.72% 81.08% 83.81% 96.38% 1.408825

0.22 72.97% 72.97% 96.23% 72.55% 96.46% 89.29% 1.378274

0.34 70.09% 69.64% 91.51% 69.64% 1.435858 97.30% 98.64%
0.46 98.17% 66.10% 1.517342 65.90% 97.64% 81.37% 92.93%
0.58 89.92% 66.10% 1.522505 69.92% 99.64% 89.51% 92.97%
0.7 98.82% 65.32% 98.82% 65.31% 1.531184 77.78% 90.87%
0.82 91.71% 66.10% 1.524155 77.74% 65.61% 73.64% 87.03%

Table 4: Speedup as a function of network connectivity

Conect.
Execution time (seconds)

CT-RR CT-IRR DT-RR DT-IRR ILPDT RDU DG
0.1 0.82 0.56 1.69 0.86 18.84 1.38 1.10

0.22 5.97 0.71 1.66 1.33 12.21 1.38 1.09

0.34 4.56 1.24 2.33 1.41 32.28 1.26 0.99
0.46 4.01 1.24 3.53 3.08 7.49 1.08 0.81
0.58 4.85 0.93 2.35 1.77 2.22 0.96 0.73
0.7 7.30 1.73 3.04 3.69 3.46 0.38 0.30
0.82 9.98 1.24 2.60 3.05 4.29 0.10 0.09

Table 5: Execution time as a function of network connectivity

Table 6 and Table 7 shows the performance of the schedulers as a function of the ratio between the
longest and the shortest edge. The use of ILPDT led to largest speedups but to the longest execution time,
although there is no clear pattern involving an increase in execution time as a function of the ratio between
the longest and the shortest edge.

From the results found in those experiments, the scheduler which generated the largest speed up was the
ILPDT but at the cost of execution time. Schedulers based on Algorithm 2 produced results which were
close to those given by ILPDT but the execution time required, especially for DT-RR was much less than
that for ILPDT, and this savings justify eventual small losses in speedup. Whenever time requirements are
too limited to wait for a schedule derived via linear programming the DG scheduler can also be used, since
it produces reasonable speedup values under certain circumstances.
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Ratio
Speedup

CT-RR CT-IRR DT-RR DT-IRR ILPDT RDU DG
0.2 72.81% 72.81% 90.99% 72.42% 1.380837 77.84% 89.72%
0.3 92.53% 61.79% 92.53% 89.71% 1.624240 78.61% 84.50%
0.4 100.00% 68.55% 1.469889 81.06% 92.27% 86.55% 78.44%
0.5 74.89% 74.89% 92.55% 83.85% 1.341922 85.77% 90.06%
0.6 87.12% 64.61% 92.15% 86.03% 1.552311 75.85% 86.59%
0.7 68.58% 68.58% 82.75% 71.95% 1.459533 75.38% 82.35%
0.8 91.03% 68.17% 93.71% 67.72% 1.476768 83.85% 86.73%

Table 6: Speedup as a function of the ratio between longest and shortest edge

Ratio
Execution time (seconds)

CT-RR CT-IRR DT-RR DT-IRR ILPDT RDU DG
0.2 7.71 1.24 2.11 2.60 13.64 1.06 0.81
0.3 4.90 1.02 2.45 1.88 9.75 1.00 0.75
0.4 4.29 1.22 2.26 2.79 5.22 1.08 0.84
0.5 3.33 2.02 2.22 2.64 3.56 0.93 0.73
0.6 5.67 1.36 2.22 3.09 2.10 0.99 0.77
0.7 3.67 1.08 2.22 2.51 3.28 0.98 0.76
0.8 4.88 0.95 2.37 1.98 29.85 0.93 0.70

Table 7: Execution time as a function of the ratio between longest and shortest edge

4 Examples of the Use of the Procedure for Self-Adjustment

This section illustrates the use of the procedure to reduce the execution time of grid applications (sched-
ule length) when changes in resource availability occurs after the beginning of the application execution
time. A simulator, called GridSim-NS, developed at the University of Trento, was used in the experiments.
GridSim-NS is actually a module incorporated into the widely used NS-2 simulator. GridSim-NS receives as
input an Application DAG and allows users to define a schedule to be employed for the input DAG. In the
following experiments the schedules were produced by the schedulers introduced in this paper.

The application is the one described in Figure 2, whereas the grid is illustrated in Figure 7. The left hand
side of Figure 7 shows the network topology whereas the right hand side, the grid nodes. The arc weights in
the DAG represent the amount of data to transfer in GigaBytes, whereas the vertex weights represent the
amount of instructions in a 1012 scale. The network has 34 hosts arranged around a central host, SRC0,
and the grid has 11 nodes, named SRC{0...10}. The available processing rate of the host SRC0 is 1600MIPS,
whereas all others can process at the rate of 8000MIPS. The links connecting SRC0 to the other hosts has
the capacity of 100Mbps, whereas all the other links are limited to 33.33Mbps. The topology used resemble
CERN’s LHC Computing Grid. Note that the topology is not centralized around SRC0 since the hosts can
communicate without going through this node. Moreover, the processing capacity of this node is lower that
those of the other hosts which implies in parallel execution of the tasks in other hosts.

Confidence intervals with 95% confidence level was derived via the batch means method. The width of
the intervals was less than 5% of its mean value. Confidence intervals are omitted for the sake of visual
interpretation.

The first experiment aims at finding the application execution time under ideal conditions so that it
can be used for further comparison. In the second experiment, bandwidth is reduced and all the steps
of the procedure for self-adjustment are executed. The third experiment includes the increase in resource
availability and the last experiment evaluates the impact of the monitoring frequency on the performance.

In the first experiment, the application (Figure 2) is mapped using the MLPCT scheduler and the resulting
mapping is 0 → SRC0, 1 → SRC2, 2 → SRC5, 3 → SRC8, 4 → SRC4, 5 → SRC1, 6 → SRC9, 7 → SRC10,
8 → SRC0. Similar mapping could have been involved other hosts, since the topology is symmetrical. In the
actual schedule derived, Tasks 1 to 7 start running at the time of 82.66min, whereas task number 8 starts
running at 175.96min and finishes at 255.96min.

In the second experiment, the same scenario and initial mapping were used. However, at 90min, UDP
streams with a rate of 90Mbps were added as interfering traffic between hosts IR2 and IS2 and between
IR5 and IS5. These traffics impact the resource availability between hosts SRC2 and SRC0 and between
hosts SRC5 and SRC0. Monitoring the resources of the grid was carried out every 40 minutes (The use of
long monitoring intervals reinforce the effectiveness of monitoring the availability of resources). Thus, at the
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(a) Network Topology (b) Virtual Organization Graph

Figure 7: Grid used in the examples

time 120 minutes, the need to re-evaluate the current schedule had become evident. At that time, the DAG
for the remaining tasks was modified, by Algorithm 1, to the one shown in Figure 8.
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Figure 8: DAG for migration at 120min

For that DAG, the schedule was obtained by the ILPDT scheduler. Since the cost involved in task
migration includes that of time needed to complete the execution, as well as that required to transfer data, a
task is worth moving only if a reduction in time of execution will compensate for this cost. The new schedule
determined that Tasks 1 and 2 should be migrated from hosts SRC2 and SRC5 to hosts SRC3 and SRC6,
respectively. These migrations were designed to avoid the interfering traffic for the transfer of 10GB of data
to Task 8. When migrations occur the new execution time was 281min, which is only 9.34% higher than
the one obtained under ideal conditions. If the tasks had not migrated, the execution time would have been
358min, i.e., an increase of about 27.4%. Figures 9(a) and 9(b) show, respectively, the time of execution
of Task 1 and the Round Trip Time (RTT) between SRC2 and SRC3 (The usage of CPU and network by
Task 2 are similars). These figures illustrate task migration; it can be seen that between the times 120min
and 150min, no processing activity took place in either of the hosts SRC2 and SRC3, since in this intervals,
migration take place.

In the third experiment, resources were added to the grid. Such additions are not necessarily due to
the acquisition of new resources, as they may be due to the release of resources by other applications.
Figure 10 illustrates the addition of the host SRC16; the link capacity joining it to host SRC6 is 1Gbps,
with an available processing rate of 8000MIPS. Similar hosts were also added to hosts SRC1 to SRC10.
With this extra resource, the execution time decreases to 247min, which corresponds to a reduction of
3.89% of execution time under ideal conditions. This example shows that task migration should not only
be investigated under conditions of a shortage of resources, but also whenever increased resources become
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Figure 9: Task migration

available. If, for example, the processing rate available were 4000MIPS, migration would not be advisable
since, execution time would have increased to 291min if migration were carried out, which is 13.23% higher
than that obtained under ideal conditions.

Figure 10: Inclusion of new resource linked to SRC6

One of the key issues involved in the Self-Adjustment procedure is the frequency of re-evaluation of
the adequacy of the schedule under modified resource constraint. To get an idea of the importance of the
frequency of this procedure, various simulations were carried out in the fourth experiment. A source of
interfering traffic (60Mbps) was introduced to the same links as in the previous example. Both MLPCT
and ILPDT schedulers were used for the experiments. First, a simulation with no task migration was run;
execution time was 279min. Then, the recommendations of the scheduler were followed. Table 8 shows the
execution time required when task migration is undertaken.

Interval MLPCT ILPDT

100 269 (migration) 269 (migration)

110 275 (migration) 275 (migration)

120 276 (no migration) 281 (migration)

130 276 (no migration) 287 (migration)

140 276 (no migration) 276 (no migration)

150 276 (no migration) 276 (no migration)

Table 8: Execution times as a function of monitoring interval duration (minutes)

It is clear that the frequency of evaluation plays a major role in the execution time. If a long period
between changes in resources availability and the decision to migrate a tasks occurs, computation may have
progressed to a point in which migration would no longer be an interesting option. Moreover, it can be seen
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that the ILPDT may produce schedules which yield longer execution times than those where no migration
is pursued, as can be in the results when intervals of 120min and 130min were used. Such imprecision is
critical when approaching the “ideal” time for re-evaluation due to the approximations introduced by time
discretization. In fact, the ideal frequency for re-evaluation is system dependent, since it is influenced by
the frequency of changes in the resource pool.

5 Related Work

Various techniques for monitoring and performance prediction have been employed for systems such as that
of the Network Weather Service (NWS) [29], which uses active monitoring techniques, as well as temporal
series, to predict performance. One distinct characteristic of the NWS system is its hierarchical monitoring
approach. Applications such as those supported by NWS require performance feedback in short periods
of time, typically in the order of minutes. Another system for applications which run for long periods is
the Grid Harvest Service (GHS) [27] which is more scalable than NWS. In GHS, performance prediction is
carried out by neural networks and these predictions are employed to determine task migration. A different
monitoring system used in the Wren project was introduced in [20]; this adopts either active or passive
monitoring techniques, depending on the network load. All these proposals for monitoring status of resources
can be incorporated in Steps 3 and 4 of the Self-Adjustment procedure introduced in Section 2. However,
the prediction of performance in Self-Adjustment procedure involves schedulers based on optimization for
determining potential re-configuration of a grid.

Several self-adjusting systems based on monitoring and task migration have been proposed [1] [18] [28]
in the literature. Although under different names, all these schemes aim at minimizing the execution time
of the applications. In all these approaches, mechanisms are inserted in existing middlewares and agents for
management of grid applications. The procedure for self-adjustment introduced in this paper differs from
these schemes since it uses neither adaptive scheduling nor dynamic scheduling.

Although the proposal in [1] takes into account the decrease on the application performance, no evidence
of the effectiveness of its policy for migration was presented. In this approach, an intermediate storage node
can be used for migration to the final destination. In spite of the flexibility added by the intermediate node,
this node can become a bottleneck.

The scheme in [18] promotes migration either if there is a disconnection in the grid or if there are changes
in the application requirements. It uses a greedy algorithm for fast initial scheduling and adjust the schedule
in succeeding evaluation steps.

In [28], migration occurs only if the gain in execution time is higher than 30%. The authors admit
that this threshold value may not be the optimum one. However, the distinct difference between the self-
adjustment procedure and the one in [28] is that the procedure for self-adjustment computes the migration
overhead based on the current grid status whereas the proposed in [28] fixes the overhead estimation to a
constant values.

Various scheduling schemes have been proposed for grids [21] [26] [9] [17] [16]. The Level-Branch Priority
(LBP) [21] algorithm organizes a list of ordered priorities, with the placement of a task depending on its
level in the DAG to which it belongs, as well as the number of output edges. This approach is similar to
those adopted by the DG scheduler in this paper, but LBP does not consider heterogeneous resources and
assumes that all network links to have the same transfer capacity.

The schedule presented in [26] assigns tasks to links rather than to hosts. Moreover, all hosts are
assumed to have the same available processing rate which again is not realistic in a grid environment.
Various schedulers based on heuristics are presented in [9]. These schedulers produce schedules within a
certain time threshold. Results are presented for a single network topology, however, and the effectiveness
of the schedulers is compared to a greedy algorithm which does not consider data dependencies in tasks
DAGs. The scheduler introduced in [17] was designed to take into account quality of service requirements
and consider bandwidth as the only task requirement, ignoring the possibility of data dependency among
tasks. Finally, the scheduler proposed in [16] assumes that the time required to transfer data is insignificant
in relation to that the spent on processing, making it inappropriate for applications with a large distributed
data set shared among tasks.

None of the schedulers proposed in the literature are able to account for heterogeneous grid resources
as are the schedulers introduced in this paper. Moreover, none of them works under time constraints.
Furthermore, the effectiveness of the schedulers proposed here has been extensively validated in relation to
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various network topologies and tasks DAGs.

6 Conclusions and Future Works

Grid networks can accommodate a new generation of users with high computational and data transfer
demands. Although several grid systems already exist, this technology is still in its infancy. One of the
major challenges of grids networks is the fluctuation in availability of resources which has a definite impact
on the performance of an application. Enabling grid systems for self-adjustment in response to changing
scenarios is crucial for autonomy and will facilitate their use. This paper has introduced a resources allocation
approach for the empowerment of grids in this direction. The effectiveness of this new procedure has been
illustrated in several simulation experiments involving various changes in the simulated grid. Furthermore,
this paper also presented a set of grid schedulers able to deal with heterogeneous grid resources. In the
future, the dynamic determination of the duration of intervals for re-evaluation of schedule needs to be
pursued. Moreover, the resource allocation scheme proposed here shall be introduced into existing systems.
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