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Relationship between the existence of non trivial real valued
smooth functions on a separable Banach space X and the
geometry of X.

Theorem. Let X be a sepable Banach space. TFAE :
(1) There exists on X an equivalent norm diff. on X\{0}.

(2) There exists a Cl-smooth function b : X — R with boun-
ded non empty support.

(3) X* is separable.

Definition. X,Y Banach spaces. A function f : X — Y is

G-differentiable at z € X if 3f/(2) € L(X,Y) such that for

each h € X, y_r)r(\) f(‘”"'t%)_f(w) = f'(z)h.

Theorem. Let X be a sepable Banach space.
(1) There exists on X an equivalent norm G-diff. on X\{0}.

(2) There exists a G-diff. function b : X — R with bounded
non empty support.



Theorem [Azagra-Deuville]. If X is an infinite dimensional
Banach space with separable dual, there exists a Cl-smooth

real valued function on X with bounded support and such that
fI(X) = X*.
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real valued function on X with bounded support and such that
fI(X) = X*.

Theorem [Azagra,Deville and Jimenez-Sevilla]. Let X, Y
be separable Banach spaces such that dim(X) = oo. Then
there exists f : X — Y Gateaux-differentiable, such that
(X)) = L(X,Y).

Moreover, if L(X,Y) is separable, f can be chosen Fréchet-
differentiable.



Theorem [Azagra-Deuville]. If X is an infinite dimensional
Banach space with separable dual, there exists a Cl-smooth
real valued function on X with bounded support and such that
fI(X) = X*.

Theorem [Azagra,Deville and Jimenez-Sevilla]. Let X, Y
be separable Banach spaces such that dim(X) = oo. Then
there exists f : X — Y Gateaux-differentiable, such that
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differentiable.

Theorem [Hajek]. If f is a function on ¢g with locally uni-
formly continuous derivative, then f’(cg) is included in a coun-
table union of norm compact subsets of 28



Problem : Let X,Y be separable Banach spaces such that
dim(X)>1, f: X — Y differentiable at every point of X.

What is the structure of
F(X) ={f(@)zex}cLx,y)?

Is f/(X) connected ?



Problem : Let X,Y be separable Banach spaces such that
dim(X)>1, f: X — Y differentiable at every point of X.
What is the structure of

F(X) ={f(@)zex}cLx,y)?
Is f/(X) connected ?

Theorem : (Maly 96) : If X is a Banach space and  : X — IR
is Fréchet-differentiable at every point, then the set f'(X) is
connected in (X*,|.]]).

Let f: IR? — IR?, defined by :

flx,y) = (CEQ\/@COS 1/:133,332\/§Sin 1/x3)

if (z,y) # (0,0) and £(0,0) = (0,0).
{det(f’(:z:)); x € IRQ} = {0,3/2} = f/(IR?) not connected.
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F(X) ={f(@)zex}cLx,y)?
Is f/(X) connected ?

Theorem : (Maly 96) : If X is a Banach space and  : X — IR
is Fréchet-differentiable at every point, then the set f'(X) is
connected in (X*,|.]]).

Let f: IR? — IR?, defined by :

flx,y) = (xz\/@COS 1/:133,332\/§Sin 1/x3)

if (x,y) # (0,0) and f(0,0) = (0,0).
{det(f’(:z:)); T € IRQ} = {0,3/2} = f/(IR?) is not connected.

Theorem : (T. Matrai) : Let X be a separable Banach space,
and let f be a real valued locally Lipschitz and Gateaux-
differentiable function on X. Then f'(X) is connected in (X*, w*).



Proposition 1 : If f is a continuous and Gateaux-differentiable
bump function on X, then the norm closure of f'(X) contains
a ball B(r) for some r > 0.



Proposition 1 : If f is a continuous and Gateaux-differentiable
bump function on X, then the norm closure of f'(X) contains
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Proposition 2 :

Let X,Y be Banach spaces, dim(X) > 1.

Let F': X — Y be Lipschitz and Gateaux-differentiable.
Assume that one of the following conditions hold :

(1) F is Lipschitz and Y = IR.
(2) Let I is Lipschitz and Fréchet-differentiable.
(3) L(X,Y) is separable.

Then, Vx € X, Ve >0, dy,z € Bx(x,e), y # z, such that

IF'(y) = F'(2)|| < e



Proposition : Let X be an infinite dimensional separable Ba-
nach space. Then, df : X — IR Gateaux-differentiable bump,
such that f' is norm to weak* continuous and

z#0=|f(0)-f(x)>1
If X* is separable, we can assume moreover that f is ¢l on

X\{0}.

Definition : Let X,Y be separable Banach spaces.
(X,Y) has the jump property if 3F : X — Y Lipschitz,
everywhere G-differentiable, so that

v,y € X,x Fy=||F(z) - Fl(y)] > 1

Question : When do (X,Y) possess the jump property 7



X,Y separable Banach spaces.
(1) £(X,Y) is separable = (X,Y) fails the jump property.
(2) (X,R) fails the jump property.

(3) Y C Z and (X,Y) has the jump property = (X,Z) has
the jump property.

Theorem : (¢}, R?) has the jump property. More precisely,
JF : ¢! — IR? Gateaux-differentiable, bounded, Lipschitz, such
that for every z,y € ¢}, x # y, then

|F'(z) — F/(y)Hg(gl,]zp) > 1

Moreover, Yh € ¢, x — F'(z).h is continuous from ¢} into IR?.



Gateaux-differentiability criterium : Let X and Y be Ba-
nach spaces. Assume :

* fn . X =Y are G-differentiable.
* (Z fn) converges pointwise on X,

* For all h, the series %(m) converges uniformly in x.
n>1

Then f = Y. fn is G-differentiable on X, for all z, f'(z) =
n>1

> fl(x) (where the convergence of the series is in L(X,Y)
n>1

for the strong operator topology), and f is K-Lipschitz.



Gateaux-differentiability criterium : Let X and Y be Ba-
nach spaces. Assume :

* fn . X =Y are G-differentiable.
* (Z fn) converges pointwise on X,

* For all h, the series %(m) converges uniformly in x.
n>1

Then f = Y. fn is G-differentiable on X, for all z, f'(z) =
n>1

> fl(x) (where the convergence of the series is in L(X,Y)
n>1

for the strong operator topology), and f is K-Lipschitz.

Moreover, if each f] is continuous from X endowed with the
norm topology into L(X,Y) with the strong operator topo-
logy, then f' shares the same continuity property.



Lemma : Given p = (q,7) € IR? such that ¢ < r and € > 0,
there exists a C®-function ¢ = ppe : IR? — IR? such that :

(i) |e(x,y)] < e for all (z,y) € IR?,
(i) o(z,y) =0 ifx <gq,
(iii) gﬁ(x,y) <e forall (z,y) € R?,
xr
W) |y =1 ifz>r,
oy
Oy 5
(v) \8—(x,y)” <1 forall (z,y) € R?
Y

Proof : p(x,y) =

BE;E) (Sin(ny), COS(ny)) :
with 8 : R — [0,1] C*°, B(x) =0 ifz<gand B(z) =1 if x> r.



Proof of Theorem : Let P = {(q,r) € Q%; ¢ < r} and
k — (ng, (g, 7)) be a bijection from N onto N x P such that

for all k, np #= k.
oo
e>0,e,>0/ Y e =c¢.
k=1
fr 0t = R?
fk(95> — PPrick (xnkafck)

fi. is a C* function on ¢,

F: ¢l — IR? is defined by :  F(z) = Yren fr(x)
- F'is well-defined.

- F is G-differentiable on ¢! and F is (1 + ¢)-Lipschitz on
oL

Indeed Zsupxegl H6 H < = sj + 1.



- We claim that if z =y € ¢1, then ||F/(z) — F'(y)|| > 1 — 2e.

i (33) — Ppi.Ek (Cﬁnk, xk)

-Ifx#Fye€ ¢l choose m such that (for example) zm 2= Ym,
then (q,r) such that z,, < ¢ < r < ym and finally k such that

(nka 4L, ’rk) — (ma q, ’T‘) .

Oft, \ _ ofk _
5, (0 =0 | awk@)(\ =1
and, if j #= k,
Of;
B () <5 H <y>H <ej
T herefore
||F,(CU) - F/(y)H[,(gl,RQ) > ||—(CU) - —k(y)HRQ
@fk Ofk

0
> @) -G >||—Z||af;<w>—i< Woo> 1-2e



Theorem. Let X,Y be separable Banach spaces. Assume :
(en,e)) C X x X* is a total, bounded, biorthogonal system,
(fn) C Y is an unconditional basic sequence such that :

Vh € X, (Z e;';(h)fgn_l) and (Z ej;(h)fgn) converge in norm.
Then (X,Y) has the jump property.

Proof. Define z, : X — R?2 by z.(z) = (e,ffbk(:zz),e};(a:)) then

i, - R2 =Y by ig(s,t) = tfop_1 + sfok,
Fy, : X =Y by Fp, = i 0 ©p, ;. © 2k and F =) F}.

Corollary (Bayart). If X is a separable, infinite dimensional
Banach space, then (X,cg) has the jump property.



Corollary. Let X be a Banach space with a Schauder basis
(en), Y be a Banach space and U € L(X,Y ) such that (U(en))
is a subsymmetric basis. Then (X,Y) has the jump property.

Example. Let X, =/ if 1 <p < +oo and Xoo = cg.
Let us fix 1 <p,qg<+o0. TFAE :

(1) (Xp, Xq) has the jump property.
(2)p<q
(3) L(Xp, Xq) is not separable.

Example. Let J be the James’ space. Then (J,¢2) and (J,J)
have the jump property.



Corollary. Let X be a Banach space with a Schauder ba-
sis (en), Y be a Banach space such that Y ~ Y ®&Y and
Uec L(X,Y) such that (U(en)) is an unconditional basis.
Then (X,Y) has the jump property.

Example. Assume 1 <q¢<p<2andp+*1.
Then (Lp([o, 1]), L9([o0, 1])) has the jump property.

What about the other values of p and q 7

Corollary. Let X be a Banach space with an unconditional
basis and such that X ~ X ¢ X.
Then (X, X) has the jump property.

Example. If T is the Tsirelson space,

then (T,T) and (T*,T*) have the jump property.

If X is the space of Argyros and Haydon, then (X, X) fails the
Jjump property.



Open questions
1) Does (L1([0,1]), L1([0,1]) have the jump property ?

2) If L(X,Y) is nonseparable and dim(Y) > 2, does (X,Y)
have the jump property ?

If L(X,Y) icontains ¢£*° and dim(Y) > 2, does (X,Y) have
the jump property 7

3) Does (JT,R?) have the jump property ?

4) Describe the couples (X,Y) of separable Banach spaces
for which

d(en,e)) C X x X* is a total, bounded, biorthogonal system,
3(frn) C Y is an unconditional basic sequence such that :

Vh € X, (Z e;';(h)fn> converges in norm.

(this imply L(X,Y) D £%°)
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