Low distortion embeddings between C(K) spaces

joint work with Luis Sánchez González

Tony Procházka

Université de Franche-Comté

25-29 August 2014
First Brazilian Workshop in Geometry of Banach Spaces
Maresias

• If K and L are homeomorphic, then C(K) and C(L) are isometrically isomorphic.

- If K and L are homeomorphic, then C(K) and C(L) are isometrically isomorphic.
- If C(K) and C(L) are isometrically isomorphic, then K and L are homeomorphic. (Banach-Stone, 1937).

- If K and L are homeomorphic, then C(K) and C(L) are isometrically isomorphic.
- If C(K) and C(L) are isometrically isomorphic, then K and L are homeomorphic. (Banach-Stone, 1937).
- If there is a linear isomorphism $f:C(K)\to C(L)$ such that $\|f\| \|f^{-1}\| < 2$, then K and L are homeomorphic (Amir-Cambern, 1965).

- If K and L are homeomorphic, then C(K) and C(L) are isometrically isomorphic.
- If C(K) and C(L) are isometrically isomorphic, then K and L are homeomorphic. (Banach-Stone, 1937).
- If there is a linear isomorphism $f:C(K)\to C(L)$ such that $\|f\|\, \|f^{-1}\|<2$, then K and L are homeomorphic (Amir-Cambern, 1965).
- If there is a Lipschitz homeomorphism $f:C(K)\to C(L)$ such that $\|f\|_{Lip}\, \big\|f^{-1}\big\|_{Lip} < 1+\varepsilon$, then K and L are homeomorphic (Jarosz, 1989).

- If K and L are homeomorphic, then C(K) and C(L) are isometrically isomorphic.
- If C(K) and C(L) are isometrically isomorphic, then K and L are homeomorphic. (Banach-Stone, 1937).
- If there is a linear isomorphism $f:C(K)\to C(L)$ such that $\|f\|\, \|f^{-1}\|<2$, then K and L are homeomorphic (Amir-Cambern, 1965).
- If there is a Lipschitz homeomorphism $f:C(K)\to C(L)$ such that $\|f\|_{Lip}\, \|f^{-1}\|_{Lip} < 1+\varepsilon$, then K and L are homeomorphic (Jarosz, 1989).

Definition (Lipschitz embedding/homeomorphism)

Let (M,d) be a metric space and $(X,\|\cdot\|)$ a Banach space. We denote $f:M \underset{\mathcal{D}}{\hookrightarrow} X$ if

$$d(x,y) \le ||f(x) - f(y)|| \le Dd(x,y).$$

Equivalent to $||f||_{Lip} ||f^{-1}||_{Lip} \le D$ up to a scalar multiple of f.

- If K and L are homeomorphic, then C(K) and C(L) are isometrically isomorphic.
- If C(K) and C(L) are isometrically isomorphic, then K and L are homeomorphic. (Banach-Stone, 1937).
- If there is a linear isomorphism $f:C(K)\to C(L)$ such that $\|f\|\, \|f^{-1}\|<2$, then K and L are homeomorphic (Amir-Cambern, 1965).
- If there is a Lipschitz homeomorphism $f:C(K)\to C(L)$ such that $\|f\|_{Lip}\, \|f^{-1}\|_{Lip} < \frac{17}{16}$, then K and L are homeomorphic (Dutrieux, Kalton, 2005).

Definition (Lipschitz embedding/homeomorphism)

Let (M,d) be a metric space and $(X,\|\cdot\|)$ a Banach space. We denote $f:M \underset{\mathcal{D}}{\hookrightarrow} X$ if

$$d(x,y) \le ||f(x) - f(y)|| \le Dd(x,y).$$

Equivalent to $||f||_{Lip} ||f^{-1}||_{Lip} \le D$ up to a scalar multiple of f.

- If K and L are homeomorphic, then C(K) and C(L) are isometrically isomorphic.
- If C(K) and C(L) are isometrically isomorphic, then K and L are homeomorphic. (Banach-Stone, 1937).
- If there is a linear isomorphism $f:C(K)\to C(L)$ such that $\|f\|\, \|f^{-1}\|<2$, then K and L are homeomorphic (Amir-Cambern, 1965).
- If there is a Lipschitz homeomorphism $f:C(K)\to C(L)$ such that $\|f\|_{Lip}\,\|f^{-1}\|_{Lip}<\frac{6}{5}$, then K and L are homeomorphic (Górak, 2011).

Definition (Lipschitz embedding/homeomorphism)

Let (M,d) be a metric space and $(X,\|\cdot\|)$ a Banach space. We denote $f:M \underset{\mathcal{D}}{\hookrightarrow} X$ if

$$d(x, y) \le ||f(x) - f(y)|| \le Dd(x, y).$$

Equivalent to $||f||_{Lip} ||f^{-1}||_{Lip} \le D$ up to a scalar multiple of f.

• A countable compact K is always homeomorphic to $[0,\omega^{\alpha}\cdot n]$ where $K^{(\alpha+1)}=\emptyset$ and $1\leq n=\left|K^{(\alpha)}\right|$ (Mazurkiewicz-Sierpiński).

- * A countable compact K is always homeomorphic to $[0,\omega^{\alpha}\cdot n]$ where $K^{(\alpha+1)}=\emptyset$ and $1\leq n=\left|K^{(\alpha)}\right|$ (Mazurkiewicz-Sierpiński).
- Górak for countable compacts: If $\alpha \neq \beta$ or $n \neq m$, then there is no Lipschitz homeomorphism $f: C([0,\omega^{\alpha}\cdot n]) \to C([0,\omega^{\beta}\cdot m])$ such that $\|f\|_{Lip} \|f^{-1}\|_{Lip} < \frac{6}{5}$.

Theorem

Let $\alpha < \omega_1$ and $\beta < \omega^{\alpha}$. Then there is no Lipschitz embedding $f: C([0,\omega^{\alpha}]) \to C([0,\beta])$ such that $\|f\|_{Lip} \|f^{-1}\|_{Lip} < 2$.

- * A countable compact K is always homeomorphic to $[0,\omega^{\alpha}\cdot n]$ where $K^{(\alpha+1)}=\emptyset$ and $1\leq n=\left|K^{(\alpha)}\right|$ (Mazurkiewicz-Sierpiński).
- * Górak for countable compacts: If $\alpha \neq \beta$ or $n \neq m$, then there is no Lipschitz homeomorphism $f: C([0,\omega^{\alpha}\cdot n]) \to C([0,\omega^{\beta}\cdot m])$ such that $\|f\|_{Lip} \|f^{-1}\|_{Lip} < \frac{6}{5}$.

Theorem

Let $\alpha < \omega_1$ and $\beta < \omega^{\alpha}$. Then there is no Lipschitz embedding $f: C([0,\omega^{\alpha}]) \to C([0,\beta])$ such that $\|f\|_{Lip} \|f^{-1}\|_{Lip} < 2$. In particular if $\alpha \neq \beta < \omega_1$ then, for any $n,m \in \mathbb{N}$, there is no Lipschitz homeomorphism $f: C([0,\omega^{\alpha}\cdot m]) \to C([0,\omega^{\beta}\cdot n])$ such that $\|f\|_{Lip} \|f^{-1}\|_{Lip} < 2$.

• Aharoni (1974), $\exists D \geq 2 \; \forall M$ separable metric sp.: $M \underset{D}{\longleftrightarrow} c_0$.

- Aharoni (1974), $\exists D \geq 2 \ \forall M$ separable metric sp.: $M \underset{D}{\hookrightarrow} c_0$.
- Kalton-Lancien (2008) D = 2.

- Aharoni (1974), $\exists D \geq 2 \ \forall M$ separable metric sp.: $M \overset{\hookrightarrow}{\underset{D}{\longleftrightarrow}} c_0$.
- Kalton-Lancien (2008) D = 2.
- Baudier (2013): what if we replace c_0 by C(K)?

- Aharoni (1974), $\exists D \geq 2 \ \forall M$ separable metric sp.: $M \xrightarrow[D]{\leftarrow} c_0$.
- Kalton-Lancien (2008) D = 2.
- Baudier (2013): what if we replace c_0 by C(K)?
- * A.P., L. Sánchez (2013): $\exists M$ countable metric sp. s.t. $M \underset{D}{\hookrightarrow} X, \, D < 2 \Rightarrow X$ not Asplund.

- Aharoni (1974), $\exists D \geq 2 \ \forall M$ separable metric sp.: $M \underset{D}{\longleftrightarrow} c_0$.
- Kalton-Lancien (2008) D = 2.
- Baudier (2013): what if we replace c_0 by C(K)?
- * A.P., L. Sánchez (2013): $\exists M$ countable metric sp. s.t. $M \underset{D}{\hookrightarrow} X, \, D < 2 \Rightarrow X$ not Asplund.
- Where does M live?

- Aharoni (1974), $\exists D \geq 2 \ \forall M$ separable metric sp.: $M \underset{D}{\hookrightarrow} c_0$.
- Kalton-Lancien (2008) D = 2.
- Baudier (2013): what if we replace c_0 by C(K)?
- * A.P., L. Sánchez (2013): $\exists M$ countable metric sp. s.t. $M \underset{D}{\hookrightarrow} X, \, D < 2 \Rightarrow X$ not Asplund.
- Where does M live?

Proposition

For $\alpha < \omega_1 \ \exists M_{\alpha} \subset C([0,\omega^{\alpha}])$ countable uniformly discrete s.t. $M \hookrightarrow C(K), \ D < 2 \Rightarrow K^{(\alpha)} \neq \emptyset.$

- Aharoni (1974), $\exists D \geq 2 \ \forall M$ separable metric sp.: $M {\buildrel \hookrightarrow \atop D} c_0.$
- Kalton-Lancien (2008) D = 2.
- Baudier (2013): what if we replace c_0 by C(K)?
- A.P., L. Sánchez (2013): $\exists M$ countable metric sp. s.t. $M \underset{D}{\hookrightarrow} X,\, D < 2 \Rightarrow X$ not Asplund.
- Where does M live?

Proposition

For $\alpha < \omega_1 \; \exists M_\alpha \subset C([0,\omega^\alpha])$ countable uniformly discrete s.t. $M \underset{D}{\hookrightarrow} C(K), \; D < 2 \Rightarrow K^{(\alpha)} \neq \emptyset.$

Corollary

If $M_{\omega^{\alpha}} \hookrightarrow X$, D < 2, then $Sz(X) \geq \omega^{\alpha+1}$.

Theorem

There exists a countable metric space M such that if $M \underset{D}{\hookrightarrow} X$, D < 2, then $\ell_1 \subset X$.

Theorem

There exists a countable metric space M such that if $M \underset{D}{\hookrightarrow} X$, D < 2, then $\ell_1 \subset X$.

Also, if $M \underset{D}{\hookrightarrow} \ell_1$, then $D \geq 2$.

Theorem

There exists a countable metric space M such that if $M \overset{\hookrightarrow}{\to} X$, D < 2, then $\ell_1 \subset X$.

Also, if $M \underset{D}{\hookrightarrow} \ell_1$, then $D \geq 2$.

But...

Theorem

There exists a countable metric space M such that if $M \underset{D}{\hookrightarrow} X$,

D < 2, then $\ell_1 \subset X$. Also, if $M \hookrightarrow \ell_1$, then D > 2.

Also, if $M \underset{D}{\hookrightarrow} \ell_1$, then $D \geq 2$.

But...

there is an equivalent norm $|\cdot|$ on ℓ_1 such that $M \underset{1}{\hookrightarrow} (\ell_1, |\cdot|)$.

The unwieldy metric space M

The unwieldy metric graph M

The unwieldy metric graph M

The unwieldy metric graph M $\{1,3,2,4\}$

The unwieldy metric graph M

 $M=\{\emptyset\} \ \ \cup \ \mathbb{N} \cup F \ \text{where} \ F=\{A\subset \mathbb{N}: 2\leq |A|<\infty\} \\ (a,b) \ \text{is an edge iff} \ a=\emptyset \ \text{and} \ b\in \mathbb{N} \ \text{or} \ a\in \mathbb{N}, b\in F \ \text{and} \ a\in b$

Assume $f: M \hookrightarrow X$, D < 2.

Assume $f: M \xrightarrow{D} X, D < 2$.

Put $x_k := f(k) \ \forall k \in \mathbb{N}$

Assume $f: M \hookrightarrow_D X, D < 2$.

Put $x_k := f(k) \ \forall k \in \mathbb{N}$

Claim: No subsequence of (x_k) is weakly Cauchy.

Assume $f: M \hookrightarrow X, D < 2$.

Put $x_k := f(k) \ \forall k \in \mathbb{N}$

Claim: No subsequence of (x_k) is weakly Cauchy.

Indeed, let $(k_n) \subset \mathbb{N}$ be given.

Assume $f: M \underset{D}{\hookrightarrow} X$, D < 2.

Put $x_k := f(k) \ \forall k \in \mathbb{N}$

Claim: No subsequence of (x_k) is weakly Cauchy.

Indeed, let $(k_n) \subset \mathbb{N}$ be given.

Put $A_N = \{k_{2n} : n \leq N\}$ and $B_N = \{k_{2n-1} : n \leq N\} \ \forall N \in \mathbb{N}$.

Assume $f: M \hookrightarrow X, D < 2$.

Put $x_k := f(k) \ \forall k \in \mathbb{N}$

Claim: No subsequence of (x_k) is weakly Cauchy.

Indeed, let $(k_n) \subset \mathbb{N}$ be given.

Put $A_N=\{k_{2n}:n\leq N\}$ and $B_N=\{k_{2n-1}:n\leq N\}\ \forall N\in\mathbb{N}.$ Put

$$X_{a,b} = \{x^* \in B_{X^*} : \langle x^*, f(a) - f(b) \rangle \ge 4 - 2D\}.$$

Assume $f: M \hookrightarrow X, D < 2$.

Put $x_k := f(k) \ \forall k \in \mathbb{N}$

Claim: No subsequence of (x_k) is weakly Cauchy.

Indeed, let $(k_n) \subset \mathbb{N}$ be given.

Put $A_N = \{k_{2n} : n \leq N\}$ and $B_N = \{k_{2n-1} : n \leq N\} \ \forall N \in \mathbb{N}$.

Put

$$X_{a,b} = \{x^* \in B_{X^*} : \langle x^*, f(a) - f(b) \rangle \ge 4 - 2D\}.$$

Then $\forall n \in \mathbb{N}$

$$K_n := \bigcap_{a \in A_n, b \in B_n} X_{a,b} \neq \emptyset.$$

Assume $f: M \underset{D}{\hookrightarrow} X, D < 2$.

Put $x_k := f(k) \ \forall k \in \mathbb{N}$

Claim: No subsequence of (x_k) is weakly Cauchy.

Indeed, let $(k_n) \subset \mathbb{N}$ be given.

Put $A_N = \{k_{2n} : n \leq N\}$ and $B_N = \{k_{2n-1} : n \leq N\} \ \forall N \in \mathbb{N}$.

Put

$$X_{a,b} = \{x^* \in B_{X^*} : \langle x^*, f(a) - f(b) \rangle \ge 4 - 2D\}.$$

Then $\forall n \in \mathbb{N}$

$$K_n := \bigcap_{a \in A_n, b \in B_n} X_{a,b} \neq \emptyset.$$

 (K_n) is a decreasing sequence of non-empty w^* -compacts

Assume $f: M \underset{D}{\hookrightarrow} X$, D < 2.

Put $x_k := f(k) \ \forall k \in \mathbb{N}$

Claim: No subsequence of (x_k) is weakly Cauchy.

Indeed, let $(k_n) \subset \mathbb{N}$ be given.

Put $A_N = \{k_{2n} : n \leq N\}$ and $B_N = \{k_{2n-1} : n \leq N\} \ \forall N \in \mathbb{N}$.

Put

$$X_{a,b} = \{x^* \in B_{X^*} : \langle x^*, f(a) - f(b) \rangle \ge 4 - 2D\}.$$

Then $\forall n \in \mathbb{N}$

$$K_n := \bigcap_{a \in A_n, b \in B_n} X_{a,b} \neq \emptyset.$$

 (K_n) is a decreasing sequence of non-empty w^* -compacts $\Rightarrow \exists x^* \in \bigcap_{n=1}^\infty K_n$

Assume $f: M \underset{D}{\hookrightarrow} X, D < 2$.

Put $x_k := f(k) \ \forall k \in \mathbb{N}$

Claim: No subsequence of (x_k) is weakly Cauchy.

Indeed, let $(k_n) \subset \mathbb{N}$ be given.

Put $A_N = \{k_{2n} : n \leq N\}$ and $B_N = \{k_{2n-1} : n \leq N\} \ \forall N \in \mathbb{N}$.

Put

$$X_{a,b} = \{x^* \in B_{X^*} : \langle x^*, f(a) - f(b) \rangle \ge 4 - 2D\}.$$

Then $\forall n \in \mathbb{N}$

$$K_n := \bigcap_{a \in A_r, b \in B_r} X_{a,b} \neq \emptyset.$$

 (K_n) is a decreasing sequence of non-empty w^* -compacts

$$\Rightarrow \exists x^* \in \bigcap_{n=1}^{\infty} K_n$$

$$\Rightarrow \langle x^*, x_{k_{2n}} - x_{k_{2n+1}} \rangle \ge 4 - 2D$$

Assume $f: M \hookrightarrow_D X$, D < 2.

Put $x_k := f(k) \ \forall k \in \mathbb{N}$

Claim: No subsequence of (x_k) is weakly Cauchy.

Indeed, let $(k_n) \subset \mathbb{N}$ be given.

Put $A_N = \{k_{2n} : n \leq N\}$ and $B_N = \{k_{2n-1} : n \leq N\} \ \forall N \in \mathbb{N}$.

Put

$$X_{a,b} = \{x^* \in B_{X^*} : \langle x^*, f(a) - f(b) \rangle \ge 4 - 2D\}.$$

Then $\forall n \in \mathbb{N}$

$$K_n := \bigcap_{a \in A_n, b \in B_n} X_{a,b} \neq \emptyset.$$

 (K_n) is a decreasing sequence of non-empty w^* -compacts

$$\Rightarrow \exists x^* \in \bigcap_{n=1}^{\infty} K_n$$

$$\Rightarrow \left\langle x^*, x_{k_{2n}} - x_{k_{2n+1}} \right\rangle \ge 4 - 2D$$

 $(x_{k_n})_n$ is not weakly Cauchy+Rosenthal's theorem $\Rightarrow \ell_1 \subset X \quad \Box$

Left open

 Fully non-linear Amir-Cambern? At least for scattered compacta?

Left open

- Fully non-linear Amir-Cambern? At least for scattered compacta?
- Is it true that $\ell_1 \hookrightarrow X$, D < 2, implies that $\ell_1 \subset X$?

Autumn 2014: Thematic trimester at the Université de Franche-Comté "Geometric and noncommutative methods in functional analysis"

