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Main Results and Motivation

Main results

@ /4 preserving non-isomorphism

Theorem 1: There is an operator T : L1(0,1) — L4(0,1)
that is an isomorphism when restricted to every subspace
isomorphic to ¢ but is not an isomorphism.
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Main Results and Motivation

Main results

@ /4 preserving non-isomorphism

Theorem 1: There is an operator T : L1(0,1) — L4(0,1)
that is an isomorphism when restricted to every subspace
isomorphic to ¢ but is not an isomorphism.

@ Restricted invertible operator with large kernel

Theorem 2: There is an operator T : L1(0,1) — L4(0,1)
such that for some ¢,6 > 0

I Tf|| > 6]/ f|| forall fwith |suppf| <e
but KerT is infinite dimensional.

Gideon Schechtman Non-isomorphism ¢4 preserving operator on L4 (0, 1)



main Results
motivation
Th 2 implies Th 1
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some motivation

Although this was not our initial motivation, we found out that
there is quite extensive literature on the subject.
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Main Results and Motivation

some motivation

Although this was not our initial motivation, we found out that
there is quite extensive literature on the subject.

An operator T : X — Y is called Tauberian if T*~1(Y) = X.

The notion was termed and studied by Kalton and Wilansky
[76].
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some motivation

Although this was not our initial motivation, we found out that
there is quite extensive literature on the subject.

An operator T : X — Y is called Tauberian if T*~1(Y) = X.

The notion was termed and studied by Kalton and Wilansky
[76].

A recent book by Gonzalez and Martinez-Abejon [2010] is
recommended to anybody interested.
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Main Results and Motivation

some motivation

Although this was not our initial motivation, we found out that
there is quite extensive literature on the subject.

An operator T : X — Y is called Tauberian if T*~1(Y) = X.

The notion was termed and studied by Kalton and Wilansky
[76].

A recent book by Gonzalez and Martinez-Abejon [2010] is
recommended to anybody interested.

In particular the book deals extensively with Tauberian
operators from Ly spaces and basically contains the following:
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Main Results and Motivation

some motivation

Theorem [G,M-A]: Let T : L1(0,1) — Y. TFAE

0. T is Tauberian
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Main Results and Motivation

some motivation

Theorem [G,M-A]: Let T : L1(0,1) — Y. TFAE

0. T is Tauberian

1. For all normalized disjoint sequence {x;},
liminfi_, || x| > O
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Main Results and Motivation

some motivation

Theorem [G,M-A]: Let T : L1(0,1) — Y. TFAE

0. T is Tauberian

1. For all normalized disjoint sequence {x;},
liminfi_ o || TXi|| > O

2. If {x;} is equivalent to the unit vector basis of ¢; then there
is an N such that T is an isomorphism.
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Main Results and Motivation

some motivation

Theorem [G,M-A]: Let T : L1(0,1) — Y. TFAE

0.
1.

T is Tauberian

For all normalized disjoint sequence {x;},

liminfi_ o || TXi|| > O

If {x;} is equivalent to the unit vector basis of /1 then there
is an N such that T is an isomorphism.

there is ¢,0 > 0 such that || Tf|| > ¢ for all f with
|supp(f)| <&
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Main Results and Motivation

some motivation

If Ris a reflexive subspace of Ly = L1[0,1],and T : Ly — Ly/R
is the quotient map then T satisfy 3 and so is Tauberian. In the
book Gonzalez and Martinez-Abejon ask whether a Tauberian
T : Ly — L4 can have an infinite dimensional kernel. Our
second theorem answers this positively:
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Main Results and Motivation

some motivation

If Ris a reflexive subspace of Ly = L1[0,1],and T : Ly — Ly/R
is the quotient map then T satisfy 3 and so is Tauberian. In the
book Gonzalez and Martinez-Abejon ask whether a Tauberian
T : Ly — L4 can have an infinite dimensional kernel. Our
second theorem answers this positively:

Theorem: There is an operator T : L1(0,1) — L{(0,1) such
that for some ¢,0 > 0

|| Tf|| > o||f|| forall fwith |supp(f)| <e
but KerT is infinite dimensional.
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Main Results and Motivation

some motivation

If Ris a reflexive subspace of Ly = L1[0,1],and T : Ly — Ly/R
is the quotient map then T satisfy 3 and so is Tauberian. In the
book Gonzalez and Martinez-Abejon ask whether a Tauberian
T : Ly — L4 can have an infinite dimensional kernel. Our
second theorem answers this positively:

Theorem: There is an operator T : L1(0,1) — L{(0,1) such
that for some ¢,0 > 0

|| Tf|| > o||f|| forall fwith |supp(f)| <e
but KerT is infinite dimensional.

Recall that it’s unknown whether there is a reflexive R C L4
such that L{/R embeds back into L.
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Main Results and Motivation

some motivation

If Ris a reflexive subspace of Ly = L1[0,1],and T : Ly — Ly/R
is the quotient map then T satisfy 3 and so is Tauberian. In the
book Gonzalez and Martinez-Abejon ask whether a Tauberian
T : Ly — L4 can have an infinite dimensional kernel. Our
second theorem answers this positively:

Theorem: There is an operator T : L1(0,1) — L{(0,1) such
that for some ¢,0 > 0

|| Tf|| > o||f|| forall fwith |supp(f)| <e
but KerT is infinite dimensional.

Recall that it’s unknown whether there is a reflexive R C L4
such that L{/R embeds back into L.

(The situation for Ly, p > 1, is very different.)
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Th 2 implies Th 1

Back to the characterization of Tauberian operators from L,

Theorem: Let T : L1(0,1) — Y. TFAE

0. T is Tauberian

1. For all normalized disjoint sequence {x;},

liminf;_ o || TXi|| > 0

2. If {x;} is equivalent to the unit vector basis of ¢4 then there is
an N such that T~ is an isomorphism.

3. thereise,§ >0 such that || Tf|| > ¢ for all f with |supp(f)| < ¢
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Th 2 implies Th 1

Proof of 3 implies 2:
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Main Results and Motivation

Th 2 implies Th 1

Proof of 3 implies 2:
e Assume {x;} equivalent to the /4 basis and T, is an not
an isomorphism for any N. -
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Th 2 implies Th 1

Proof of 3 implies 2:

e Assume {x;} equivalent to the /4 basis and T, is an not
an isomorphism for any N.

e Passing to a block basis we may assume that there is a
normalized {y;} equivalent to the ¢; basis and || Ty;|| — 0 as fast
as we want.
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Th 2 implies Th 1

Proof of 3 implies 2:

e Assume {x;} equivalent to the /4 basis and T, is an not
an isomorphism for any N.

e Passing to a block basis we may assume that there is a
normalized {y;} equivalent to the ¢; basis and || Ty;|| — 0 as fast
as we want.

e Given X\ > 1, passing to another block basis we can also
assume {y;} is A equivalent to the ¢4 basis.
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Th 2 implies Th 1

Proof of 3 implies 2:

e Assume {x;} equivalent to the /4 basis and T, is an not
an isomorphism for any N.

e Passing to a block basis we may assume that there is a
normalized {y;} equivalent to the ¢; basis and || Ty;|| — 0 as fast
as we want.

e Given X\ > 1, passing to another block basis we can also
assume {y;} is A equivalent to the ¢4 basis.

e Then, {y;} is basically disjointly supported. and this
contradicts 3.

Gideon Schechtman Non-isomorphism ¢4 preserving operator on L1 (0, 1)



main Results
motivation
Th 2 implies Th 1

Main Results and Motivation

Th 2 implies Th 1

Recall our two main theorems:

@ /4 preserving non-isomorphism

Theorem 1: There is an operator T : L1(0,1) — L4(0,1)
that is an isomorphism when restricted to every subspace
isomorphic to ¢ but is not an isomorphism.
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Th 2 implies Th 1

Recall our two main theorems:

@ /4 preserving non-isomorphism

Theorem 1: There is an operator T : L1(0,1) — L4(0,1)
that is an isomorphism when restricted to every subspace
isomorphic to ¢ but is not an isomorphism.

@ Restricted invertible operator with large kernel

Theorem 2: There is an operator T : L1(0,1) — L4(0,1)
such that for some ¢,6 > 0

|| Tf|| > o||f|| forall f with |suppf| < e
but KerT is infinite dimensional.

It is now clear that the second one implies the first.
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Th 2 implies Th 1

Proof of Th 2 implies Th 1:

Gideon Sche isomorphism £ preserving operator on



main Results
motivation
Th 2 implies Th 1

Main Results and Motivation

Th 2 implies Th 1

Proof of Th 2 implies Th 1:

Indeed, let {x,, x;;} be a Marcinkiewicz basis for Ker T.
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Th 2 implies Th 1

Proof of Th 2 implies Th 1:

Indeed, let {x,, x;;} be a Marcinkiewicz basis for Ker T.
Let x;; a norm preserving extension of x;.
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Th 2 implies Th 1

Proof of Th 2 implies Th 1:

Indeed, let {x,, x;;} be a Marcinkiewicz basis for Ker T.
Let x;; a norm preserving extension of x;;.
Let a, > 0 with > a, << 1and S: Ly — ¢4 given by
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Th 2 implies Th 1

Proof of Th 2 implies Th 1:

Indeed, let {x,, x;;} be a Marcinkiewicz basis for Ker T.

Let x;; a norm preserving extension of x;;.

Let a, > 0 with > a, << 1and S: Ly — ¢4 given by
S(x) = > anXj(x)e;.
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Main Results and Motivation

Th 2 implies Th 1

Proof of Th 2 implies Th 1:

Indeed, let {x,, x;;} be a Marcinkiewicz basis for Ker T.

Let x;; a norm preserving extension of x;;.

Let a, > 0 with > a, << 1and S: Ly — ¢4 given by
S(x) = > anXj(x)e;.

Then S+ T : Ly — Ly &4 ¢4 is the required operator.
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another characterization

For the proof of Theorem 2 we’ll need another simple
characterization of Tauberian operators from L; spaces.

Lemma: Let . be any measure on any measure space.

T : Ly(p) :— Y is Tauberian iff there is an r > 0 and a natural
number N such that if {x,}"N_, are disjoint unit vectors in Ly(u)
then maxi<,<n || Txn|| > r.
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BGIKS Theorem

Theorem [Berinde,Gilbert,Indyk,Karloff,Strauss, 08]:

For each n sufficiently large putting m = [3n/4], there is an
operator T : /] — /" such that

alxl < 1Tl < il

for all x with gsupp(x) < n/400.

Gideon Schechtman

Non-isomorphism ¢4 preserving operator on L4 (0, 1)



another characterization
finite dimensional analogue
Proofs proof of theorem 2
proof of finite dimensional analogue

BGIKS Theorem

Theorem [Berinde,Gilbert,Indyk,Karloff,Strauss, 08]:
For each n sufficiently large putting m = [3n/4], there is an
operator T : /] — /" such that

alxlle < 17l < il
for all x with gsupp(x) < n/400.

More generally

Theorem [BGIKS, 08]: For each ¢ and m < n sufficiently large
there is an operator T : ¢ — ¢{" such that

(T =a)lixlly < [ITxl4 < lIx]l+
for all x with gsupp(x) < ¢(n/m,e)n.
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proof of finite dimensional analogue

BGIKS Theorem

Theorem [Berinde,Gilbert,Indyk,Karloff,Strauss, 08]:
For each n sufficiently large putting m = [3n/4], there is an
operator T : /] — /" such that

alxlle < 17l < il
for all x with gsupp(x) < n/400.

More generally

Theorem [BGIKS, 08]: For each ¢ and m < n sufficiently large
there is an operator T : ¢ — ¢{" such that

(T =a)lixlly < [ITxl4 < lIx]l+

for all x with gsupp(x) < ¢(n/m,e)n.

(p(t,e) >0forallt >1,>0.)
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proof of Theorem 2

Denote the operator from the previous slide by T, and note that
it satisfies that || T|| <1 and if xq, Xa, ..., Xa00 are disjoint unit
vectors in ¢ then maxy<p<aoo || TXnl|1 > 1/4.
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proof of Theorem 2

Denote the operator from the previous slide by T, and note that
it satisfies that || T|| <1 and if xq, Xa, ..., Xa00 are disjoint unit
vectors in ¢ then maxy<p<aoo || TXnl|1 > 1/4.

Also dimKer(T) > n/4.

Gideon Schecht Non-isomorphism ¢4 preserving operator on L1 (0, 1)



another characterization
finite dimensional analogue
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proof of finite dimensional analogue

proof of Theorem 2

Denote the operator from the previous slide by T, and note that
it satisfies that || T|| <1 and if xq, Xa, ..., Xa00 are disjoint unit
vectors in ¢ then maxy<p<aoo || TXnl|1 > 1/4.

Also dimKer(T) > n/4.

Then the ultraproduct T =1 To)u: ([1TNu — (T1Mu
satisfies || T|| < 1 and if X1, X2, ..., Xa00 are disjoint unit vectors
in (H 5?)1,1 the_n max1<n<400 H TXn||1 > 1/4

Also dimKer(T) = co.
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proof of Theorem 2

Denote the operator from the previous slide by T, and note that
it satisfies that || T|| <1 and if xq, Xa, ..., Xa00 are disjoint unit
vectors in ¢ then maxy<p<aoo || TXnl|1 > 1/4.

Also dimKer(T) > n/4.

Then the ultraproduct T =1 To)u: ([1TNu — (T1Mu
satisfies || T|| < 1 and if X1, X2, ..., Xa00 are disjoint unit vectors
in (H 5?)1,1 the_n max1<n<400 H TXn||1 > 1/4

Also dimKer(T) = co.

(IT¢9)u and ([T €7 )u are huge Ly spaces. Pick a separable
subspace of KerT, let L be the closed sublattice generated by it
and T the restriction of T to L. T is then the required operator.
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proof of Theorem 2

Denote the operator from the previous slide by T, and note that
it satisfies that || T|| <1 and if xq, Xa, ..., Xa00 are disjoint unit
vectors in ¢ then maxy<p<aoo || TXnl|1 > 1/4.

Also dimKer(T) > n/4.

Then the ultraproduct T =1 To)u: ([1TNu — (T1Mu
satisfies || T|| < 1 and if X1, X2, ..., Xa00 are disjoint unit vectors
in (H 5?)1,1 the_n max1<n<400 H TXn||1 > 1/4

Also dimKer(T) = co.

(IT¢9)u and ([T €7 )u are huge Ly spaces. Pick a separable
subspace of KerT, let L be the closed sublattice generated by it
and T the restriction of T to L. T is then the required operator.

(L is an Ly space which contain the kernel which is a reflexive
subspace so can’t be ¢4 sois L1(0,1).)
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expanders

Special expander [probably Pinsker 73]: For each n
sufficiently large there is a bipartite graph G = (L, R, E) with
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another characterization
finite dimensional analogue
Proofs proof of theorem 2
proof of finite dimensional analogue

expanders

Special expander [probably Pinsker 73]: For each n
sufficiently large there is a bipartite graph G = (L, R, E) with
|L| = n, |R| = m=[3n/4] and left degree d = 32
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proof of finite dimensional analogue

expanders

Special expander [probably Pinsker 73]: For each n
sufficiently large there is a bipartite graph G = (L, R, E) with
|L| = n, |R| = m=[3n/4] and left degree d = 32

such that for all S ¢ L with |S| < n/104d, [[(S)| > 5d|S|/8.
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another characterization
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Proofs proof of theorem 2
proof of finite dimensional analogue

expanders

Special expander [probably Pinsker 73]: For each n
sufficiently large there is a bipartite graph G = (L, R, E) with
|L| = n, |R| = m=[3n/4] and left degree d = 32

such that for all S ¢ L with |S| < n/104d, [[(S)| > 5d|S|/8.

Here
I'(S) = {r € R; such that there is an s € S with (s,r) € E}.
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proof of finite dimensional analogue

expanders

Special expander [probably Pinsker 73]: For each n
sufficiently large there is a bipartite graph G = (L, R, E) with
|L| = n, |R| = m=[3n/4] and left degree d = 32

such that for all S ¢ L with |S| < n/104d, [[(S)| > 5d|S|/8.

Here
I'(S) = {r € R; such that there is an s € S with (s,r) € E}.

More generally: For each € and m < n sufficiently large there
is a bipartite graph G = (L, R, E) with
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proof of finite dimensional analogue

expanders

Special expander [probably Pinsker 73]: For each n
sufficiently large there is a bipartite graph G = (L, R, E) with
|L| = n, |R| = m=[3n/4] and left degree d = 32

such that for all S ¢ L with |S| < n/104d, [[(S)| > 5d|S|/8.

Here
I'(S) = {r € R; such that there is an s € S with (s,r) € E}.

More generally: For each € and m < n sufficiently large there
is a bipartite graph G = (L, R, E) with
IL| = n, |R| = mand left degree d = ¢(n/m,¢)
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proof of finite dimensional analogue

expanders

Special expander [probably Pinsker 73]: For each n
sufficiently large there is a bipartite graph G = (L, R, E) with
|L| = n, |R| = m=[3n/4] and left degree d = 32

such that for all S ¢ L with |S| < n/104d, [[(S)| > 5d|S|/8.

Here
I'(S) = {r € R; such that there is an s € S with (s,r) € E}.

More generally: For each € and m < n sufficiently large there
is a bipartite graph G = (L, R, E) with

IL| = n, |R| = mand left degree d = ¢(n/m,e)

such that for all S C L with |S| < ¢(n/m, e)n,

r(S)I = -¢)Sl.
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another characterization
finite dimensional analogue
Proofs proof of theorem 2
proof of finite dimensional analogue

expanders

Special expander [probably Pinsker 73]: For each n
sufficiently large there is a bipartite graph G = (L, R, E) with
|L| = n, |R| = m=[3n/4] and left degree d = 32

such that for all S ¢ L with |S| < n/104d, [[(S)| > 5d|S|/8.

Here
I'(S) = {r € R; such that there is an s € S with (s,r) € E}.

More generally: For each € and m < n sufficiently large there
is a bipartite graph G = (L, R, E) with

IL| = n, |R| = mand left degree d = ¢(n/m,e)

such that for all S C L with |S| < ¢(n/m, e)n,

r(S)I = -¢)Sl.

(o(t, s)>0forallt>1 e>0.)
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proof of finite dimensional analogue

proof of the BGIKS theorem

Te,-:; Z €.

(ij)eE
Clearly || T|| < 1.
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finite dimensional analogue
Proofs proof of theorem 2

proof of finite dimensional analogue

proof of the BGIKS theorem

Te,-:; Z €.

(i)€E
Clearly || T|| < 1.
To prove the lower bound take wlog x = 3", a;e; with
|lat| > |ap| > -+ > |ak|, a1 = -+ = ap = 0, and we want to

evaluate || Tx|| from below.
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finite dimensional analogue
Proofs proof of theorem 2

proof of finite dimensional analogue

proof of the BGIKS theorem

Te,-:; Z €.

(i)€E
Clearly || T|| < 1.
To prove the lower bound take wlog x = 3", a;e; with
|lat| > |ap| > -+ > |ak|, a1 = -+ = ap = 0, and we want to

evaluate || Tx|| from below.

Order the edges u; = (i, j¢) in lexicographic order,
t=1,2,...,dn.
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another characterization
finite dimensional analogue
Proofs proof of theorem 2

proof of finite dimensional analogue

proof of the BGIKS theorem

Te,-:; Z €.

(i)€E
Clearly || T|| < 1.
To prove the lower bound take wlog x = 3", a;e; with
|lat| > |ap| > -+ > |ak|, a1 = -+ = ap = 0, and we want to

evaluate || Tx|| from below.
Order the edges u; = (i, j¢) in lexicographic order,

t=1,2,...,dn.
An edge u; causes a collision if there is an earlier edge us with
Js = Jr-
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finite dimensional analogue
Proofs proof of theorem 2

proof of finite dimensional analogue

proof of the BGIKS theorem

Te,-:; Z €.

(i)€E
Clearly || T|| < 1.
To prove the lower bound take wlog x = 3", a;e; with
|lat| > |ap| > -+ > |ak|, a1 = -+ = ap = 0, and we want to

evaluate || Tx|| from below.

Order the edges u; = (i, j¢) in lexicographic order,
t=1,2,...,dn.

An edge u; causes a collision if there is an earlier edge us with
Js = Jr-

Put E’ = {all edges which do not cause a collision}, and
E"=E\FE.
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Proofs proof of theorem 2

proof of finite dimensional analogue

proof of the BGIKS theorem

Te,-:; Z €.

(i)€E
Clearly || T|| < 1.
To prove the lower bound take wlog x = 3", a;e; with
|lat| > |ap| > -+ > |ak|, a1 = -+ = ap = 0, and we want to

evaluate || Tx|| from below.

Order the edges u; = (i, j¢) in lexicographic order,
t=1,2,...,dn.

An edge u; causes a collision if there is an earlier edge us with
Js = Jr-

Put E’ = {all edges which do not cause a collision}, and
E"=E\FE.
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Lemma: Z(i,j)GE// |a,| < EdHXH
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proof of the BGIKS theorem

Lemma: Z(i,j)GE// |a,| < EdHXH

So

=313 a=31 Y al-3 | Y al

j=1 (i)eE j=1 (i)eE J=1 (ij)eE”
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proof of the BGIKS theorem

Lemma: Z(i,j)GE// |a,| < EdHXH

So

dIITXH—Z\ > a/|>Z| > aII*ZI > a

=1 (j)€E =1 (i)eE Jj=1 (i.)eE”
>Z . laA—Z > lai
J=1 (i))eE’ J=1 (ij)eE”
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proof of finite dimensional analogue

proof of the BGIKS theorem

Lemma: Z(i,j)GE// |a,| < EdHXH

So

dIITXH—Z\ > a/|>Z| > aII*ZI > a

j=1 (ij)eE =1 (ij)eE’ J=1 (ij)ee”
oY Y @y Y al
j=1 (i,j)eE’ j=1 (i,j)eE”
m m
>3 al-2) 0 > Jail = (1 —2¢e)d|x].
J=1 (ij)eE J=1 (ij)eE”
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Proof of Pinsker's Thm.

Special expander [probably Pinsker 73]: For each n
sufficiently large there is a bipartite graph G = (L, R, E) with
IL| = n, |R| = m= [3n/4] and left degree d = 32

such that for all S C L with |S| < n/10d, |[(S)| > 5d|S|/8.
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Proof of Pinsker's Thm.

Special expander [probably Pinsker 73]: For each n
sufficiently large there is a bipartite graph G = (L, R, E) with
IL| = n, |R| = m= [3n/4] and left degree d = 32

such that for all S C L with |S| < n/10d, |[(S)| > 5d|S|/8.

For S C L of cardinality s = |S| < n/10d and T C R of
cardinality t = |T| < 5ds/8 let
As. 1 be the event that all the edges from Sgoto T.

Gideon Schechtman Non-isomorphism ¢4 preserving operator on L4 (0, 1)



another characterization
finite dimensional analogue
Proofs proof of theorem 2
proof of finite dimensional analogue

Proof of Pinsker's Thm.

Special expander [probably Pinsker 73]: For each n
sufficiently large there is a bipartite graph G = (L, R, E) with
IL| = n, |R| = m= [3n/4] and left degree d = 32

such that for all S C L with |S| < n/10d, |[(S)| > 5d|S|/8.

For S C L of cardinality s = |S| < n/10d and T C R of
cardinality t = |T| < 5ds/8 let
As. 1 be the event that all the edges from Sgoto T.

We want to show that the union of all the Ag 7-s has probability
less than 1.
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Proof of Pinsker's Thm.

Special expander [probably Pinsker 73]: For each n
sufficiently large there is a bipartite graph G = (L, R, E) with
IL| = n, |R| = m= [3n/4] and left degree d = 32

such that for all S C L with |S| < n/10d, |[(S)| > 5d|S|/8.

For S C L of cardinality s = |S| < n/10d and T C R of
cardinality t = |T| < 5ds/8 let
As. 1 be the event that all the edges from Sgoto T.

We want to show that the union of all the Ag 7-s has probability
less than 1.

The probability of As 1 is (t/m)$. So the probability of the
union of the Ag 7-s is estimated by,
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Proof of Pinsker's Thm.

n/10d

5= 2 () ) ()

|S|<n/10d,|T|=5ds/8
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Proof of Pinsker's Thm.

n/10d

2 ()i (50)

|S|<n/10d,|T|=5ds/8

n/10d

ne 8me\ °%/8 /5ds\
<> (9 (5%)  (am)
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