The elusive geometry of the Banach space ℓ_∞/c_0

Piotr Koszmider

IM PAN, Warsaw
Banach spaces and topological preliminaries

\[\ell_\infty = \{ (a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ bounded} \} \equiv C(\beta \mathbb{N}), \text{ sup norm} \]

\[c_0 = \{ (a_n)_{n \in \mathbb{N}} \in \ell_\infty : \lim_{n \to \infty} a_n = 0 \} \equiv \{ f \in C(\beta \mathbb{N}) : f \upharpoonright (\beta \mathbb{N} \setminus \mathbb{N}) = 0 \}, \text{ sup norm} \]

\[\mathbb{N}^* = \beta \mathbb{N} \setminus \mathbb{N} \]

\[\ell_\infty / c_0 \equiv C(\mathbb{N}^*) \]

\[\text{Clop}(\beta \mathbb{N}) \equiv \mathcal{P}(\mathbb{N}) \]

\[\text{Clop}(\mathbb{N}^*) \equiv \mathcal{P}(\mathbb{N}) / \text{Fin} \]
1. \(\ell_\infty = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ bounded}\} \equiv C(\beta \mathbb{N}), \text{ sup norm} \)
$\ell_\infty = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ bounded}\} \equiv C(\beta \mathbb{N}), \sup \text{ norm}$

$c_0 = \{(a_n)_{n \in \mathbb{N}} \in \ell_\infty : \lim_{n \to \infty} a_n = 0\} \equiv$
$\ell_\infty = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ bounded}\} \equiv C(\beta \mathbb{N}), \text{ sup norm}$

$c_0 = \{(a_n)_{n \in \mathbb{N}} \in \ell_\infty : \lim_{n \to \infty} a_n = 0\} \equiv$

$\equiv \{f \in C(\beta \mathbb{N}) : f \upharpoonright (\beta \mathbb{N} \setminus \mathbb{N}) = 0\}, \text{ sup norm}$
1. $\ell_\infty = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ bounded}\} \equiv C(\beta \mathbb{N})$, sup norm

2. $c_0 = \{(a_n)_{n \in \mathbb{N}} \in \ell_\infty : \lim_{n \to \infty} a_n = 0\} \equiv$

3. $\equiv \{f \in C(\beta \mathbb{N}) : f \upharpoonright (\beta \mathbb{N} \setminus \mathbb{N}) = 0\}$, sup norm

4. $\mathcal{N}^* = \beta \mathbb{N} \setminus \mathbb{N}$
1. $\ell_\infty = \{(a_n)_{n\in\mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n\in\mathbb{N}} \text{ bounded}\} \equiv C(\beta\mathbb{N}), \text{ sup norm}$

2. $c_0 = \{(a_n)_{n\in\mathbb{N}} \in \ell_\infty : \lim_{n \to \infty} a_n = 0\} \equiv \{(f)_{f \in C(\beta\mathbb{N}) : f \upharpoonright (\beta\mathbb{N} \setminus \mathbb{N}) = 0}, \text{ sup norm}\}$

3. $\mathcal{N}^* = \beta\mathbb{N} \setminus \mathbb{N}$

4. $\ell_\infty / c_0 \equiv C(\mathbb{N}^*)$
Banach spaces and topological preliminaries

1. \(\ell_\infty = \{ (a_n)_{n\in\mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n\in\mathbb{N}} \text{ bounded} \} \equiv C(\beta\mathbb{N}), \) sup norm

2. \(c_0 = \{ (a_n)_{n\in\mathbb{N}} \in \ell_\infty : \lim_{n\to\infty} a_n = 0 \} \equiv \mathbb{N}^* = \beta\mathbb{N} \setminus \mathbb{N} \)

3. \(\equiv \{ f \in C(\beta\mathbb{N}) : f \upharpoonright (\beta\mathbb{N} \setminus \mathbb{N}) = 0 \}, \) sup norm

4. \(\ell_\infty / c_0 \equiv C(\mathbb{N}^*) \)

5. \(Clop(\beta\mathbb{N}) \equiv \wp(\mathbb{N}) \)
$\ell_\infty = \{(a_n)_{n\in\mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n\in\mathbb{N}} \text{ bounded}\} \equiv C(\beta\mathbb{N})$, sup norm
$c_0 = \{(a_n)_{n\in\mathbb{N}} \in \ell_\infty : \lim_{n\to\infty} a_n = 0\} \equiv \\\equiv \{f \in C(\beta\mathbb{N}) : f \upharpoonright (\beta\mathbb{N} \setminus \mathbb{N}) = 0\}$, sup norm
$N^* = \beta\mathbb{N} \setminus \mathbb{N}$
$\ell_\infty/c_0 \equiv C(N^*)$
$\text{Clop}(\beta\mathbb{N}) \equiv \wp(\mathbb{N})$
$\text{Clop}(N^*) \equiv \wp(\mathbb{N})/\text{Fin}$
Banach spaces and topological preliminaries

1. \(\ell_\infty = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ bounded}\} \equiv C(\beta \mathbb{N}), \text{ sup norm} \)

2. \(c_0 = \{(a_n)_{n \in \mathbb{N}} \in \ell_\infty : \lim_{n \to \infty} a_n = 0\} \equiv \)

3. \(\equiv \{f \in C(\beta \mathbb{N}) : f \upharpoonright (\beta \mathbb{N} \setminus \mathbb{N}) = 0\}, \text{ sup norm} \)

4. \(N^* = \beta \mathbb{N} \setminus \mathbb{N} \)

5. \(\ell_\infty / c_0 \equiv C(\mathbb{N}^*) \)

6. \(Clop(\beta \mathbb{N}) \equiv \wp(\mathbb{N}) \)

7. \(Clop(\mathbb{N}^*) \equiv \wp(\mathbb{N}) / \text{Fin} \)
$\ell_\infty = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ bounded}\} \equiv C(\beta \mathbb{N})$, sup norm

$c_0 = \{(a_n)_{n \in \mathbb{N}} \in \ell_\infty : \lim_{n \to \infty} a_n = 0\} \equiv \{f \in C(\beta \mathbb{N}) : f \upharpoonright (\beta \mathbb{N} \setminus \mathbb{N}) = 0\}$, sup norm

$N^* = \beta \mathbb{N} \setminus \mathbb{N}$

$\ell_\infty / c_0 \equiv C(N^*)$

$Clop(\beta \mathbb{N}) \equiv \emptyset(\mathbb{N})$

$Clop(N^*) \equiv \emptyset(\mathbb{N}) / \text{Fin}$
Set-theoretic and logical preliminaries

CH = “All infinite subsets of \mathbb{R} have the cardinality of \mathbb{R} or the cardinality of \mathbb{N}.”

There is a well ordering of ℓ_∞/c_0 which has all proper initial segments countable.

(2) is useful for transfinite inductive construction of length $|\ell_\infty/c_0| = |\mathcal{P}(\mathbb{N})| = |\mathbb{R}| = \omega_1$

Alternative axioms: MA+not CH, OCA, PFA.

Vocabulary: in ZFC, consistent, cannot be proved.
CH = "All infinite subsets of \mathbb{R} have the cardinality of \mathbb{R} or the cardinality of \mathbb{N}",

Alternative axioms: MA+not CH, OCA, PFA.
CH = ”All infinite subsets of \mathbb{R} have the cardinality of \mathbb{R} or the cardinality of \mathbb{N}”,

There is a well ordering of ℓ_∞ / c_0 which has all proper initial segments countable,
1. CH = "All infinite subsets of \mathbb{R} have the cardinality of \mathbb{R} or the cardinality of \mathbb{N}",

2. There is a well ordering of ℓ_∞/c_0 which has all proper initial segments countable,

3. (2) is useful for transfinite inductive construction of length

$$|\ell_\infty/c_0| = |\wp(\mathbb{N})| = |\mathbb{R}| = \omega_1$$
CH = "All infinite subsets of \mathbb{R} have the cardinality of \mathbb{R} or the cardinality of \mathbb{N}",

There is a well ordering of ℓ_∞/c_0 which has all proper initial segments countable,

(2) is useful for transfinite inductive construction of length $|\ell_\infty/c_0| = |\wp(\mathbb{N})| = |\mathbb{R}| = \omega_1$

Alternative axioms: MA+not CH, OCA, PFA.
1. CH = ”All infinite subsets of \mathbb{R} have the cardinality of \mathbb{R} or the cardinality of \mathbb{N}”,

2. There is a well ordering of ℓ_∞/c_0 which has all proper initial segments countable,

3. (2) is useful for transfinite inductive construction of length $|\ell_\infty/c_0| = |\wp(\mathbb{N})| = |\mathbb{R}| = \omega_1$,

4. Alternative axioms: MA+not CH, OCA, PFA.

5. Vocabulary: in ZFC, consistent, cannot be proved
1. CH = ”All infinite subsets of \mathbb{R} have the cardinality of \mathbb{R} or the cardinality of \mathbb{N}”,

2. There is a well ordering of ℓ_∞/c_0 which has all proper initial segments countable,

3. (2) is useful for transfinite inductive construction of length $|\ell_\infty/c_0| = |\wp(\mathbb{N})| = |\mathbb{R}| = \omega_1$

4. Alternative axioms: MA+not CH, OCA, PFA.

5. Vocabulary: in ZFC, consistent, cannot be proved
1. CH = "All infinite subsets of \mathbb{R} have the cardinality of \mathbb{R} or the cardinality of \mathbb{N}",

2. There is a well ordering of ℓ_∞ / c_0 which has all proper initial segments countable,

3. (2) is useful for transfinite inductive construction of length $|\ell_\infty / c_0| = |\wp(\mathbb{N})| = |\mathbb{R}| = \omega_1$

4. Alternative axioms: MA+not CH, OCA, PFA.

5. Vocabulary: in ZFC, consistent, cannot be proved
Outline of the talk

1. The universality of ℓ_∞/c_0
2. Complemented subspaces of ℓ_∞/c_0
3. Complemented copies of ℓ_∞/c_0 in ℓ_∞/c_0
4. Infinite decompositions of ℓ_∞/c_0
5. The primaryness of ℓ_∞/c_0
6. Automorphisms of ℓ_∞/c_0

Piotr Koszmider (IM PAN, Warsaw)
Outline of the talk

1. The universality of ℓ_∞/c_0
Outline of the talk

1. The universality of ℓ_∞/c_0
2. Complemented subspaces of ℓ_∞/c_0
Outline of the talk

1. The universality of ℓ_∞/c_0
2. Complemented subspaces of ℓ_∞/c_0
3. Complemented copies of ℓ_∞/c_0 in ℓ_∞/c_0

Piotr Koszmider (IM PAN, Warsaw)
Geometry of ℓ_∞/c_0
BWB, Maresias, 25-08-2014
1. The universality of ℓ_∞/c_0
2. Complemented subspaces of ℓ_∞/c_0
3. Complemented copies of ℓ_∞/c_0 in ℓ_∞/c_0
4. Infinite decompositions of ℓ_∞/c_0
Outline of the talk

1. The universality of ℓ_∞/c_0
2. Complemented subspaces of ℓ_∞/c_0
3. Complemented copies of ℓ_∞/c_0 in ℓ_∞/c_0
4. Infinite decompositions of ℓ_∞/c_0
5. The primaryness of ℓ_∞/c_0
Outline of the talk

1. The universality of ℓ_∞/c_0
2. Complemented subspaces of ℓ_∞/c_0
3. Complemented copies of ℓ_∞/c_0 in ℓ_∞/c_0
4. Infinite decompositions of ℓ_∞/c_0
5. The primaryness of ℓ_∞/c_0
6. Automorphisms of ℓ_∞/c_0
Outline of the talk

1. The universality of ℓ_∞/c_0
2. Complemented subspaces of ℓ_∞/c_0
3. Complemented copies of ℓ_∞/c_0 in ℓ_∞/c_0
4. Infinite decompositions of ℓ_∞/c_0
5. The primaryness of ℓ_∞/c_0
6. Automorphisms of ℓ_∞/c_0
Outline of the talk

1. The universality of ℓ_∞/c_0
2. Complemented subspaces of ℓ_∞/c_0
3. Complemented copies of ℓ_∞/c_0 in ℓ_∞/c_0
4. Infinite decompositions of ℓ_∞/c_0
5. The primaryness of ℓ_∞/c_0
6. Automorphisms of ℓ_∞/c_0
Universality of ℓ_∞/c_0

For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞/c_0.

Spaces of density ω_1 which can be embedded into ℓ_∞/c_0 without using CH:

1. All Banach spaces of density ω_1.
2. c_0 (for ω_2).
3. Many other $C(K)$s.
4. $\ell_p(\omega_2)$ for $1 \leq p < \infty$.
5. Some WCG or Hilbert generated $C(K)$s consistently do not embed in ℓ_∞/c_0.
Universality of ℓ_∞/c_0

1. (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞/c_0
Universality of ℓ_∞ / c_0

1. (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞ / c_0

2. Spaces of density 2^ω which can be embedded into ℓ_∞ / c_0 without using CH:
Universality of ℓ_∞/c_0

1. (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞/c_0

2. Spaces of density 2^ω which can be embedded into ℓ_∞/c_0 without using CH:
 - all Banach spaces of density ω_1,
 - all Banach spaces of density ω_1,
 - many other $C(K)$
 - $\ell_p(2^\omega)$ for $1 \leq p < \infty$,
 - $C([0,2^\omega])$ does not embed isomorphically into ℓ_∞/c_0
 - It is consistent that there is no isomorphically universal Banach space of density 2^ω
 - Some WCG or Hilbert generated $C(K)$ consistently do not embed in ℓ_∞/c_0 (Todorcevic - JMAA 2012, Krupski, Marciszewski - Coll. M 2012, Brech, P.K. - PAMS 2013)
Universality of ℓ_∞/c_0

1. (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞/c_0

2. Spaces of density 2^ω which can be embedded into ℓ_∞/c_0 without using CH:
 - all Banach spaces of density ω_1,
 - $c_0(2^\omega)$, many other $C(K)$s
Universality of ℓ_∞ / c_0

1. (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞ / c_0

2. Spaces of density 2^ω which can be embedded into ℓ_∞ / c_0 without using CH:
 - all Banach spaces of density ω_1,
 - $c_0(2^\omega)$, many other $C(K)$s
 - $\ell_p(2^\omega)$ for $1 \leq p < \infty$,

(Piotr Koszmider (IM PAN, Warsaw) Geometry of ℓ_∞ / c_0 BWB, Maresias, 25-08-2014)
Universality of ℓ_∞/c_0

1. (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞/c_0.

2. Spaces of density 2^ω which can be embedded into ℓ_∞/c_0 without using CH:
 - all Banach spaces of density ω_1,
 - $c_0(2^\omega)$, many other $C(K)$s
 - $\ell_p(2^\omega)$ for $1 \leq p < \infty$.

3. (Brech, P.K. - IJM 2012) It is consistent that $C([0, 2^\omega])$ does not embed isomorphically into ℓ_∞/c_0.
Universality of ℓ_∞ / c_0

1. (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞ / c_0

2. Spaces of density 2^ω which can be embedded into ℓ_∞ / c_0 without using CH:
 1. all Banach spaces of density ω_1,
 2. $c_0(2^\omega)$, many other $C(K)$s
 3. $\ell_p(2^\omega)$ for $1 \leq p < \infty$,

3. (Brech, P.K. - IJM 2012) It is consistent that $C([0, 2^\omega])$ does not embed isomorphically into ℓ_∞ / c_0

4. (Brech, P.K. - IJM 2012) It is consistent that there is no isomorphically universal Banach space of density 2^ω
Universality of ℓ_∞ / c_0

1. (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞ / c_0

2. Spaces of density 2^{ω} which can be embedded into ℓ_∞ / c_0 without using CH:
 1. all Banach spaces of density ω_1,
 2. $c_0(2^{\omega})$, many other $C(K)$s
 3. $\ell_p(2^{\omega})$ for $1 \leq p < \infty$,

3. (Brech, P.K. - IJM 2012) It is consistent that $C([0, 2^{\omega}])$ does not embed isomorphically into ℓ_∞ / c_0

4. (Brech, P.K. - IJM 2012) It is consistent that there is no isomorphically universal Banach space of density 2^{ω}

5. Some WCG or Hilbert generated $C(K)$s consistently do not embed in ℓ_∞ / c_0 (Todorcevic - JMAA 2012, Krupski, Marciszewski - Coll.M 2012, Brech, P.K. - PAMS 2013)
Universality of ℓ_∞/c_0

1. (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞/c_0

2. Spaces of density 2^ω which can be embedded into ℓ_∞/c_0 without using CH:
 1. all Banach spaces of density ω_1,
 2. $c_0(2^\omega)$, many other $C(K)$s
 3. $\ell_p(2^\omega)$ for $1 \leq p < \infty$,

3. (Brech, P.K. - IJM 2012) It is consistent that $C([0, 2^\omega])$ does not embed isomorphically into ℓ_∞/c_0

4. (Brech, P.K. - IJM 2012) It is consistent that there is no isomorphically universal Banach space of density 2^ω

5. Some WCG or Hilbert generated $C(K)$s consistently do not embed in ℓ_∞/c_0 (Todorcevic - JMAA 2012, Krupski, Marciszewski - Coll.M 2012, Brech, P.K. - PAMS 2013)
Universality of ℓ_∞/c_0

1. (CH) [Esenin-Volpin, Doklady 1949] For any Banach space X of density continuum, there is an isometric embedding of X into ℓ_∞/c_0

2. Spaces of density 2^ω which can be embedded into ℓ_∞/c_0 without using CH:
 - all Banach spaces of density ω_1,
 - $c_0(2^\omega)$, many other $C(K)$s
 - $\ell_p(2^\omega)$ for $1 \leq p < \infty$,

3. (Brech, P.K. - IJM 2012) It is consistent that $C([0, 2^\omega])$ does not embed isomorphically into ℓ_∞/c_0

4. (Brech, P.K. - IJM 2012) It is consistent that there is no isomorphically universal Banach space of density 2^ω

5. Some WCG or Hilbert generated $C(K)$s consistently do not embed in ℓ_∞/c_0 (Todorcevic - JMAA 2012, Krupski, Marciszewski - Coll.M 2012, Brech, P.K. - PAMS 2013)
Complemented subspaces of ℓ_∞ / c_0

Question

Does $L_\infty ([0,1] \omega_1)$ embed into ℓ_∞ / c_0 in ZFC?
Complemented subspaces of ℓ_∞ / c_0

1. $\ell_\infty / c_0 \equiv (\ell_\infty / c_0) \oplus (\ell_\infty / c_0)$
Complemented subspaces of ℓ_∞ / c_0

1. $\ell_\infty / c_0 \equiv (\ell_\infty / c_0) \oplus (\ell_\infty / c_0)$
2. $\ell_\infty / c_0 \equiv \ell_\infty \oplus (\ell_\infty / c_0)$
Complemented subspaces of ℓ_∞ / c_0

1. $\ell_\infty / c_0 \equiv (\ell_\infty / c_0) \oplus (\ell_\infty / c_0)$
2. $\ell_\infty / c_0 \equiv \ell_\infty \oplus (\ell_\infty / c_0)$
3. (CH) $\ell_\infty / c_0 \equiv L_\infty([0, 1]^{\omega_1}) \oplus (\ell_\infty / c_0)$
Complemented subspaces of ℓ_∞ / c_0

1. $\ell_\infty / c_0 \equiv (\ell_\infty / c_0) \oplus (\ell_\infty / c_0)$
2. $\ell_\infty / c_0 \equiv \ell_\infty \oplus (\ell_\infty / c_0)$
3. (CH) $\ell_\infty / c_0 \equiv L_\infty([0, 1]^{\omega_1}) \oplus (\ell_\infty / c_0)$
Complemented subspaces of ℓ_∞/c_0

1. $\ell_\infty/c_0 \equiv (\ell_\infty/c_0) \oplus (\ell_\infty/c_0)$
2. $\ell_\infty/c_0 \equiv \ell_\infty \oplus (\ell_\infty/c_0)$
3. (CH) $\ell_\infty/c_0 \equiv L_\infty([0, 1]^{\omega_1}) \oplus (\ell_\infty/c_0)$

Question

Does $L_\infty([0, 1]^{\omega_1})$ embed into ℓ_∞/c_0 in ZFC?
Complemented subspaces of ℓ_∞/c_0

1. $\ell_\infty/c_0 \equiv (\ell_\infty/c_0) \oplus (\ell_\infty/c_0)$
2. $\ell_\infty/c_0 \equiv \ell_\infty \oplus (\ell_\infty/c_0)$
3. (CH) $\ell_\infty/c_0 \equiv L_\infty([0, 1]^{\omega_1}) \oplus (\ell_\infty/c_0)$

Question

Does $L_\infty([0, 1]^{\omega_1})$ embed into ℓ_∞/c_0 in ZFC?
Complemented copies of ℓ_∞ / c_0

Theorem (Castillo, Plichko; JFA 2010)

(CH) There are uncomplemented subspaces of ℓ_∞ / c_0 isomorphic to ℓ_∞ / c_0.

Problem

Does every subspace of ℓ_∞ / c_0 isomorphic to ℓ_∞ / c_0 contains a further subspace isomorphic to ℓ_∞ / c_0 which is complemented in the entire ℓ_∞ / c_0?

Theorem (Drewnowski, Roberts - PAMS 1991)

Whenever $\ell_\infty / c_0 = A \oplus B$, then either A or B contains a complemented copy of ℓ_∞ / c_0.

Piotr Koszmider (IM PAN, Warsaw)

Geometry of ℓ_∞ / c_0

BWB, Maresias, 25-08-2014
Theorem (Castillo, Plichko; JFA 2010)

(CH) There are uncomplemented subspaces of ℓ_∞/c_0 isomorphic to ℓ_∞/c_0.

Problem

Does every subspace of ℓ_∞/c_0 isomorphic to ℓ_∞/c_0 contains a further subspace isomorphic to ℓ_∞/c_0 which is complemented in the entire ℓ_∞/c_0?

Theorem (Drewnowski, Roberts - PAMS 1991)

Whenever $\ell_\infty/c_0 = A \oplus B$, then either A or B contains a complemented copy of ℓ_∞/c_0.

Theorem (Castillo, Plichko; JFA 2010)

(CH) There are uncomplemented subspaces of ℓ_∞ / c_0 isomorphic to ℓ_∞ / c_0.

Problem

Does every subspace of ℓ_∞ / c_0 isomorphic to ℓ_∞ / c_0 contains a further subspace isomorphic to ℓ_∞ / c_0 which is complemented in the entire ℓ_∞ / c_0?
Complemented copies of ℓ_∞/c_0

Theorem (Castillo, Plichko; JFA 2010)

(CH) There are uncomplemented subspaces of ℓ_∞/c_0 isomorphic to ℓ_∞/c_0.

Problem

Does every subspace of ℓ_∞/c_0 isomorphic to ℓ_∞/c_0 contains a further subspace isomorphic to ℓ_∞/c_0 which is complemented in the entire ℓ_∞/c_0?

Theorem (Drewnowski, Roberts - PAMS 1991)

Whenever $\ell_\infty/c_0 = A \oplus B$, then either A or B contains a complemented copy of ℓ_∞/c_0.
Complemented copies of ℓ_∞/c_0

Theorem (Castillo, Plichko; JFA 2010)

(CH) There are uncomplemented subspaces of ℓ_∞/c_0 isomorphic to ℓ_∞/c_0.

Problem

Does every subspace of ℓ_∞/c_0 isomorphic to ℓ_∞/c_0 contains a further subspace isomorphic to ℓ_∞/c_0 which is complemented in the entire ℓ_∞/c_0?

Theorem (Drewnowski, Roberts - PAMS 1991)

Whenever $\ell_\infty/c_0 = A \oplus B$, then either A or B contains a complemented copy of ℓ_∞/c_0.
Theorem

Suppose that X, Y are Banach spaces and

1. X is isomorphic to a complemented subspace of Y,
2. Y is isomorphic to a complemented subspace of X,
3. X is isomorphic to $\ell_\infty(\ell_\infty)$,

Then X and Y are isomorphic.
Theorem

Suppose that X, Y are Banach spaces and

1. X is isomorphic to a complemented subspace of Y,
2. Y is isomorphic to a complemented subspace of X,
3. X is isomorphic to $\ell_\infty(X)$,

Then X and Y are isomorphic.
ℓ_∞-sums
ℓ_∞-sums

Theorem (Negrepontis - TAMS 1969)

(CH)

$$\ell_\infty/c_0 \sim \ell_\infty(\ell_\infty/c_0).$$
\(\ell_\infty\)-sums

Theorem (Negrepontis - TAMS 1969)

(CH)

\[\ell_\infty/c_0 \sim \ell_\infty(\ell_\infty/c_0). \]

Theorem (Brech, P.K. - Fund. M. 2014)

*It is consistent that \(\ell_\infty/c_0 \) is not isomorphic to any Banach space of the form \(\ell_\infty(X) \)
ℓ_∞-sums

Theorem (Negrepontis - TAMS 1969)

(CH)

$$\ell_\infty / c_0 \sim \ell_\infty (\ell_\infty / c_0).$$

Theorem (Brech, P.K. - Fund. M. 2014)

It is consistent that ℓ_∞ / c_0 is not isomorphic to any Banach space of the form $\ell_\infty (X)$
The primariness of ℓ_∞ / c_0

Theorem (Drewnowski, Roberts - PAMS 1991)

(\text{CH}) Whenever $\ell_\infty / c_0 = X \oplus Y$, then either X or Y is isomorphic to ℓ_∞ / c_0.

Question

Is ℓ_∞ / c_0 primary in ZFC?

It is consistent that there are two disjoint open subsets $U, V \subseteq \mathbb{N}^*$ with $U \cap V = \{x\}$ for some $x \in \mathbb{N}^*$ and neither U nor V is homeomorphic to \mathbb{N}^*.
The primariness of ℓ_∞/c_0

Theorem (Drewnowski, Roberts - PAMS 1991)

(CH) Whenever $\ell_\infty/c_0 = X \oplus Y$, then either X or Y is isomorphic to ℓ_∞/c_0.

Is ℓ_∞/c_0 primary in ZFC?
The primariness of ℓ_∞ / c_0

Theorem (Drewnowski, Roberts - PAMS 1991)

(CH) Whenever $\ell_\infty / c_0 = X \oplus Y$, then either X or Y is isomorphic to ℓ_∞ / c_0.

Question

Is ℓ_∞ / c_0 primary in ZFC?
The primariness of ℓ_∞/c_0

Theorem (Drewnowski, Roberts - PAMS 1991)

(CH) Whenever $\ell_\infty/c_0 = X \oplus Y$, then either X or Y is isomorphic to ℓ_∞/c_0.

Question

Is ℓ_∞/c_0 primary in ZFC?

It is consistent that there are two disjoint open subsets $U, V \subseteq N^*$ with $\overline{U} \cap \overline{V} = \{x\}$ for some $x \in N^*$ and neither \overline{U} nor \overline{V} is homeomorphic to N^*.
There is an automorphism of ℓ_∞/c_0 which is not induced by an operator on ℓ_∞. We develop local canonization of some automorphisms under $\text{OCA} + \text{MA}$.
Automorphisms

Joint work in preparation with Cristóbal Rodriguez Porras
There is an automorphism of ℓ_∞/c_0 which is not induced by an operator on ℓ_∞.

Joint work in preparation with Cristóbal Rodriguez Porras
There is an automorphism of ℓ_∞/c_0 which is not induced by an operator on ℓ_∞

We develop local canonization of some automorphisms under OCA+MA

Joint work in preparation with Cristóbal Rodríguez Porras
Automorphisms

Joint work in preparation with Cristóbal Rodriguez Porras

1. There is an automorphism of ℓ_∞ / c_0 which is not induced by an operator on ℓ_∞

2. We develop local canonization of some automorphisms under OCA+MA
Automorphisms

Joint work in preparation with Cristóbal Rodriguez Porras

1. There is an automorphism of ℓ_∞/c_0 which is not induced by an operator on ℓ_∞.

2. We develop local canonization of some automorphisms under OCA+MA.
Some references:

