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A countable compact K is always homeomorphic to
[0,w® - n] where K(@*) =@ and 1 < n = |K(®)|
(Mazurkiewicz-Sierpinski).

Gorak for countable compacts: If a # 5 or n # m, then
there is no Lipschitz homeomorphism

f:C([0,w® -n]) = C([0,w? - m]) such that

1l zip 17 ] i < 5

Leta < wy and g < w®. Then there is no Lipschitz embedding
f : C([vaa]) — C(KLB]) SUCh that HfHsz Hf*lHLip <2

In particular if « # 8 < wy then, for any n, m € N, there is no
Lipschitz homeomorphism f : C([0,w® - m]) — C([0,w?® - n])

such that || f| ., [[f || 1, < 2-
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* Aharoni (1974), 3D > 2 VM separable metric sp.: M?co.
+ Kalton-Lancien (2008) D = 2.
+ Baudier (2013): what if we replace ¢y by C(K)?

- A.P, L. Sanchez (2013): 3M countable metric sp. s.t.
M?X, D < 2 = X not Asplund.

* Where does M live?

Proposition

For a < w; 3M, C C([0,w®]) countable uniformly discrete s.t.
M < C(K), D <2= K@) £ .

Corollary
If Mo =X, D <2, then Sz(X) > wotl.
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Theorem

There exists a countable metric space M such that if M - X,

D < 2,thent, C X.
Also, ifM?él, then D > 2.

But...
there is an equivalent norm |-| on ¢, such that M f?(ﬁl, |-1)-
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The unwieldy metric graph M

M = {0} UNUF where F = {ACN:2<|4] < o}
(a,b)isanedgeiffa=0andbeN aeN,be Fanda€b
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Assumef:M;>X,D< 2.

Put 2y, := f(k) Vk € N
Claim: No subsequence of (zj) is weakly Cauchy.
Indeed, let (k) C N be given.
Put Ay = {an n < N} and By = {kgn_l :n < N}VN € N.
Put
Xop = {z* € Bx- : («*, f(a) — f(b)) > 4 - 2D}

Then Vn € N

Kni= [\ Xap#0.

a€Ay,bEB),




Proof of M?X,D <2=0LCX

Assume f : M?X,D < 2.

Put 2 := f(k) Vk e N
Claim: No subsequence of (zy) is weakly Cauchy.
Indeed, let (k,,) C N be given.

Put Ay = {kop, :n < N} and By = {kop—1:n < N} VN € N.
Put

Xop ={2" € Bx»: (%, f(a) — f(b)) >4 —-2D}.
Then Vn € N
K, = ﬂ Xap # 0.

a€A,,beBy,

(K, ) is a decreasing sequence of non-empty w*-compacts



Proof of M?X,D <2=0LCX

Assume f : M?X,D < 2.

Put 2 := f(k) Vk e N
Claim: No subsequence of (zy) is weakly Cauchy.
Indeed, let (k,,) C N be given.
Put Ay = {kop, :n < N} and By = {kop—1:n < N} VN € N.
Put

Xap ={z" € Bx~: (z*, f(a) — f(b)) > 4—2D}.
ThenVn € N

K, = ﬂ Xap # 0.

a€A,,beBy,

(K, ) is a decreasing sequence of non-empty w*-compacts
= Jz* € o, Kn



Proof of M?X,D <2=0LCX

Assume f : M?X, D < 2.
Put zy, := f(k) Vk € N
Claim: No subsequence of (zy) is weakly Cauchy.
Indeed, let (k,,) C N be given.
Put Ay = {kop, :n < N} and By = {kop—1:n < N} VN € N.
Put
Xap ={z" € Bx~: (z*, f(a) — f(b)) > 4—2D}.
Then Vn € N
K, = ﬂ Xap # 0.
a€A,,beBy,
(K, ) is a decreasing sequence of non-empty w*-compacts
= Jz* € o, Kn
= (T*, Ty, — Thgpye) = 4— 2D



Assume [ : M?X,D < 2.

Put z;, := f(k) Vk e N
Claim: No subsequence of (zy) is weakly Cauchy.
Indeed, let (k,) C N be given.
Put Ay = {kop, :n < N} and By = {kop—1:n < N} VN € N.
Put
Xap ={z" € Bx~: (z*, f(a) — f(b)) > 4—2D}.
ThenVn € N
K, = ﬂ Xap # 0.
a€Ay,,bEB,
(K, ) is a decreasing sequence of non-empty w*-compacts
= Jz* € o, Kn
= (&%, Th,, — Thypyy) = 4— 2D
(z, )n is Nnot weakly Cauchy+Rosenthal’s theorem = ¢; C X
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* Is it true that ¢, ?X, D < 2, implies that ¢, € X?
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