A hierarchy of separable commutative Calkin algebras

Despoina Ioanna Zisimopoulou
(joint work with Pavlos Motakis and Daniele Puglisi)

Department of Mathematics
National Technical University of Athens

Brazilian Workshop in Geometry of Banach spaces, 2014

Co-financed by Greece and the European Union
Let A be a Banach algebra. Does there exist a Banach space X such that the Calkin algebra of X is isomorphic, as a Banach algebra, to A?

The Calkin algebra of X is defined to be the space $\mathcal{C}al(X) = \mathcal{L}(X) / \mathcal{K}(X)$, where $\mathcal{L}(X)$ denotes the space of all bounded linear operators defined on X and $\mathcal{K}(X)$ denotes the spaces of all compact operators defined on X.

We denote by $[T]$ the equivalence class of $T \in \mathcal{L}(X)$ in $\mathcal{L}(X) / \mathcal{K}(X)$.

$\mathcal{C}al(X)$ endowed with the operation $[T] \circ [S] = [T \circ S]$ becomes a Banach algebra.
Let A be a Banach algebra. Does there exist a Banach space X such that the Calkin algebra of X is isomorphic, as a Banach algebra, to A?

The Calkin algebra of X is defined to be the space $Calk(X) = \mathcal{L}(X) / \mathcal{K}(X)$, where $\mathcal{L}(X)$ denotes the space of all bounded linear operators defined on X and $\mathcal{K}(X)$ denotes the spaces of all compact operators defined on X.

We denote by $[T]$ the equivalence class of $T \in \mathcal{L}(X)$ in $\mathcal{L}(X) / \mathcal{K}(X)$.

$Calk(X)$ endowed with the operation $[T] \circ [S] = [T \circ S]$ becomes a Banach algebra.
Let A be a Banach algebra. Does there exist a Banach space X such that the Calkin algebra of X is isomorphic, as a Banach algebra, to A?

The Calkin algebra of X is defined to be the space $\mathcal{Cal}(X) = \frac{\mathcal{L}(X)}{\mathcal{K}(X)}$, where $\mathcal{L}(X)$ denotes the space of all bounded linear operators defined on X and $\mathcal{K}(X)$ denotes the spaces of all compact operators defined on X.

We denote by $[T]$ the equivalence class of $T \in \mathcal{L}(X)$ in $\frac{\mathcal{L}(X)}{\mathcal{K}(X)}$.

$\mathcal{Cal}(X)$ endowed with the operation $[T] \circ [S] = [T \circ S]$ becomes a Banach algebra.
Let A be a Banach algebra. Does there exist a Banach space X such that the Calkin algebra of X is isomorphic, as a Banach algebra, to A?

The Calkin algebra of X is defined to be the space $Cal(X) = \mathcal{L}(X) / \mathcal{K}(X)$, where $\mathcal{L}(X)$ denotes the space of all bounded linear operators defined on X and $\mathcal{K}(X)$ denotes the spaces of all compact operators defined on X.

We denote by $[T]$ the equivalence class of $T \in \mathcal{L}(X)$ in $\mathcal{L}(X) / \mathcal{K}(X)$.

$Cal(X)$ endowed with the operation $[T] \circ [S] = [T \circ S]$ becomes a Banach algebra.
S. Argyros and R. Haydon in 2011 constructed a Banach space X_{AH} that satisfies the “scalar plus compact” property.

Hence, $\text{Cal}(X_{AH})$ is one-dimensional.
Case $A = \ell_1(\mathbb{N}_0)$

M. Tarbard in 2013 constructed a Banach space X_∞ such that $Cal(X_\infty)$ is isometric as a Banach algebra with the convolution algebra $\ell_1(\mathbb{N}_0)$.

Let K be a countable compact metric space with finite Cantor-Bendixson index.

Then there exists a \mathcal{L}_∞ space X such that its Calkin algebra is isomorphic, as a Banach algebra, to $C(K)$.

Case $A = C(K)$ for K countable compact metric space

- The **basic ingredients** of our method are the following:
 - The Argyros Haydon space X_{AH}.
The basic ingredients of our method are the following:

The Argyros Haydon space X_{AH}.

Case $A = C(K)$ for K countable compact metric space

The basic ingredients of our method are the following:

- The Argyros Haydon space X_{AH}.

The space X_{AH} is a separable \mathcal{L}^∞ space with dual isomorphic to ℓ_1.

The construction of X_{AH} is a generalized modification of the Bourgain-Delbaen method which depends on a pair of sequences of natural numbers $(m_j, n_j)_j$ that satisfy certain growth conditions.

For $L \subset \mathbb{N}$ infinite, we denote by $X_{AH}(L)$ the space constructed using the subsequence $(m_j, n_j)_j \in L$.

For every $L \subset \mathbb{N}$ infinite, the space $X_{AH(L)}$ shares the same properties with X_{AH}.

Moreover, in the Argyros-Haydon paper it is shown that for $L \cap M$ is finite, then every $T : X_{AH}(L) \to X_{AH}(M)$ is compact.
The space X_{AH} is a separable \mathcal{L}^∞ space with dual isomorphic to ℓ_1.

The construction of X_{AH} is a generalized modification of the Bourgain-Delbaen method which depends on a pair of sequences of natural numbers $(m_j, n_j)_j$ that satisfy certain growth conditions.

For $L \subset \mathbb{N}$ infinite, we denote by $X_{AH}(L)$ the space constructed using the subsequence $(m_j, n_j)_{j \in L}$.

For every $L \subset \mathbb{N}$ infinite, the space $X_{AH(L)}$ shares the same properties with X_{AH}.

Moreover, in the Argyros-Haydon paper it is shown that for $L \cap M$ is finite, then every $T : X_{AH}(L) \to X_{AH}(M)$ is compact.
The space X_{AH} is a separable L^∞ space with dual isomorphic to ℓ_1.

The construction of X_{AH} is a generalized modification of the Bourgain-Delbaen method which depends on a pair of sequences of natural numbers $(m_j, n_j)_j$ that satisfy certain growth conditions.

For $L \subset \mathbb{N}$ infinite, we denote by $X_{AH}(L)$ the space constructed using the subsequence $(m_j, n_j)_{j \in L}$.

For every $L \subset \mathbb{N}$ infinite, the space $X_{AH(L)}$ shares the same properties with X_{AH}.

Moreover, in the Argyros-Haydon paper it is shown that for $L \cap M$ is finite, then every $T : X_{AH}(L) \to X_{AH}(M)$ is compact.

Finite sums of Argyros-Haydon spaces
The space X_{AH} is a separable \mathcal{L}^∞ space with dual isomorphic to ℓ_1.

The construction of X_{AH} is a generalized modification of the Bourgain-Delbaen method which depends on a pair of sequences of natural numbers $(m_j, n_j)_j$ that satisfy certain growth conditions.

For $L \subset \mathbb{N}$ infinite, we denote by $X_{AH}(L)$ the space constructed using the subsequence $(m_j, n_j)_{j \in L}$.

For every $L \subset \mathbb{N}$ infinite, the space $X_{AH(L)}$ shares the same properties with X_{AH}.

Moreover, in the Argyros-Haydon paper it is shown that for $L \cap M$ is finite, then every $T : X_{AH}(L) \to X_{AH}(M)$ is compact.
The space X_{AH} is a separable \mathcal{L}^∞ space with dual isomorphic to ℓ_1.

The construction of X_{AH} is a generalized modification of the Bourgain-Delbaen method which depends on a pair of sequences of natural numbers $(m_j, n_j)_j$ that satisfy certain growth conditions.

For $L \subset \mathbb{N}$ infinite, we denote by $X_{AH}(L)$ the space constructed using the subsequence $(m_j, n_j)_j \in L$.

For every $L \subset \mathbb{N}$ infinite, the space $X_{AH(L)}$ shares the same properties with X_{AH}.

Moreover, in the Argyros-Haydon paper it is shown that for $L \cap M$ is finite, then every $T : X_{AH}(L) \to X_{AH}(M)$ is compact.
An observation.

Let \((X_i)_{i=1}^n\) a finite sequence of Banach spaces and assume that every bounded linear operator \(T : X_i \to X_j\) is compact for every \(i \neq j\).

Setting \(X = (X_1 \oplus \ldots \oplus X_n)_\infty\) it follows that \(\text{Cal}(X)\) is isometric with \((\text{Cal}(X_1) \oplus \ldots \oplus \text{Cal}(X_n))_\infty\).
An observation.

Let \((X_i)_{i=1}^n\) a finite sequence of Banach spaces and assume that every bounded linear operator

\[T : X_i \to X_j \]

is compact for every \(i \neq j\).

Setting \(X = (X_1 \oplus \ldots \oplus X_n)_\infty\) it follows that \(Cal(X)\) is isometric with

\[(Cal(X_1) \oplus \ldots \oplus Cal(X_n))_\infty.\]
Let $k \in \mathbb{N}$, L_1, \ldots, L_k pairwise disjoint infinite subsets of \mathbb{N} and

$$X = (X_1 \oplus \cdots \oplus X_k)_{\infty},$$

where $X_i = X_{AH(L_i)}$ for $i = 1, \ldots, k$.

Since L_i are pairwise disjoint we have that every $T : X_{AH(L_i)} \to X_{AH(L_j)}$ is compact for every $i \neq j$.

Since $Cal(X_i)$ is one dimensional, by the above observation we obtain that $Cal(X)$ is k-dimensional.
Let $k \in \mathbb{N}$, L_1, \ldots, L_k pairwise disjoint infinite subsets of \mathbb{N} and

$$X = (X_1 \oplus \cdots \oplus X_k)_\infty,$$

where $X_i = X_{AH}(L_i)$ for $i = 1, \ldots, k$.

Since L_i are pairwise disjoint we have that every $T : X_{AH}(L_i) \to X_{AH}(L_j)$ is compact for every $i \neq j$.

Since $Cal(X_i)$ is one dimensional, by the above observation we obtain that $Cal(X)$ is k-dimensional.
Let $k \in \mathbb{N}$, L_1, \ldots, L_k pairwise disjoint infinite subsets of \mathbb{N} and

$$X = (X_1 \oplus \cdots \oplus X_k)_\infty,$$

where $X_i = X_{AH}(L_i)$ for $i = 1, \ldots k$.

Since L_i are pairwise disjoint we have that every $T : X_{AH}(L_i) \to X_{AH}(L_j)$ is compact for every $i \neq j$.

Since $Cal(X_i)$ is one dimensional, by the above observation we obtain that $Cal(X)$ is k-dimensional.
We will now see the Calkin algebra of the space

$$X = \left(\sum_n \oplus X_n \right)_{BD},$$

where $X_n = X_{AH}(L_n)$ for a sequence $(L_n)_n$ of pairwise disjoint infinite subsets of natural numbers.

For a sequence $(X_n)_n$ of separable Banach spaces, the space $X = (\sum_n \oplus X_n)_{BD}$ is called a Bourgain Delbaen \mathcal{L}_∞ sum of $(X_n)_n$ and is defined as a subspace of $(\sum \oplus (X_n \oplus \ell_\infty(\Delta_n)))_\infty$.

The sets Δ_n are finite, pairwise disjoint and defined using the Bourgain-Delbaen method.
We will now see the Calkin algebra of the space

\[X = \left(\sum_n \oplus X_n \right)_{BD}, \]

where \(X_n = X_{AH}(L_n) \) for a sequence \((L_n)_n\) of pairwise disjoint infinite subsets of natural numbers.

For a sequence \((X_n)_n\) of separable Banach spaces, the space \(X = \left(\sum_n \oplus X_n \right)_{BD} \) is called a Bourgain Delbaen \(\mathcal{L}_\infty \) sum of \((X_n)_n\) and is defined as a subspace of \(\left(\sum \oplus (X_n \oplus \ell_\infty(\Delta_n)) \right)_\infty \).

The sets \(\Delta_n \) are finite, pairwise disjoint and defined using the Bourgain-Delbaen method.
We will now see the Calkin algebra of the space

\[X = \left(\sum_n \oplus X_n \right)_{BD}, \]

where \(X_n = X_{AH}(L_n) \) for a sequence \((L_n)_n\) of pairwise disjoint infinite subsets of natural numbers.

For a sequence \((X_n)_n\) of separable Banach spaces, the space \(X = (\sum_n \oplus X_n)_{BD} \) is called a Bourgain Delbaen \(L_\infty \) sum of \((X_n)_n\) and is defined as a subspace of \((\sum \oplus (X_n \oplus \ell_\infty(\Delta_n))_\infty)_\infty \).

The sets \(\Delta_n \) are finite, pairwise disjoint and defined using the Bourgain-Delbaen method.
In particular, we define linear extension operators

\[i_n : \left(\sum_{k \leq n} (X_k \oplus \ell_\infty(\Delta_k))_\infty \right)_\infty \rightarrow \left(\sum \oplus (X_n \oplus \ell_\infty(\Delta_n))_\infty \right)_\infty \]

such that

\[\sup_n \|i_n\| < \infty. \]

\[(\sum_n \oplus X_n)_{BD} = \overline{\bigcup_n Y_n}, \text{ where} \]

\[Y_n = i_n \left[\left(\sum_{k \leq n} (X_k \oplus \ell_\infty(\Delta_k))_\infty \right)_\infty \right]. \]
In particular, we define linear extension operators
\[i_n : \left(\bigoplus_{k \leq n} (X_k \oplus \ell_\infty(\Delta_k))_\infty \right)_\infty \rightarrow \left(\bigoplus (X_n \oplus \ell_\infty(\Delta_n))_\infty \right)_\infty \]
such that
\[\sup_n \| i_n \| < \infty. \]

\[(\sum_n \oplus X_n)_{BD} = \overline{\bigcup_n Y_n}, \text{ where} \]
\[Y_n = i_n \left[\left(\sum_{k \leq n} \oplus (X_k \oplus \ell_\infty(\Delta_k))_\infty \right)_\infty \right]. \]
In particular, we define linear extension operators

\[i_n : \left(\sum_{k \leq n} \oplus (X_k \oplus \ell_\infty(\Delta_k))_\infty \right)_\infty \to \left(\sum \oplus (X_n \oplus \ell_\infty(\Delta_n))_\infty \right)_\infty \]

such that

\[\sup_n \|i_n\| < \infty. \]

\[(\sum_n \oplus X_n)_{BD} = \overline{\bigcup Y_n}, \text{ where} \]

\[Y_n = i_n \left[\left(\sum_{k \leq n} \oplus (X_k \oplus \ell_\infty(\Delta_k))_\infty \right)_\infty \right]. \]
Let x be a vector in \((\sum_{k \leq n} \oplus (X_k \oplus \ell_\infty(\Delta_n)))_\infty\)
The vector $i_n(x)$, i.e. x is extended by assigning to it new values in $\ell_\infty(\bigcup_{k>n} \Delta_k)$.
The \(L^\infty \) structure of AH-sums

- The finite sets \(\Delta_n \) are defined recursively and for each \(\gamma \in \Delta_{n+1} \) we assign a linear functional \(c^*_\gamma : (\sum_{k=1}^n \oplus (X_k \oplus \ell_\infty(\Delta_k))_\infty)_\infty \to \mathbb{R} \) such that \(i_n(x)(\gamma) = c^*_\gamma(x) \).

This implies that for a fixed \(n \in \mathbb{N} \), taking \(x_k \in X_k \) with \(x_k \in \bigcap_{\gamma \in \bigcup_{i=1}^n \Delta_i} \ker c^*_\gamma \) then the extended vector \(i_k(x_k) \) does not have non zero values upon \(\Delta_i \) for every \(1 \leq i \leq n \).
The finite sets Δ_n are defined recursively and for each $\gamma \in \Delta_{n+1}$ we assign a linear functional $c^*_\gamma : \left(\bigoplus_{k=1}^{n} (X_k \oplus \ell_\infty(\Delta_k))_\infty \right) \to \mathbb{R}$ such that $i_n(x)(\gamma) = c^*_\gamma(x)$.

This implies that for a fixed $n \in \mathbb{N}$, taking $x_k \in X_k$ with $x_k \in \bigcap_{\gamma \in \bigcup_{i=1}^{n} \Delta_i} \text{Kerc}_\gamma^*$ then the extended vector $i_k(x_k)$ does not have non zero values upon Δ_i for every $1 \leq i \leq n$.
The \mathcal{L}_∞ structure of AH-sums

Hence, for $x_k \in \cap_{\gamma \in \cup_{i=1}^n \Delta_i} \text{Ker} c_\gamma^*$ $\cap X_k$, $i = 1, \ldots, n$

$$\|i_1(x_1) + \ldots + i_n(x_n)\| \simeq \max_{1 \leq k \leq n} \|x_k\|.$$

Since Δ_i are finite, the above implies that

$$\langle [l_k] : k = 1, \ldots, n \rangle \simeq c_0(n).$$
The L^∞ structure of AH-sums

Hence, for $x_k \in \cap_{\gamma \in \cup_{i=1}^n \Delta_i} \text{Kerc}_\gamma^*$, $i = 1, \ldots, n$

$$\|i_1(x_1) + \ldots + i_n(x_n)\| \simeq \max_{1 \leq k \leq n} \|x_k\|.$$

Since Δ_i are finite, the above implies that

$$\langle [I_k] : k = 1, \ldots, n \rangle \simeq c_0(n).$$
The \mathcal{L}^∞ structure of AH-sums

Hence, for $x_k \in \bigcap_{\gamma \in \bigcup_{i=1}^{n} \Delta_i} \text{Kerc}_\gamma^*$ \cap X_k$, $i = 1, \ldots, n$

$$\|i_1(x_1) + \ldots + i_n(x_n)\| \simeq \max_{1 \leq k \leq n} \|x_k\|.$$

Since Δ_i are finite, the above implies that

$$\langle [l_k] : k = 1, \ldots, n \rangle \simeq c_0(n).$$
Without taking any further assumptions for the separable X_n, the space $X = (\sum_n \oplus X_n)_{BD}$ satisfies the following basic properties:

- $X = \sum_n \oplus i_n[X_n \oplus \ell_\infty(\Delta_n)]$.
- Each X_n is isometric with $i_n[X_n]$ and complemented in X via projection l_n.
- An operator K defined on $X = (\sum_n \oplus X_n)_{BD}$ is called horizontally compact operator if

$$\|K|_{\sum_{n \geq k} \oplus i_n[X_n \oplus \ell_\infty(\Delta_n)]}\| \xrightarrow{k \to \infty} 0.$$
Without taking any further assumptions for the separable X_n, the space $X = (\sum_n \oplus X_n)_{BD}$ satisfies the following basic properties:

- $X = \sum_n \oplus i_n[X_n \oplus \ell_\infty(\Delta_n)]$.

- Each X_n is isometric with $i_n[X_n]$ and complemented in X via projection I_n.

- An operator K defined on $X = (\sum_n \oplus X_n)_{BD}$ is called horizontally compact operator if

 $\|K|_{\sum_{n \geq k} \oplus i_n[X_n \oplus \ell_\infty(\Delta_n)]}\| \xrightarrow{k \to \infty} 0$.
Without taking any further assumptions for the separable X_n, the space $X = (\sum_n \oplus X_n)_{BD}$ satisfies the following basic properties:

- $X = \sum_n \oplus i_n[X_n \oplus \ell_\infty(\Delta_n)]$.

- Each X_n is isometric with $i_n[X_n]$ and complemented in X via projection I_n.

- An operator K defined on $X = (\sum_n \oplus X_n)_{BD}$ is called horizontally compact operator if

$$\|K|_{\sum_{n \geq k} \oplus i_n[X_n \oplus \ell_\infty(\Delta_n)]} \xrightarrow{k \to \infty} 0.$$
Without taking any further assumptions for the separable X_n, the space $X = (\sum_n \oplus X_n)_{BD}$ satisfies the following basic properties:

- $X = \sum_n \oplus i_n[X_n \oplus \ell_\infty(\Delta_n)]$.

- Each X_n is isometric with $i_n[X_n]$ and complemented in X via projection I_n.

- An operator K defined on $X = (\sum_n \oplus X_n)_{BD}$ is called horizontally compact operator if

$$\|K|_{\sum_{n \geq k} \oplus i_n[X_n \oplus \ell_\infty(\Delta_n)]} \xrightarrow{k \to \infty} 0.$$
AH-sums of separable Banach spaces

- The space \((\sum_n \oplus X_n)_{BD}\) that is constructed using Bourgain-Delbaen method of constructing \(X_{AH}\) is denoted by \((\sum \oplus X_n)_{AH}\).

- The construction of \((\sum \oplus X_n)_{AH}\) depends on the same sequence of parameters \((m_j, n_j)_j\) of \(X_{AH}\).

- Again for \(L \subset \mathbb{N}\) infinite, we denote by \((\sum_n \oplus X_n)_{AH(L)}\) the space \((\sum \oplus X_n)_{AH}\) constructed using the subsequence \((m_j, n_j)_{j \in L}\).
The space \((\sum_n \oplus X_n)_{BD}\) that is constructed using Bourgain-Delbaen method of constructing \(X_{AH}\) is denoted by \((\sum \oplus X_n)_{AH}\).

The construction of \((\sum \oplus X_n)_{AH}\) depends on the same sequence of parameters \((m_j, n_j)_j\) of \(X_{AH}\).

Again for \(L \subset \mathbb{N}\) infinite, we denote by \((\sum_n \oplus X_n)_{AH(L)}\) the space \((\sum \oplus X_n)_{AH}\) constructed using the subsequence \((m_j, n_j)_{j \in L}\).
The space \((\sum_n \oplus X_n)_{BD}\) that is constructed using Bourgain-Delbaen method of constructing \(X_{AH}\) is denoted by \((\sum \oplus X_n)_{AH}\).

The construction of \((\sum \oplus X_n)_{AH}\) depends on the same sequence of parameters \((m_j, n_j)_j\) of \(X_{AH}\).

Again for \(L \subset \mathbb{N}\) infinite, we denote by \((\sum_n \oplus X_n)_{AH(L)}\) the space \((\sum \oplus X_n)_{AH}\) constructed using the subsequence \((m_j, n_j)_{j \in L}\).
For every $L \subset \mathbb{N}$ infinite the space $X = (\sum_n \oplus X_n)_{AH(L)}$ has the following additional properties:

- The dual X^* is isomorphic with $\left(\sum_n \oplus (X_n^* \oplus \ell_1(\Delta_n))_1\right)_1$.

By considering some specific sequences $(X_n)_n$ of separable Banach spaces, the space X has the "scalar-plus-horizontally compact" property, i.e. every operator $T \in \mathcal{L}(X)$ is of the form $T = \lambda I + K$ where $\lambda \in \mathbb{R}$ and K a horizontally compact operator.

For example, if X_n has the Schur property for every $n \in \mathbb{N}$, or ℓ_1 does not embed isomorphically in X_n^* for every $n \in \mathbb{N}$, then the above holds.
For every $L \subseteq \mathbb{N}$ infinite the space $X = (\sum_n \oplus X_n)_{AH(L)}$ has the following additional properties:

The dual X^* is isomorphic with $(\sum_n \oplus (X_n^* \oplus \ell_1(\Delta_n)))_1$.

By considering some specific sequences $(X_n)_n$ of separable Banach spaces, the space X has the "scalar-plus-horizontally compact" property, i.e. every operator $T \in \mathcal{L}(X)$ is of the form $T = \lambda I + K$ where $\lambda \in \mathbb{R}$ and K a horizontally compact operator.

For example, if X_n has the Schur property for every $n \in \mathbb{N}$, or ℓ_1 does not embed isomorphically in X_n^* for every $n \in \mathbb{N}$, then the above holds.
For every $L \subset \mathbb{N}$ infinite the space $X = (\sum_n \oplus X_n)_{AH}(L)$ has the following additional properties:

- The dual X^* is isomorphic with $(\sum_n \oplus (X_n^* \oplus \ell_1(\Delta_n)))_1$.

By considering some specific sequences $(X_n)_n$ of separable Banach spaces, the space X has the "scalar-plus-horizontally compact" property, i.e. every operator $T \in \mathcal{L}(X)$ is of the form $T = \lambda I + K$ where $\lambda \in \mathbb{R}$ and K a horizontally compact operator.

For example, if X_n has the Schur property for every $n \in \mathbb{N}$, or ℓ_1 does not embed isomorphically in X_n^* for every $n \in \mathbb{N}$, then the above holds.
For every \(L \subset \mathbb{N} \) infinite the space \(X = (\sum_n \oplus X_n)_{AH(L)} \) has the following additional properties:

- The dual \(X^* \) is isomorphic with \((\sum_n \oplus (X_n^* \oplus \ell_1(\Delta_n)))_1\).

By considering some specific sequences \((X_n)_n\) of separable Banach spaces, the space \(X \) has the "scalar-plus-horizontally compact" property, i.e. every operator \(T \in \mathcal{L}(X) \) is of the form \(T = \lambda I + K \) where \(\lambda \in \mathbb{R} \) and \(K \) a horizontally compact operator.

For example, if \(X_n \) has the Schur property for every \(n \in \mathbb{N} \), or \(\ell_1 \) does not embed isomorphically in \(X_n^* \) for every \(n \in \mathbb{N} \), then the above holds.
Calkin algebras of AH-sums

Proposition

Let L, L_n pairwise disjoints infinite subsets of \mathbb{N} and $X_{\text{AHsum}} = (\sum \oplus X_{\text{AH}}(L_n))_{\text{AH}(L)}$. The space X_{AHsum} has the \textit{"scalar-plus-horizontally compact"} property.

- Observe also that since $X_{\text{AH}}^* \simeq \ell_1$, the space X_{AHsum} is \mathcal{L}_∞ space.
- Moreover, Since every operator $T : X_{\text{AH}}(L_n) \rightarrow X_{\text{AH}}(L_m)$ is compact, we conclude that the space

$$\mathcal{L}(X_{\text{AHsum}}) = \langle I, (I_n)_n, \mathcal{K}(X_{\text{AHsum}}) \rangle,$$

where I denotes the identity map upon X_{AHsum} and for each n, I_n is the projection defined on X_{AHsum} with image isometric with $X_{\text{AH}}(L_n)$.
Proposition

Let L, L_n pairwise disjoints infinite subsets of \mathbb{N} and $X_{AHsum} = (\bigoplus X_{AH}(L_n))_{AH(L)}$. The space X_{AHsum} has the "scalar-plus-horizontally compact" property.

- Observe also that since $X_{AH}^* \simeq \ell_1$, the space X_{AHsum} is \mathcal{L}_∞ space.
- Moreover, Since every operator $T : X_{AH}(L_n) \to X_{AH}(L_m)$ is compact, we conclude that the space

$$\mathcal{L}(X_{AHsum}) = \langle I, (I_n)_n, \mathcal{K}(X_{AHsum}) \rangle,$$

where I denotes the identity map upon X_{AHsum} and for each n, I_n is the projection defined on X_{AHsum} with image isometric with $X_{AH}(L_n)$.
Calkin algebras of AH-sums

Proposition

Let L, L_n pairwise disjoints infinite subsets of \mathbb{N} and $X_{AHsum} = \left(\sum \oplus X_{AH}(L_n) \right)_{AH(L)}$. The space X_{AHsum} has the "scalar-plus-horizontally compact" property.

- Observe also that since $X^*_{AH} \cong \ell_1$, the space X_{AHsum} is \mathcal{L}^∞ space.
- Moreover, Since every operator $T : X_{AH(L_n)} \to X_{AH(L_m)}$ is compact, we conclude that the space

$$\mathcal{L}(X_{AHsum}) = \langle I, (I_n)_n, \mathcal{K}(X_{AHsum}) \rangle,$$

where I denotes the identity map upon X_{AHsum} and for each n, I_n is the projection defined on X_{AHsum} with image isometric with $X_{AH(L_n)}$.
Hence $\mathcal{C}al(X_{AH\text{sum}}) = \mathcal{L}(X_{AH\text{sum}})/\mathcal{K}(X_{AH\text{sum}}) = \langle [l], ([ln])_n \rangle$.

Using the \mathcal{L}^∞ structure of the BD-sum $(\sum \oplus X_{AH}(L_n))_{AH(L)}$ described earlier we obtain that

$$\langle [l_k] : k = 1, \ldots, n \rangle \sim^{C_n} c_0(n).$$

Using the \mathcal{L}^∞ structure of the spaces $X_{AH(L_n)}$, we have that $(C_n)_n$ is uniformly bounded and by the above we conclude that the Calkin algebra of $X_{AH\text{sum}}$ is isomorphic to c.
Hence \(\text{Cal}(X_{AH\text{sum}}) = \mathcal{L}(X_{AH\text{sum}})/\mathcal{K}(X_{AH\text{sum}}) = \langle [I], ([I_n]_n) \rangle \).

Using the \(\mathcal{L}^\infty \) structure of the BD-sum \((\sum \oplus X_{AH}(L_n))_{AH(L)} \) described earlier we obtain that

\[
\langle [I_k] : \ k = 1, \ldots, n \rangle \cong^{C_n} c_0(n).
\]

Using the \(\mathcal{L}^\infty \) structure of the spaces \(X_{AH(L_n)} \), we have that \((C_n)_n \) is uniformly bounded and by the above we conclude that the Calkin algebra of \(X_{AH\text{sum}} \) is isomorphic to \(c \).
Hence $\mathcal{C}al(X_{AHsum}) = \mathcal{L}(X_{AHsum})/\mathcal{K}(X_{AHsum}) = \langle [I], ([I_n])_n \rangle$.

Using the \mathcal{L}^∞ structure of the BD-sum $(\sum \bigoplus X_{AH}(L_n))_{AH(L)}$ described earlier we obtain that

$$\langle [l_k] : k = 1, \ldots, n \rangle \simeq^{C_n} c_0(n).$$

Using the \mathcal{L}^∞ structure of the spaces $X_{AH(L_n)}$, we have that $(C_n)_n$ is uniformly bounded and by the above we conclude that the Calkin algebra of X_{AHsum} is isomorphic to c.

We generalize the above concept using well founded trees T with a unique root such that every non maximal node of T has infinitely countable immediate successors.

For such a tree T and $L \subset \mathbb{N}$ infinite we construct Banach spaces $X_{(T,L)}$ using induction on the order of T.
We generalize the above concept using well founded trees \mathcal{T} with a unique root such that every non maximal node of \mathcal{T} has infinitely countable immediate successors.

For such a tree \mathcal{T} and $L \subseteq \mathbb{N}$ infinite we construct Banach spaces $X_{(\mathcal{T},L)}$ using induction on the order of \mathcal{T}.
The definition of the spaces $X(\mathcal{T}, L)$

For \mathcal{T} is a singleton and $L \subset \mathbb{N}$ we define $X(\mathcal{T}, L)$ to be the space $X_{AH}(L)$.

Tree of rank zero:

$$\circlearrowleft \quad X_{AH}(L)$$
The definition of the spaces $X(T,L)$

For a tree of order one we define $X(T,L) = \left(\sum \bigoplus X(T_n,L_n) \right)_{AH(L_0)}$.

Tree of rank 1:
The definition of the spaces $X(\mathcal{T}, L)$

For a tree of order two we define $X(\mathcal{T}, L) = \left(\sum \bigoplus X(\mathcal{T}_n, L_n) \right)_{AH(L_0)}$

etc...

Tree of rank 2:

$$X(\mathcal{T}, L)$$

$$X(\mathcal{T}_{s_1}, L_{s_1})$$

$$X(\mathcal{T}_{s_2}, L_{s_2})$$

$$X(\mathcal{T}_{s_3}, L_{s_3})$$
Properties of the spaces $X(\mathcal{T}, L)$

There space $X(\mathcal{T}, L)$ is accompanied by a set of norm-one projections $I_s, s \in \mathcal{T}$.
Proposition

- For every tree \mathcal{T} and $L \subseteq \mathbb{N}$ infinite, the space $X(\mathcal{T}, L)$ is \mathcal{L}_∞ and if $o(\mathcal{T}) > 0$ it has the "scalar-plus-horizontally compact" property.

- Note that $o(\mathcal{T}) = 0$, the space $X(\mathcal{T}, L)$ has the "scalar plus compact" property as it coincides with the space $X_{AH}(L)$.
Properties of the spaces $X_{(T, L)}$

Proposition

- For every tree T and $L \subset \mathbb{N}$ infinite, the space $X_{(T, L)}$ is \mathcal{L}^∞ and if $o(T) > 0$ it has the "scalar-plus-horizontally compact" property.

- Note that $o(T) = 0$, the space $X_{(T, L)}$ has the "scalar plus compact" property as it coincides with the space $X_{AH(L)}$.
Operators defined on $X_{\mathcal{T},L}$

- For an operator S defined on $X_{\mathcal{T},L}$ we denote by S_t the induced operator
 $$I_t \circ S \circ I_t$$
 which can considered upon $X_{\mathcal{T}_t,L_t}$.

- Every $S \in \mathcal{L}(X_{\mathcal{T},L})$ corresponds to a unique family $(\lambda_t)_{t \in \mathcal{T}}$ of scalars chosen to satisfy:

 - If t is maximal (and hence $X_{\mathcal{T}_t,L_t} = X_{AH(L_t)}$), $S_t - \lambda_t I_t$ is compact, while
 - If t non maximal, $S_t - \lambda_t I_t$ is horizontally compact.
For an operator S defined on $X_{T,L}$ we denote by S_t the induced operator

$$I_t \circ S \circ I_t$$

which can considered upon $X_{(T_t,L_t)}$.

Every $S \in \mathcal{L}(X_{(T,L)})$ corresponds to a unique family $(\lambda_t)_{t \in T}$ of scalars chosen to to satisfy:

- If t is maximal (and hence $X_{(T_t,L_t)} = X_{AH(L_t)}$), $S_t - \lambda_t I_t$ is compact, while
- If t non maximal, $S_t - \lambda_t I_t$ is horizontally compact.
Operators defined on $X(\mathcal{T}, L)$

For an operator S defined on $X_{\mathcal{T}, L}$ we denote by S_t the induced operator

$$l_t \circ S \circ l_t$$

which can considered upon $X(\mathcal{T}_t, L_t)$.

Every $S \in \mathcal{L}(X(\mathcal{T}, L))$ corresponds to a unique family $(\lambda_t)_{t \in \mathcal{T}}$ of scalars chosen to satisfy:

- If t is maximal (and hence $X(\mathcal{T}_t, L_t) = X_{AH}(L_t)$), $S_t - \lambda_t I_t$ is compact, while

- If t non maximal, $S_t - \lambda_t I_t$ is horizontally compact.
For an operator S defined on $X_{\mathcal{T}, \mathcal{L}}$ we denote by S_t the induced operator

$$l_t \circ S \circ l_t$$

which can be considered upon $X_{(\mathcal{T}_t, \mathcal{L}_t)}$.

Every $S \in \mathcal{L}(X_{(\mathcal{T}, \mathcal{L})})$ corresponds to a unique family $(\lambda_t)_{t \in \mathcal{T}}$ of scalars chosen to satisfy:

- If t is maximal (and hence $X_{(\mathcal{T}_t, \mathcal{L}_t)} = X_{AH(\mathcal{L}_t)}$), $S_t - \lambda_t l_t$ is compact, while

- If t non maximal, $S_t - \lambda_t l_t$ is horizontally compact.
The functional $f_S : \mathcal{T} \to \mathbb{R}$ that assigns to each $t \in \mathcal{T}$ the scalar λ_t, is continuous.

We define $\Phi(\mathcal{T}, L) : \mathcal{L}(X(\mathcal{T}, L)) \to C(\mathcal{T})$ by the rule

$$S \to f_S.$$

The induced operator

$$\Phi(\mathcal{T}, L) : \mathcal{L}(X(\mathcal{T}, L)) / \mathcal{K}(X(\mathcal{T}, L)) = \text{Cal}(X(\mathcal{T}, L)) \to C(\mathcal{T})$$

is a 1-1 homomorphism with dense range has norm one.
The functional $f_S : \mathcal{T} \to \mathbb{R}$ that assigns to each $t \in \mathcal{T}$ the scalar λ_t, is continuous.

We define $\bar{\Phi}_{(\mathcal{T},L)} : \mathcal{L}(X_{(\mathcal{T},L)}) \to C(\mathcal{T})$ by the rule

$$S \to f_S.$$

The induced operator

$$\Phi_{(\mathcal{T},L)} : \mathcal{L}(X_{(\mathcal{T},L)})/K(X_{(\mathcal{T},L)}) = \text{Cal}(X_{(\mathcal{T},L)}) \to C(\mathcal{T})$$

is a 1-1 homomorphism with dense range has norm one.
The Calkin algebras of $X(\mathcal{T}, \mathcal{L})$

- The functional $f_S : \mathcal{T} \to \mathbb{R}$ that assigns to each $t \in \mathcal{T}$ the scalar λ_t, is continuous.

- We define $\Phi_{(\mathcal{T}, \mathcal{L})} : \mathcal{L}(X(\mathcal{T}, \mathcal{L})) \to C(\mathcal{T})$ by the rule
 \[S \to f_S. \]

- The induced operator
 \[\Phi_{(\mathcal{T}, \mathcal{L})} : \mathcal{L}(X(\mathcal{T}, \mathcal{L})) / \mathcal{K}(X(\mathcal{T}, \mathcal{L})) = \text{Cal}(X(\mathcal{T}, \mathcal{L})) \to C(\mathcal{T}) \]
 is a 1-1 homomorphism with dense range has norm one.
Proposition

Let T be a tree of finite rank and L be an infinite subset of the natural numbers. Then the map

$\Phi_{T,L} : \text{Cal}(X_{(T,L)}) \to C(T)$ is bounded below.

Hence, $\text{Cal}(X_{(T,L)}) \simeq C(T)$ as a Banach algebra, if $o(T) < \omega$.
The Calkin algebras of $X_{(\mathcal{T}, L)}$

Proposition

Let \mathcal{T} be a tree of finite rank and L be an infinite subset of the natural numbers. Then the map $\Phi_{\mathcal{T}, L} : \text{Cal}(X_{(\mathcal{T}, L)}) \to C(\mathcal{T})$ is bounded below.

Hence, $\text{Cal}(X_{(\mathcal{T}, L)}) \simeq C(\mathcal{T})$ as a Banach algebra, if $o(\mathcal{T}) < \omega$.
The Calkin algebras of $X_{(T,L)}$

Proposition

Let T be a tree of finite rank and L be an infinite subset of the natural numbers. Then the map

$\Phi_{T,L} : \text{Cal}(X_{(T,L)}) \rightarrow C(T)$ is bounded below.

Hence, $\text{Cal}(X_{(T,L)}) \simeq C(T)$ as a Banach algebra, if $o(T) < \omega$.
The main result

Theorem (P. Motakis - Daniele Puglisi - D.Z)

Let K be a countable compact metric space with finite Cantor-Bendixson index.

Then there exists a \mathcal{L}_∞ space X such that its Calkin algebra is isomorphic, as a Banach algebra, to $C(K)$.

- By Sierpinski Mazurkiewich K is homeomorphic to a countable ordinal number of the form $\omega^k \cdot n$, $k, n \in \mathbb{N}$.

- $X = \left(\sum_{i=1}^{n} \oplus X(T, L_i) \right)_\infty$, where $T = \omega^k$ and $(L_i)_i$ pairwise disjoint.
The main result

Theorem (P. Motakis - Daniele Puglisi - D.Z)

Let K be a countable compact metric space with finite Cantor-Bendixson index.

Then there exists a \mathcal{L}_∞ space X such that its Calkin algebra is isomorphic, as a Banach algebra, to $C(K)$.

- By Sierpinski Mazurkiewichz K is homeomorphic to a countable ordinal number of the form $\omega^k \cdot n$, $k, n \in \mathbb{N}$.

- $X = \left(\sum_{i=1}^{n} \oplus X_{(T,L_i)} \right)_\infty$, where $T = \omega^k$ and $(L_i)_i$ pairwise disjoint.
The main result

Theorem (P. Motakis - Daniele Puglisi - D.Z)

Let K be a countable compact metric space with finite Cantor-Bendixson index.

Then there exists a \mathcal{L}_∞ space X such that its Calkin algebra is isomorphic, as a Banach algebra, to $C(K)$.

- By Sierpinski Mazurkiewichz K is homeomorphic to a countable ordinal number of the form $\omega^k \cdot n$, $k, n \in \mathbb{N}$.

- $X = \left(\sum_{i=1}^{n} \oplus X(\mathcal{T}, L_i) \right)_{\infty}$, where $\mathcal{T} = \omega^k$ and $(L_i)_i$ pairwise disjoint.
The main result

Theorem (P. Motakis - Daniele Puglisi - D.Z)

Let K be a countable compact metric space with finite Cantor-Bendixson index.

Then there exists a L_∞ space X such that its Calkin algebra is isomorphic, as a Banach algebra, to $C(K)$.

- By Sierpinski Mazurkiewich K is homeomorphic to a countable ordinal number of the form $\omega^k \cdot n$, $k, n \in \mathbb{N}$.

- $X = \left(\sum_{i=1}^{n} \oplus X(\mathcal{T}, L_i) \right)_\infty$, where $\mathcal{T} = \omega^k$ and $(L_i)_i$ pairwise disjoint.
Can it be extended?

Question: is the above theorem true for every countable compact metric space?

Question: is the map $\Phi_{(\mathcal{T},L)} : \text{Cal}(X_{(\mathcal{T},L)}) \rightarrow C(\mathcal{T})$ always onto?
Question: is the above theorem true for every countable compact metric space?

Question: is the map $\phi_{(\mathcal{T},L)} : \mathcal{C}(X_{(\mathcal{T},L)}) \to C(\mathcal{T})$ always onto?
Indications for affirmative answers

- The dual of $Cal(X_{(T,L)})$ is **separable** and has the **Schur property**.

- The Calkin algebra of $X_{(T,L)}$ is **commutative** as a Banach algebra and as a Banach space it is c_0 **saturated** and has the **Dunford-Pettis property**.
The dual of $Cal(X_{(T,L)})$ is **separable** and has the **Schur property**.

The Calkin algebra of $X_{(T,L)}$ is **commutative** as a Banach algebra and as a Banach space it is c_0 **saturated** and has the **Dunford-Pettis property**.
Thank you!