Uniform classification of classical Banach spaces

Bünyamin Sarı

University of North Texas

BWB 2014
A bijection $\phi : X \to Y$ is a uniform homeomorphism if both ϕ and ϕ^{-1} are uniformly continuous.
A bijection $\phi : X \to Y$ is a uniform homeomorphism if both ϕ and ϕ^{-1} are uniformly continuous.

Basic questions: Suppose X is uniformly homeomorphic to Y. Are they linearly isomorphic? If not, how much of the linear structure is preserved?
A bijection $\phi : X \rightarrow Y$ is a uniform homeomorphism if both ϕ and ϕ^{-1} are uniformly continuous.

Basic questions: Suppose X is uniformly homeomorphic to Y. Are they linearly isomorphic? If not, how much of the linear structure is preserved?

Ribe ’76. The local structure is preserved: There exists $K = K(\phi)$ such that every finite dimensional subspace of X K-embeds into Y, and vice versa.
Johnson-Lindenstrauss-Schechtman ’96
Suppose \(X \) is uniformly homeomorphic to \(\ell_p \) for \(1 < p < \infty \).
Then \(X \) is isomorphic to \(\ell_p \).
Johnson-Lindenstrauss-Schechtman ’96
Suppose X is uniformly homeomorphic to ℓ_p for $1 < p < \infty$. Then X is isomorphic to ℓ_p.

Godefroy-Kalton-Lancien ’00
If X is Lipschitz isomorphic c_0, then X is isomorphic to c_0. If X is uniformly homeomorphic to c_0, then X is ‘almost’ isomorphic to c_0.
Johnson-Lindenstrauss-Schechtman ’96
Suppose X is uniformly homeomorphic to ℓ_p for $1 < p < \infty$. Then X is isomorphic to ℓ_p.

Godefroy-Kalton-Lancien ’00
If X is Lipschitz isomorphic to c_0, then X is isomorphic to c_0. If X is uniformly homeomorphic to c_0, then X is ‘almost’ isomorphic to c_0.

Open for ℓ_1 (Lipschitz case too)
Idea of the proof for $1 < p < \infty$ case

- Enough to show $\ell_2 \not\hookrightarrow X$ (follows from Ribe and Johnson-Odell)
Idea of the proof for $1 < p < \infty$ case

- Enough to show $\ell_2 \not\sim X$ (follows from Ribe and Johnson-Odell)
- For $1 \leq p < 2$ Midpoint technique Enflo ‘69, Bourgain ‘87
- Alternatively, for $2 < p < \infty$ Gorelik principle Gorelik ‘94
- Asymptotic smoothness Kalton-Randrianarivony ‘08
- We will give another.
Idea of the proof for $1 < p < \infty$ case

- Enough to show $\ell_2 \not\hookrightarrow X$ (follows from Ribe and Johnson-Odell)
- For $1 \leq p < 2$ Midpoint technique **Enflo ‘69, Bourgain ‘87**
- For $2 < p < \infty$ Gorelik principle **Gorelik ‘94**
Idea of the proof for $1 < p < \infty$ case

- Enough to show $\ell_2 \not\hookrightarrow X$ (follows from Ribe and Johnson-Odell)
- For $1 \leq p < 2$ Midpoint technique \textit{Enflo} ‘69, \textit{Bourgain} ‘87
- For $2 < p < \infty$ Gorelik principle \textit{Gorelik} ‘94
- Alternatively, for $2 < p < \infty$ Asymptotic smoothness \textit{Kalton-Randrianarivony} ‘08
Idea of the proof for $1 < p < \infty$ case

- Enough to show $\ell_2 \not\hookrightarrow X$ (follows from Ribe and Johnson-Odell)
- For $1 \leq p < 2$ Midpoint technique Enflo ‘69, Bourgain ‘87
- For $2 < p < \infty$ Gorelik principle Gorelik ‘94
- Alternatively, for $2 < p < \infty$ Asymptotic smoothness Kalton-Randrianarivony ‘08

We will give another.
Theorem. Suppose $\phi : X \to Y$ is a uniform homeomorphism and Y is reflexive. Then there exists $K = K(\phi)$ such that for all n and all asymptotic spaces $(x_i)_{i=1}^n$ of X and all scalars $(a_i)_{i=1}^n$, we have

$$\| \sum_{i=1}^n a_i x_i \| \leq K \sup \| \sum_{i=1}^n a_i y_i \|$$

where sup is over all $(y_i)_{i=1}^n$ asymptotic spaces of Y. If $Y = \ell^p$, then this means

$$\| \sum_{i=1}^n a_i x_i \| \leq K \left(\sum_{i=1}^n |a_i|^p \right)^{1/p}$$

Thus, X cannot contain ℓ^2 if $p > 2$.
Theorem. Suppose $\phi : X \to Y$ is a uniform homeomorphism and Y is reflexive. Then there exists $K = K(\phi)$ such that for all n and all asymptotic spaces $(x_i)_{i=1}^n$ of X and all scalars $(a_i)_{i=1}^n$, we have

$$\| \sum_{i=1}^{n} a_i x_i \| \leq K \sup \| \sum_{i=1}^{n} a_i y_i \|$$

where sup is over all $(y_i)_{i=1}^n$ asymptotic spaces of Y.

If $Y = \ell_p$, then this means

$$\| \sum_{i=1}^{n} a_i x_i \| \leq K (\sum_{i=1}^{n} |a_i|^p)^{1/p}.$$

Thus, X cannot contain ℓ_2 if $p > 2$.
Maurey-Milman-Tomczak-Jaegermann ’94 Let X be a Banach space with a normalized basis (or a minimal system) (u_i). Write $n < x < y$ if $n < \min \text{supp} x < \max \text{supp} x < \min \text{supp} y$.
Maurey-Milman-Tomczak-Jaegermann ’94 Let X be a Banach space with a normalized basis (or a minimal system) (u_i). Write $n < x < y$ if $n < \min \text{supp} x < \max \text{supp} x < \min \text{supp} y$.

An n-dimensional space with basis $(e_i)_1^n$ is called an asymptotic space of X, write $(e_i)_1^n \in \{X\}_n$, if for all $\varepsilon > 0$

$$\forall m_1 \exists m_1 < x_1 \quad \forall m_2 \exists m_2 < x_2 \quad \ldots \quad \forall m_n \exists m_n < x_n$$

such that the resulting blocks (called permissible) satisfy $(x_i)_1^n \sim^{1+\varepsilon} (e_i)_1^n$.

\((e_i)_1^n \in \{X\}_n\) means that for all \(\varepsilon > 0\) there exists a block tree of \(n\)-levels

\[T_n = \{x(k_1, k_2, \ldots, k_j) : 1 \leq j \leq n\} \]

so that every branch \((x(k_1), x(k_1, k_2), \ldots, x(k_1, \ldots, k_n))\) is \((1 + \varepsilon)\)-equivalent to \((e_i)_1^n\).
Asymptotic-ℓ_p spaces

X is asymptotic-ℓ_p (asymptotic-c_0 for $p = \infty$), if there exists $K \geq 1$ such that for all n and $(e_i)_1^n \in \{X\}_n$, $(e_i)_1^n \sim_{uvb} \ell_p^n$. Indeed, every C-unconditional $(x_i)_1^n \subset \ell_p$ is $C\ell_p$-equivalent to some asymptotic space of ℓ_p.

Tsirelson space T is asymptotic-ℓ_1.

T^* is asymptotic-c_0.
Asymptotic-ℓ_p spaces

X is **asymptotic-ℓ_p** (**asymptotic-c_0** for $p = \infty$), if there exists $K \geq 1$ such that for all n and $(e_i)_1^n \in \{X\}_n$, $(e_i)_1^n \overset{K}{\sim} \text{uvb} \ \ell_p^n$.

- ℓ_p is asymptotic-ℓ_p.
Asymptotic-ℓ_p spaces

X is asymptotic-ℓ_p (asymptotic-c_0 for $p = \infty$), if there exists $K \geq 1$ such that for all n and $(e_i)_1^n \in \{X\}_n$, $(e_i)_1^n \sim uvb \ell^n_p$.

- ℓ_p is asymptotic-ℓ_p.
- L_p is not. Indeed, every C-unconditional $(x_i)_1^n \subset L_p$ is CK_p-equivalent to some asymptotic space of L_p.
Asymptotic-ℓ_p spaces

X is asymptotic-ℓ_p (asymptotic-c_0 for $p = \infty$), if there exists $K \geq 1$ such that for all n and $(e_i)_1^n \in \{X\}_n$, $(e_i)_1^K \simuvb \ell_p^n$.

- ℓ_p is asymptotic-ℓ_p.
- L_p is not. Indeed, every C-unconditional $(x_i)_1^n \subset L_p$ is CK_p-equivalent to some asymptotic space of L_p.
- Tsirelson space T is asymptotic-ℓ_1.
Asymptotic-ℓ_p spaces

X is asymptotic-ℓ_p (asymptotic-c_0 for $p = \infty$), if there exists $K \geq 1$ such that for all n and $(e_i)_1^n \in \{X\}_n$, $(e_i)_1^K \sim uvb \, \ell^n_p$.

- ℓ_p is asymptotic-ℓ_p.
- L_p is not. Indeed, every C-unconditional $(x_i)_1^n \subset L_p$ is CK_p-equivalent to some asymptotic space of L_p.
- Tsirelson space T is asymptotic-ℓ_1.
- T^* is asymptotic-c_0.
Define the **upper envelope** function r_X on c_{00} by

$$r_X(a_1, \ldots, a_n) = \sup_{(e_i)_{1 \in \{X\}}_n} \| \sum_{i=1}^n a_i e_i \|$$

and the **lower envelope** g_X by

$$g_X(a_1, \ldots, a_n) = \inf_{(e_i)_{1 \in \{X\}}_n} \| \sum_{i=1}^n a_i e_i \|$$
Define the **upper envelope** function \(r_X \) on \(c_{00} \) by

\[
r_X(a_1, \ldots, a_n) = \sup_{(e_i)_1^n \in \{X\}_n} \left\| \sum_{i=1}^n a_i e_i \right\|
\]

and the **lower envelope** \(g_X \) by

\[
g_X(a_1, \ldots, a_n) = \inf_{(e_i)_1^n \in \{X\}_n} \left\| \sum_{i=1}^n a_i e_i \right\|
\]

- \(X \) is asymptotic-\(\ell_p \) iff \(g_X \asymp \| \cdot \|_p \asymp r_X \).
Define the **upper envelope** function r_X on c_{00} by

$$r_X(a_1, \ldots, a_n) = \sup_{(e_i)_{1}^{n} \in \{X\}^{n}} \| \sum_{i} a_i e_i \|$$

and the **lower envelope** g_X by

$$g_X(a_1, \ldots, a_n) = \inf_{(e_i)_{1}^{n} \in \{X\}^{n}} \| \sum_{i} a_i e_i \|$$

- X is asymptotic-ℓ_p iff $g_X \simeq \| . \|_p \simeq r_X$.
- $r_X \simeq \| . \|_\infty$ implies X is asymptotic-c_0.

Theorem. Suppose $\phi : X \to Y$ is uniform homeomorphism, and X and Y are reflexive. Then there exists $K = K(\phi)$ such that for all scalars $a = (a_i) \in c_{00}$, we have

$$\frac{1}{K} r_Y(a) \leq r_X(a) \leq K r_Y(a).$$
The upper envelope is invariant

Theorem. Suppose $\phi : X \to Y$ is uniform homeomorphism, and X and Y are reflexive. Then there exists $K = K(\phi)$ such that for all scalars $a = (a_i) \in c_{00}$, we have

$$\frac{1}{K} r_Y(a) \leq r_X(a) \leq K r_Y(a).$$

Corollary. Suppose X is uniformly homeomorphic to a reflexive asymptotic-c_0 space. Then X is asymptotic-c_0.
Theorem. Suppose $\phi : X \to Y$ is uniform homeomorphism, and X and Y are reflexive. Then there exists $K = K(\phi)$ such that for all scalars $a = (a_i) \in c_0$, we have

$$\frac{1}{K} r_Y(a) \leq r_X(a) \leq Kr_Y(a).$$

Corollary. Suppose X is uniformly homeomorphic to a reflexive asymptotic-c_0 space. Then X is asymptotic-c_0.

Example. T^*
The main technical theorem

Theorem. Suppose \(\phi : X \to Y \) is a uniform homeomorphism and \(Y \) is reflexive. Then for all \((e_i)_1^k \in \{X\}_k \), integers \((a_i)_1^k \) and \(\varepsilon > 0 \), there exist permissible \((x_i)_1^k \) in \(X \) with \((x_i)_1^k \sim^{1+\varepsilon} (e_i)_1^k \) and permissible tuple \((h_i/\|h_i\|)_1^k \) in \(Y \) with \(\|h_i\| \leq K|a_i| \) (\(K \) depends only on \(\phi \)) such that

\[
\left\| \phi \left(\sum_{i=1}^{k} a_i x_i \right) - \sum_{i=1}^{k} h_i \right\| \leq \varepsilon.
\]