On the real polynomial Bohnenblust–Hille inequality

Daniel Pellegrino

Universidade Federal da Paraiba, Brazil

Maresias - SP
August, 2014
The multilinear Bohnenblust–Hille inequality

Let K be the real or complex scalars. Bohnenblust and Hille (Annals, 1931):

There exists a sequence of positive scalars $(C_K, m)_{m=1}^\infty$ such that

\[
\sum_{i_1, \ldots, i_m=1}^N \left\| U(e_{i_1}, \ldots, e_{i_m}) \right\|_2^{m+1} \leq C_K, m \| U \|_{(1)}
\]

for all m-linear forms $U: l^\infty \times \cdots \times l^\infty \to K$ and every positive integer N.

The exponent 2^{m+1} is optimal...

The best constant C_K, m in this inequality will be denoted by $B_{\text{mult}} K, m$.

Daniel Pellegrino

On the real polynomial Bohnenblust–Hille inequality
Let \mathbb{K} be the real or complex scalars.
Let \mathbb{K} be the real or complex scalars.

Bohnenblust and Hille (Annals, 1931):

There exists a sequence of positive scalars $(C_\mathbb{K}, m)_{m=1}^{\infty}$ such that

$$\left\| \sum_{i_1, \ldots, i_m=1}^{N} U(e_{i_1}, \ldots, e_{i_m}) \right\|_{2m+1} \leq C_\mathbb{K}, m \left\| U \right\|$$

for all m-linear forms $U : \ell^\infty_1 \times \cdots \times \ell^\infty_1 \to \mathbb{K}$ and every positive integer N. The exponent $2m+1$ is optimal...

The best constant $C_\mathbb{K}, m$ in this inequality will be denoted by $B_{\text{mult}} \mathbb{K}, m$.
The multilinear Bohnenblust–Hille inequality

Let \mathbb{K} be the real or complex scalars.

Bohnenblust and Hille (Annals, 1931):

There exists a sequence of positive scalars $(C_{\mathbb{K},m})_{m=1}^{\infty} \geq 1$ such that

$$\left(\sum_{i_1, \ldots, i_m=1}^{N} |U(e_{i_1}, \ldots, e_{i_m})|^{\frac{2m}{m+1}} \right)^{\frac{m+1}{2m}} \leq C_{\mathbb{K},m} \|U\|$$

for all m-linear forms $U: l_\infty \times \cdots \times l_\infty \to \mathbb{K}$ and every positive integer N.
The multilinear Bohnenblust–Hille inequality

Let \mathbb{K} be the real or complex scalars.

Bohnenblust and Hille (Annals, 1931):

There exists a sequence of positive scalars $(C_{\mathbb{K},m})_{m=1}^{\infty} \geq 1$ such that

$$\left(\sum_{i_1, \ldots, i_m=1}^{N} |U(e_{i_1}, \ldots, e_{i_m})|^{\frac{2m}{m+1}} \right)^{\frac{m+1}{2m}} \leq C_{\mathbb{K},m} \|U\|$$

for all m-linear forms $U : l_\infty^N \times \cdots \times l_\infty^N \to \mathbb{K}$ and every positive integer N.
Let \mathbb{K} be the real or complex scalars.

Bohnenblust and Hille (Annals, 1931):

There exists a sequence of positive scalars $(C_{\mathbb{K},m})_{m=1}^{\infty} \geq 1$ such that

$$\left(\sum_{i_1,\ldots,i_m=1}^{N} |U(e_{i_1},\ldots,e_{i_m})|^{\frac{2m}{m+1}} \right)^{\frac{m+1}{2m}} \leq C_{\mathbb{K},m} \|U\|$$

for all m-linear forms $U : l^N_{\infty} \times \cdots \times l^N_{\infty} \to \mathbb{K}$ and every positive integer N.

The exponent $\frac{2m}{m+1}$ is optimal...
Let \mathbb{K} be the real or complex scalars.

Bohnenblust and Hille (Annals, 1931):

There exists a sequence of positive scalars $(C_{\mathbb{K},m})_{m=1}^{\infty} \geq 1$ such that

$$\left(\sum_{i_1, \ldots, i_m=1}^{N} |U(e_{i_1}, \ldots, e_{i_m})|^{\frac{2m}{m+1}} \right)^{\frac{m+1}{2m}} \leq C_{\mathbb{K},m} \|U\|$$

(1)

for all m-linear forms $U : l_\infty^N \times \cdots \times l_\infty^N \to \mathbb{K}$ and every positive integer N.

The exponent $\frac{2m}{m+1}$ is optimal... The best constant $C_{\mathbb{K},m}$ in this inequality will be denoted by $B_{\mathbb{K},m}^{\text{mult}}$.
The polynomial Bohnenblust–Hille inequality

Bohnenblust and Hille (Annals, 1931):
For any $m \geq 1$, there exists a constant $D_{K,m} \geq 1$ such that, for any $n \geq 1$, for any m-homogeneous polynomial $P(z) = \sum_{|\alpha| = m} a_\alpha z^\alpha$ on l_N^∞,
\[
\left(\sum_{|\alpha| = m} |a_\alpha|^2 \right)^{m+1 \over 2m} \leq D_{K,m} \|P\|_\infty,
\]
where $\|P\|_\infty = \sup_{\|z\|_\infty \leq 1} |P(z)|$.

The exponent $2^{m+1 \over 2m}$ is optimal...

The best constant $D_{K,m}$ in this inequality will be denoted by $B_{\text{pol}}(K,m)$.
The polynomial Bohnenblust–Hille inequality

Bohnenblust and Hille (Annals, 1931):

For any $m \geq 1$, there exists a constant $D_K, m \geq 1$ such that, for any $n \geq 1$, for any m-homogeneous polynomial $P(z) = \sum |\alpha|_m a_\alpha z^\alpha$ on ℓ_∞^N,

$$\left(\sum |\alpha|_m |a_\alpha|^2\right)^{\frac{m}{m+1}} \leq D_K, m \|P\|_{\ell_\infty}.$$

The exponent $\frac{m}{m+1}$ is optimal...

The best constant D_K, m in this inequality will be denoted by $B_{pol K, m}$.
Bohnenblust and Hille (Annals, 1931):

For any \(m \geq 1 \), there exists a constant \(D_{K,m} \geq 1 \) such that, for any \(n \geq 1 \), for any \(m \)-homogeneous polynomial \(P(z) = \sum_{|\alpha| = m} a_\alpha z^\alpha \) on \(l_\infty^N \),

\[
\left(\sum_{|\alpha| = m} |a_\alpha|^{\frac{2m}{m+1}} \right)^{\frac{m+1}{2m}} \leq D_{K,m} \|P\|_\infty,
\]

where \(\|P\|_\infty = \sup_{\|z\|_\infty \leq 1} |P(z)|. \)
Bohnenblust and Hille (Annals, 1931):

For any $m \geq 1$, there exists a constant $D_{K,m} \geq 1$ such that, for any $n \geq 1$, for any m-homogeneous polynomial $P(z) = \sum_{|\alpha|=m} a_\alpha z^\alpha$ on l_∞^N,\[\left(\sum_{|\alpha|=m} |a_\alpha|^{\frac{2m}{m+1}} \right)^{\frac{m+1}{2m}} \leq D_{K,m} \|P\|_\infty, \]

where $\|P\|_\infty = \sup_{\|z\|_\infty \leq 1} |P(z)|$.

The exponent $\frac{2m}{m+1}$ is optimal...
Bohnenblust and Hille (Annals, 1931):

For any $m \geq 1$, there exists a constant $D_{K,m} \geq 1$ such that, for any $n \geq 1$, for any m-homogeneous polynomial $P(z) = \sum_{|\alpha| = m} a_{\alpha} z^{\alpha}$ on l_{∞}^N,

$$\left(\sum_{|\alpha| = m} |a_{\alpha}|^{\frac{2m}{m+1}} \right)^{\frac{m+1}{2m}} \leq D_{K,m} \|P\|_\infty,$$

where $\|P\|_\infty = \sup_{\|z\|_\infty \leq 1} |P(z)|$.

The exponent $\frac{2m}{m+1}$ is optimal...

The best constant $D_{K,m}$ in this inequality will be denoted by $B_{K,m}^{pol}$.
Bohnenblust–Hille inequalities

These inequalities have been proven to be very useful and powerful in analysis, analytic number theory and physics. For instance:

1. To estimate the abscissae of convergence of Dirichlet series (this was the initial goal of Bohnenblust and Hille).
2. To estimate the Bohr radius of the n-dimensional polydisk.
3. In Quantum Information Theory.

It turns out that having good estimates of the constants B_{pol}^{Km} and B_{mult}^{Km} is crucial.
These inequalities have been proven to be very useful and powerful in analysis, analytic number theory and physics. For instance:

1- To estimate the abscissae of convergence of Dirichlet series (this was the initial goal of Bohnenblust and Hille).

2- To estimate the Bohr radius of the n-dimensional polydisk.

3- In Quantum Information Theory. It turns out that having good estimates of the constants $B_{\text{pol}}^{K,m}$ and $B_{\text{mult}}^{K,m}$ is crucial.
Bohnenblust–Hille inequalities

These inequalities have been proven to be very useful and powerful in analysis, analytic number theory and physics. For instance:

1- To estimate the abscissae of convergence of Dirichlet series (this was the initial goal of Bohnenblust and Hille).

2- To estimate the Bohr radius of the \(n \)-dimensional polydisk.
Bohnenblust–Hille inequalities

These inequalities have been proven to be very useful and powerful in analysis, analytic number theory and physics. For instance:

1- To estimate the abscissae of convergence of Dirichlet series (this was the initial goal of Bohnenblust and Hille).

2- To estimate the Bohr radius of the n-dimensional polydisk.

3- In Quantum Information Theory.
These inequalities have been proven to be very useful and powerful in analysis, analytic number theory and physics. For instance:

1- To estimate the abscissae of convergence of Dirichlet series (this was the initial goal of Bohnenblust and Hille).

2- To estimate the Bohr radius of the n-dimensional polydisk.

3- In Quantum Information Theory.

It turns out that having good estimates of the constants $B_{K,m}^{\text{pol}}$ and $B_{K,m}^{\text{mult}}$ is crucial.
Estimates for the complex BH constants along the history

H. F. Bohnenblust and E. Hille (Annals, 1931):

$$B_{\text{mult}} C, m \leq m + \frac{1}{2} m \left(\sqrt{2}\right)^{m - 1}$$

$$q B_{\text{mult}} C, m \leq \left(\sqrt{2}\right)^{m - 1}$$

H. Queffelec (J. Analyse, 1995)

$$B_{\text{mult}} C, m \leq \left(\frac{2}{\sqrt{\pi}}\right)^{m - 1}$$

D. Nunez, D.P., Serrano and Seoane (J. Functional Analysis, 2013)

....complicated recursive formula....but in any case

$$B_{\text{mult}} C, m < (m - 1)_{0}^{0.31}$$
Estimates for the complex BH constants along the history

H. F. Bohnenblust and E. Hille (Annals, 1931):

$$B_{\mathbb{C},m}^{\text{mult}} \leq m^{\frac{m+1}{2m}} (\sqrt{2})^{m-1}$$
Estimates for the complex BH constants along the history

H. F. Bohnenblust and E. Hille (Annals, 1931):

\[B_{\mathbb{C}, m}^{\text{mult}} \leq m^{\frac{m+1}{2m}} (\sqrt{2})^{m-1} \]

\[qB_{\mathbb{C}, m}^{\text{mult}} \leq (\sqrt{2})^{m-1} \]
Estimates for the complex BH constants along the history

H. F. Bohnenblust and E. Hille (Annals, 1931):

$$B_{\mathbb{C},m}^{\text{mult}} \leq m^{\frac{m+1}{2m}} (\sqrt{2})^{m-1}$$

$$qB_{\mathbb{C},m}^{\text{mult}} \leq (\sqrt{2})^{m-1}$$

H. Queffelec (J. Analyse, 1995)

$$B_{\mathbb{C},m}^{\text{mult}} \leq \left(\frac{2}{\sqrt{\pi}} \right)^{m-1}$$
Estimates for the complex BH constants along the history

H. F. Bohnenblust and E. Hille (Annals, 1931):

\[
B_{\mathbb{C}, m}^{\text{mult}} \leq m^{\frac{m+1}{2m}} (\sqrt{2})^{m-1}
\]

\[
qB_{\mathbb{C}, m}^{\text{mult}} \leq (\sqrt{2})^{m-1}
\]

H. Queffelec (J. Analyse, 1995)

\[
B_{\mathbb{C}, m}^{\text{mult}} \leq \left(\frac{2}{\sqrt{\pi}}\right)^{m-1}
\]

D. Nunez, D.P., Serrano and Seoane (J. Functional Analysis, 2013)

....complicated recursive formula....but in any case

\[
B_{\mathbb{C}, m}^{\text{mult}} < (m - 1)^{0.31}
\]
Complex multilinear BH: estimates for the constants

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_{C,3}^{\text{mult}} \leq$</td>
<td>?</td>
<td>1.2184</td>
<td>1.24</td>
<td>1.27</td>
<td>2</td>
<td>4.17</td>
</tr>
<tr>
<td>$B_{C,4}^{\text{mult}} \leq$</td>
<td>?</td>
<td>1.2889</td>
<td>1.32</td>
<td>1.44</td>
<td>2.83</td>
<td>6.73</td>
</tr>
<tr>
<td>$B_{C,5}^{\text{mult}} \leq$</td>
<td>?</td>
<td>1.3474</td>
<td>1.42</td>
<td>≈ 1.44</td>
<td>4</td>
<td>10.51</td>
</tr>
<tr>
<td>$B_{C,6}^{\text{mult}} \leq$</td>
<td>?</td>
<td>1.3978</td>
<td>1.47</td>
<td>1.83</td>
<td>5.66</td>
<td>16.09</td>
</tr>
<tr>
<td>$B_{C,7}^{\text{mult}} \leq$</td>
<td>?</td>
<td>1.4422</td>
<td>1.53</td>
<td>≈ 2.06</td>
<td>8</td>
<td>24.33</td>
</tr>
<tr>
<td>$B_{C,8}^{\text{mult}} \leq$</td>
<td>?</td>
<td>1.4821</td>
<td>1.58</td>
<td>≈ 2.33</td>
<td>11.32</td>
<td>36.45</td>
</tr>
<tr>
<td>$B_{C,9}^{\text{mult}} \leq$</td>
<td>?</td>
<td>1.5183</td>
<td>1.63</td>
<td>2.63</td>
<td>16</td>
<td>54.24</td>
</tr>
<tr>
<td>$B_{C,10}^{\text{mult}} \leq$</td>
<td>?</td>
<td>1.5515</td>
<td>1.68</td>
<td>2.96</td>
<td>22.63</td>
<td>80.29</td>
</tr>
<tr>
<td>$B_{C,100}^{\text{mult}} \leq$</td>
<td>?</td>
<td>2.5118</td>
<td>4.55</td>
<td>$1.56 \cdot 10^5$</td>
<td>$7.9 \cdot 10^{14}$</td>
<td>$8.14 \cdot 10^{15}$</td>
</tr>
</tbody>
</table>
Best known estimates

The best known (upper) formulas for the case of real and complex scalars, up to now, are:

(Bayart, D.P., Seoane, Advances in Mathematics 2014.

\[
B_{\mathbb{C},m}^{\text{mult}} \leq \prod_{j=2}^{m} \Gamma \left(2 - \frac{1}{j} \right)^{\frac{j}{2-2j}}.
\]

For real scalars and \(m \geq 14, \)

\[
B_{\mathbb{R},m}^{\text{mult}} \leq 2^{\frac{446381}{55440}} - \frac{m}{2} \prod_{j=14}^{m} \left(\frac{\Gamma \left(\frac{3}{2} - \frac{1}{j} \right)}{\sqrt{\pi}} \right)^{\frac{j}{2-2j}}
\]

and

\[
B_{\mathbb{R},m}^{\text{mult}} \leq \prod_{j=2}^{m} 2^{\frac{1}{2j-2}}.
\]

for \(2 \leq m \leq 13. \)
Best known estimates

For instance, for real scalars,

\[B_{\mathbb{R},10}^{\text{mult}} \leq 2.6656 \]

\[B_{\mathbb{R},100}^{\text{mult}} \leq 6.1493 \]
In 2012, A. Montanaro, from the Centre for Quantum Information and Foundations, Cambridge University, has used our new estimates for the BH constants (case of real scalars) in Quantum Information Theory:

.....In 2012, A. Montanaro, from the Centre for Quantum Information and Foundations, Cambridge University, has used our new estimates for the BH constants (case of real scalars) in Quantum Information Theory:

In Montanaro´s terminology, our result is:

\[
\beta(G) = \Omega\left(k - \frac{3}{2}n - \left(k - 1\right)^2\right).
\]
In 2012, A. Montanaro, from the Centre for Quantum Information and Foundations, Cambridge University, has used our new estimates for the BH constants (case of real scalars) in Quantum Information Theory:

In Montanaro’s terminology, our result is:

Theorem. Let G be a k-player XOR game with n possible inputs per player. Then

$$\beta(G) = \Omega \left(k^{\frac{3}{2}} n^{\frac{-(k-1)}{2}} \right).$$
In 2012, A. Montanaro, from the Centre for Quantum Information and Foundations, Cambridge University, has used our new estimates for the BH constants (case of real scalars) in Quantum Information Theory:

In Montanaro’s terminology, our result is:

Theorem. Let G be a k-player XOR game with n possible inputs per player. Then

$$\beta(G) = \Omega \left(k^{3/2} n^{-(k-1)/2} \right).$$

Please do not ask me what does it mean!
Lower estimates for BH multilinear constants: real case

...if we look for lower estimates then, by finding adequate n-linear forms, as we will see next, we get lower bounds for the BH constants (case of real scalars):

$$\sqrt{2} \leq B_{\text{mult}}^{R,2},$$
$$1.587 \leq B_{\text{mult}}^{R,3},$$
$$1.6818 \leq B_{\text{mult}}^{R,4},$$
$$1.741 \leq B_{\text{mult}}^{R,5},$$
$$2.1^{n-1} \leq B_{\text{mult}}^{R,n},$$

Lower estimates for BH multilinear constants: real case

...if we look for lower estimates then, by finding adequate \(n \)-linear forms, as we will see next, we get lower bounds for the BH constants (case of real scalars):

\[
\sqrt{2} \leq B_{\text{mult}, 2}, \quad \sqrt{2} \leq 1.587, \quad 1.681 \leq B_{\text{mult}, 3}, \quad 1.8877 \geq 1.741, \\
2^{\frac{-1}{n}} \leq B_{\text{mult}, n} \leq 2^{44638155440}, \quad \prod_{j=1}^{14} \left(\Gamma \left(\frac{3}{2} - \frac{1}{j} \right) \right)^{-1/2} < 1.3^{0.36482}.
\]

for \(m \geq 14 \). This last expression is dominated by (D. Diniz, G. Munoz, D.P, J. Seoane, Proc. Amer. Math. Soc., to appear)
...if we look for lower estimates then, by finding adequate n-linear forms, as we will see next, we get lower bounds for the BH constants (case of real scalars):

\[
\begin{align*}
\sqrt{2} & \leq B_{\mathbb{R},2}^{\text{mult}} \leq \sqrt{2} \\
1.587 & \leq B_{\mathbb{R},3}^{\text{mult}} \leq 1.6818 \\
1.681 & \leq B_{\mathbb{R},4}^{\text{mult}} \leq 1.8877 \\
1.741 & \leq B_{\mathbb{R},5}^{\text{mult}} \leq 2.0586 \\
2^{1 - \frac{1}{n}} & \leq B_{\mathbb{R},n}^{\text{mult}} \leq 2^{\frac{446381}{55440}} - \frac{m}{2} \prod_{j=14}^{m} \left(\frac{\Gamma\left(\frac{3}{2} - \frac{1}{j}\right)}{\sqrt{\pi}} \right)^{\frac{j}{2 - 2j}} < 1.3m^{0.36482}. \\
\end{align*}
\]

How did we get these lower bounds?

Let $T_2 : \ell_2 \times \ell_2 \rightarrow \mathbb{R}$ be defined by $T_2(x,y) = x_1y_1 + x_1y_2 + x_2y_1 - x_2y_2$. Since the norm of T_2 is 2, from $(\sum |T_2(e_i,e_j)|^4)^{1/4} \leq B_{\text{mult} R,2} \|T_2\|$ we get $B_{\text{mult} R,2} \geq 2^{1/2} - 1/2 = \sqrt{2}$.

Daniel Pellegrino
On the real polynomial Bohnenblust–Hille inequality
How did we get these lower bounds?

Case $m = 2$:

Let

$$T_2 : \ell_2^2 \times \ell_2^2 \to \mathbb{R}$$

be defined by

$$T_2(x, y) = x_1 y_1 + x_1 y_2 + x_2 y_1 - x_2 y_2.$$
How did we get these lower bounds?

Case $m = 2$:

Let

$$T_2 : \ell_\infty^2 \times \ell_\infty^2 \to \mathbb{R}$$

be defined by

$$T_2(x, y) = x_1 y_1 + x_1 y_2 + x_2 y_1 - x_2 y_2.$$

Since the norm of T_2 is 2, from

$$\left(\sum_{i,j} |T_2(e_i, e_j)|^{\frac{4}{3}} \right)^{\frac{3}{4}} \leq B_{\mathbb{R},2}^{\text{mult}} \|T_2\|$$
How did we get these lower bounds?

Case $m = 2$:

Let

$$T_2 : \ell^2_\infty \times \ell^2_\infty \rightarrow \mathbb{R}$$

be defined by

$$T_2(x, y) = x_1 y_1 + x_1 y_2 + x_2 y_1 - x_2 y_2.$$

Since the norm of T_2 is 2, from

$$\left(\sum_{i,j} \left| T_2(e_i, e_j) \right|^4 \right)^{\frac{3}{4}} \leq B_{\mathbb{R},2}^{\text{mult}} \| T_2 \|$$

we get

$$B_{\mathbb{R},2}^{\text{mult}} \geq 2^{1-\frac{1}{2}} = \sqrt{2}$$
Case $m = 3$:
Case $m = 3$:

Consider $T_3 : \ell_\infty^4 \times \ell_\infty^4 \times \ell_\infty^4 \to \mathbb{R}$ given by

$$T_3(x, y, z) =$$

$$(z_1+z_2)(x_1y_1 + x_1y_2 + x_2y_1 - x_2y_2) + (z_1-z_2)(x_3y_3 + x_3y_4 + x_4y_3 - x_4y_4).$$
Case $m = 3$:

Consider $T_3 : \ell_\infty^4 \times \ell_\infty^4 \times \ell_\infty^4 \rightarrow \mathbb{R}$ given by

$$T_3(x, y, z) = (z_1 + z_2)(x_1 y_1 + x_1 y_2 + x_2 y_1 - x_2 y_2) + (z_1 - z_2)(x_3 y_3 + x_3 y_4 + x_4 y_3 - x_4 y_4).$$

Since $\|T_3\| = 4$ and

$$\left(\sum_{i,j,k} |T_3(e_i, e_j, e_k)|^{\frac{3}{2}} \right)^{\frac{2}{3}} \leq B_{\mathbb{R}, 3}^{\text{mult}} \|T_3\|$$
Case $m = 3$:

Consider $T_3 : \ell^4_\infty \times \ell^4_\infty \times \ell^4_\infty \rightarrow \mathbb{R}$ given by

$$T_3(x, y, z) = (z_1+z_2)(x_1y_1 + x_1y_2 + x_2y_1 - x_2y_2) + (z_1-z_2)(x_3y_3 + x_3y_4 + x_4y_3 - x_4y_4).$$

Since $\|T_3\| = 4$ and

$$\left(\sum_{i,j,k} |T_3(e_i, e_j, e_k)|^{\frac{3}{2}} \right)^{\frac{2}{3}} \leq B_{\mathbb{R}, 3}^{\text{mult}} \|T_3\|$$

we get

$$B_{\mathbb{R}, 3}^{\text{mult}} \geq 2^{1-\frac{1}{3}}$$
Using an induction argument, we obtain

\[B_{\mathbb{R}, n}^{\text{mult}} \geq 2^{1 - \frac{1}{n}} \]
Using an induction argument, we obtain

\[B_{\mathbb{R}, n}^{\text{mult}} \geq 2^{1 - \frac{1}{n}} \]

This procedure is useless for the complex case....
The polynomial Bohnenblust–Hille inequality: estimates for the constants
Bohnenblust and Hille (Annals, 1931):

\[B_{\mathbb{C}, m}^{\text{pol}} \leq \left(\sqrt{2} \right)^{m-1} \frac{m^m (m+1)^{m+1}}{2^m (m!)^{m+1/2m}} \]
The polynomial Bohnenblust–Hille inequality: estimates for the constants

Bohnenblust and Hille (Annals, 1931):

\[B_{\mathbb{C},m}^{\text{pol}} \leq \left(\sqrt{2} \right)^{m-1} \frac{m^{m} (m + 1)^{m+1}}{2^m (m!)^{m+1/2m}} \]

Defant et al (Annals, 2011):

Daniel Pellegrino
On the real polynomial Bohnenblust–Hille inequality
The polynomial Bohnenblust–Hille inequality: estimates for the constants

Bohnenblust and Hille (Annals, 1931):

\[B_{\mathbb{C},m}^{\text{pol}} \leq \left(\sqrt{2} \right)^{m-1} \frac{m^m (m+1)^{m+1}}{2^m (m!)^{m+1}/2m} \]

Defant et al (Annals, 2011): The polynomial BH inequality is hypercontractive.

\[B_{\mathbb{C},m}^{\text{pol}} \leq \left(1 + \frac{1}{m-1} \right)^{m-1} \sqrt{m} (\sqrt{2})^{m-1} \]
The polynomial Bohnenblust–Hille inequality: estimates for the constants

Bohnenblust and Hille (Annals, 1931):

\[
B_{\mathbb{C},m}^{\text{pol}} \leq \left(\sqrt{2} \right)^{m-1} \frac{m^{m/2} (m + 1)^{m+1/2}}{2^m (m!)^{m+1/2m}}
\]

Defant et al (Annals, 2011): The polynomial BH inequality is hypercontractive.

\[
B_{\mathbb{C},m}^{\text{pol}} \leq \left(1 + \frac{1}{m - 1} \right)^{m-1} \sqrt{m} (\sqrt{2})^{m-1}
\]

Bayart, D.P and Seoane (Advances in Math 2014): For any \(\varepsilon > 0 \), there is a \(N \) such that, for any \(m \geq N \),

\[
B_{\mathbb{C},m}^{\text{pol}} \leq (1 + \varepsilon)^m.
\]
Application: the Bohr radius problem

The Bohr radius K_n of the n-dimensional polydisk is the largest positive number r such that all polynomials $\sum \alpha a_\alpha z^\alpha$ on \mathbb{C}^n satisfy

$$\sup_{z \in rD^n} \left| \sum \alpha a_\alpha z^\alpha \right| \leq \sup_{z \in D^n} \left| \left| \sum \alpha a_\alpha z^\alpha \right| \right|,$$

with $D_n = \{(z_1, \ldots, z_n) : \max |z_j| < 1 \text{ for all } j\}$.

The Bohr radius K_1 was studied and estimated by H. Bohr himself, and it was shown independently by M. Riesz, I. Schur and F. Wiener that $K_1 = \frac{1}{3}$. For $n \geq 2$, exact values of K_n are unknown.
The Bohr radius K_n of the n-dimensional polydisk is the largest positive number r such that all polynomials $\sum_\alpha a_\alpha z^\alpha$ on \mathbb{C}^n satisfy

$$\sup_{z \in r\mathbb{D}^n} \left| \sum_\alpha a_\alpha z^\alpha \right| \leq \sup_{z \in \mathbb{D}^n} \left| \sum_\alpha a_\alpha z^\alpha \right|,$$

with

$$\mathbb{D}^n = \{(z_1, \ldots, z_n) : \max |z_j| < 1 \text{ for all } j \}.$$
The Bohr radius K_n of the n-dimensional polydisk is the largest positive number r such that all polynomials $\sum_\alpha a_\alpha z^\alpha$ on \mathbb{C}^n satisfy

$$\sup_{z \in r\mathbb{D}^n} \left| \sum_\alpha |a_\alpha z^\alpha| \right| \leq \sup_{z \in \mathbb{D}^n} \left| \sum_\alpha a_\alpha z^\alpha \right|,$$

with

$$\mathbb{D}^n = \{(z_1, \ldots, z_n) : \max |z_j| < 1 \text{ for all } j\}.$$

The Bohr radius K_1 was studied and estimated by H. Bohr himself, and it was shown independently by M. Riesz, I. Schur and F. Wiener that $K_1 = 1/3$. For $n \geq 2$, exact values of K_n are unknown.
Our subexponential estimate for the constants of the complex BH inequality was the key for the solution of the Bohr radius problem:

\[\lim_{m \to \infty} K_m \sqrt{\ln m} = 1. \]

This finishes a problem that numerous researchers have been chipping away at for more than fifteen years.
Application: the Bohr radius problem

Our subexponential estimate for the constants of the complex BH inequality was the key for the solution of the Bohr radius problem:

\[
\lim_{m \to \infty} K_m \sqrt{\ln m} = 1.
\]

This finishes a problem that numerous researchers have been chipping away at for more than fifteen years.
Application: the Bohr radius problem

Our subexponential estimate for the constants of the complex BH inequality was the key for the solution of the Bohr radius problem:

Theorem (Bayart, D.P, Seoane)

\[
\lim_{m \rightarrow \infty} \frac{K_m}{\sqrt{\ln m / m}} = 1.
\]

This finishes a problem that numerous researchers have been chipping away at for more than fifteen years.
Next result shows that real scalars behaves differently from real scalars:
Next result shows that real scalars behave differently from real scalars:

Theorem (Campos, Jimenez, Munoz, D.P and Seoane)

\[
B_{R,m}^{\text{pol}} > \left(\frac{2^{\sqrt{3}}}{\sqrt{5}}\right)^m > (1.17)^m
\]

for all positive integers \(m > 1 \).*
Let m be an even integer. Consider the m-homogeneous polynomial

$$R_m(x_1, \ldots, x_m) = (x_1^2 - x_2^2 + x_1x_2) (x_3^2 - x_4^2 + x_3x_4) \cdots (x_{m-1}^2 - x_m^2 + x_{m-1}x_m).$$

Since $\|R_2\| = 5/4$, it is simple to see that

$$\|R_m\| = (5/4)^{m/2}.$$

From the BH inequality for R_m we have

$$\left(\sum_{|\alpha|=m} a_\alpha^{\frac{2m}{m+1}} \right)^{\frac{m+1}{2m}} \leq D_{\mathbb{R},m} \|R_m\|,$$

that is,

$$D_{\mathbb{R},m} \geq \frac{\left(\frac{3}{2} \right)^{\frac{m+1}{2m}}}{\left(\frac{5}{4} \right)^{\frac{m}{2}}} \geq \frac{\left(\sqrt{3} \right)^{\frac{m+1}{2}}}{\left(\frac{5}{4} \right)^{\frac{m}{2}}} > \left(\frac{2 \sqrt[4]{3}}{\sqrt{5}} \right)^m.$$
Proof

The case m is odd is similar. Keeping the previous notation, consider the m homogeneous polynomial

$$R_m(x_1, \ldots, x_{2m})$$

$$= (x_{2m} + x_{2m-1}) R_{m-1}(x_1, \ldots, x_{m-1}) + (x_{2m} - x_{2m-1}) R_{m-1}(x_m, \ldots, x_{2m-2})$$

and we get the same estimate.
The case of real scalars

In fact we have

Theorem (Campos, Jimenez, Munoz, D.P, Seoane)

$$\limsup_{m} \left(B_{\mathbb{R},m}^{pol} \right)^{1/m} = 2.$$
If $P : l_\infty (\mathbb{R}) \to \mathbb{R}$ is an m-homogeneous polynomial, by a result of Visser if we consider the same polynomial $P_{\mathbb{C}} : l_\infty (\mathbb{C}) \to \mathbb{C}$ we have

$$\|P_{\mathbb{C}}\| \leq 2^m - 1 \|P\|.$$
If \(P : l_\infty(\mathbb{R}) \to \mathbb{R} \) is an \(m \)-homogeneous polynomial, by a result of Visser if we consider the same polynomial \(P_\mathbb{C} : l_\infty(\mathbb{C}) \to \mathbb{C} \) we have

\[
\|P_\mathbb{C}\| \leq 2^{m-1} \|P\|.
\]
Proof

If $P : l_\infty(\mathbb{R}) \to \mathbb{R}$ is an m-homogeneous polynomial, by a result of Visser if we consider the same polynomial $P_\mathbb{C} : l_\infty(\mathbb{C}) \to \mathbb{C}$ we have

$$\|P_\mathbb{C}\| \leq 2^{m-1} \|P\|.$$

So, for a real polynomial $P : l_\infty(\mathbb{R}) \to \mathbb{R}$ given by $P = \sum a_\alpha z^\alpha$, we consider $P_\mathbb{C}$ and we easily get from our estimate for complex scalars (and big m),

$$\left(\sum_{|\alpha|=m} |a_\alpha| \frac{2^m}{m+1} \right)^{m+1} \leq (1 + \varepsilon)^m \|P_\mathbb{C}\| \leq (1 + \varepsilon)^m 2^{m-1} \|P\| \leq (2 + \delta)^m \|P\|$$

and we conclude that

$$\lim \sup_m \left(B_{m, pol}^{\text{pol}} \right)^{1/m} \leq 2.$$
Proof

The other inequality is a little bit more technical.
This talk contains results from the following papers:

- F. Bayart, D. Pellegrino, J. Seoane, The Bohr radius of the n-dimensional polydisk is equivalent to $\sqrt{\log n/n}$, Advances in Math 2014.
- D. Nuñez, D. Pellegrino and J.B. Seoane, D. M. Serrano-Rodriguez, There exist multilinear Bohnenblust-Hille constants $(C_n)_{n=1}^{\infty}$ with $\lim_{n \to \infty} (C_{n+1} - C_n) = 0$, J. Functional Analysis (2013).

Daniel Pellegrino

On the real polynomial Bohnenblust–Hille inequality
References

This talk contains results from the following papers:

- F. Bayart, D. Pellegrino, J. Seoane, The Bohr radius of the n-dimensional polydisk is equivalent to $\sqrt{(\log n)/n}$, Advances in Math 2014.
This talk contains results from the following papers:

- F. Bayart, D. Pellegrino, J. Seoane, **The Bohr radius of the n-dimensional polydisk is equivalent to $\sqrt{(\log n)/n}$**, Advances in Math 2014.

This talk contains results from the following papers:

This talk contains results from the following papers:

References

This talk contains results from the following papers:

- F. Bayart, D. Pellegrino, J. Seoane, *The Bohr radius of the n-dimensional polydisk is equivalent to $\sqrt{\log n}/n$, Advances in Math 2014.*

- D. Nuñez, D. Pellegrino and J.B. Seoane, D. M. Serrano-Rodriguez, *There exist multilinear Bohnenblust-Hille constants $(C_n)_{n=1}^\infty$ with $\lim_{n \to \infty} (C_{n+1} - C_n) = 0$, J. Functional Analysis (2013).*
This talk contains results from the following papers:

- F. Bayart, D. Pellegrino, J. Seoane, *The Bohr radius of the \(n \)-dimensional polydisk is equivalent to \(\sqrt{(\log n)/n} \),* Advances in Math 2014.

- D. Nuñez, D. Pellegrino and J.B. Seoane, D. M. Serrano-Rodriguez, *There exist multilinear Bohnenblust-Hille constants \((C_n)_{n=1}^{\infty} \) with \(\lim_{n \to \infty} (C_{n+1} - C_n) = 0 \),* J. Functional Analysis (2013).

...and preprints: