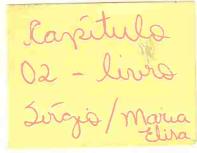
EXERCÍCIOS

THE PROPERTY OF THE PERSONS ASSESSED.



- 1. Sendo F, G, H transformações do plano, provar que:
 - a) se $G \circ F = H \circ F$ então G = H;
 - b) se $G \circ F = G \circ H$ então F = H;
 - c) se $G \circ F = F$ então G = Id;
 - d) se $G \circ F = G$ então F = Id;
 - e) se $G \circ F = Id$ então $G = F^{-1}$ e $F = G^{-1}$;
 - f) $F^2 = F \circ F = Id$ se e somente se $F^{-1} = F$.
- 2. Sendo F e G duas transformações do plano, provar que :
 - a) $G \circ F$ é uma transformação ;
 - b) $(G \circ F)^{-1} = F^{-1} \circ G^{-1}$.
- 3. Sendo F, G transformações do plano, a transformação $F \circ G \circ F^{-1}$ é chamada a **conjugada de** G **por** F. Provar que:
- a) a conjugada da inversa de G por F é a inversa da conjugada de G por F;
- b) F e G comutam se e somente se uma delas é a conjugada de si mesma pela outra;
- c) a conjugada de $G \circ H$ por F é a composta da conjugada de G por F com a conjugada de H por F.
- 4. Sendo F uma colineação do plano e r, s retas paralelas do plano, provar $\mathbf{pre} F(r)$ e F(s) são também retas paralelas, isto é, toda colineação do plano $\mathbf{preserva}$ paralelismo.
- 5. Sendo F uma colineação do plano e r uma reta arbitrária do plano, será verdade que F(r) e r são retas paralelas? No caso afirmativo, provar. No

caso negativo, apresentar um contra-exemplo. Comparar este exercício com o anterior.

- 6. Sendo F uma transformação do plano e n um número natural definimos $F^n = F \circ F \circ \ldots \circ F$ (n fatores), $F^0 = Id$ e $F^{-n} = (F^{-1})^n$. Provar que:
 - a) F^n é uma transformação e $(F^n)^{-1}=(F^{-1})^n$ para todo $n\in \mathbf{Z};$
 - b) $F^n \circ F^m = F^{n+m}$ e $(F^n)^m = F^{mn}$, quaisquer que sejam $m, n \in \mathbf{Z}$.
- 7. Seja F uma isometria do plano tal que F(P)=Q e F(Q)=P, onde P e Q são pontos distintos dados. Mostrar que F fixa o ponto médio do segmento \overline{PQ} .
- 8. Mostrar que toda isometria do plano preserva a distância de ponto a reta, isto é, dados uma isometria F do plano, uma reta r e um ponto P, provar que a distância entre P e r é igual à distância entre P' = F(P) e r' = F(r).

9. Se F é uma isometria do plano e S é uma circunferência de centro P e raio d, provar que F(S) é uma circunferência de centro F(P) e raio d.

Se S for uma <u>elipse</u>, uma hipérbole ou uma <u>parábola</u>, o que podemos dizer a respeito de F(S)?

- 10. Seja F uma isometria do plano, P e Q pontos simétricos em relação à uma reta r do plano (isto é, r é a reta mediatriz do segmento \overline{PQ}). Provar que P' = F(P) e Q' = F(Q) são pontos simétricos em relação à reta F(r).
- 11. Seja F uma transformação do plano. Provar que F é uma colineação se e somente se as imagens, por F, de três pontos não colineares são três pontos não colineares.