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Complex structures

A real Banach space X is said to admit a complex structure if there
exists an operator I : X → X such that I2 = −Id.

The complex space XI is the space X with the C-linear structure: if
α, β ∈ R and x ∈ X, then

(α+ iβ)x = αx+ βI(x).

Endowed with the norm:

‖|x|‖ = sup
0≤θ≤2π

‖ cos θx+ sin θIx‖.

Example:The operator J(x, y) = (−y, x) on X ⊕X satisfies J2 = −Id.
The complex structure X ⊕XJ is called the complexification of X and is
denoted by X ⊕C X.

Definition
Two complex structures XI and XJ on X are said to be equivalent if
there exists a R-linear automorphism T : X → X such that TIT−1 = J .
T : XI → XJ is a C-isomorphism.
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Complex structures

Theorem (Kalton, 2009)
Let X be a real Banach space such that X ⊕C X is primary, then X has
at most one complex structure.

Example: The classical spaces `p (1 ≤ p ≤ ∞), c0, C[0, 1] and Lp
(1 ≤ p ≤ ∞) has unique complex structure.
All complex structures on `2 are C-isomorphic to `u2

2 , where
u2(x1, x2, x3, x4, . . .) = (−x2, x1,−x4, x3, . . .)

Definition
For a complex Banach space Z, its complex conjugate Z, is defined to be
the space Z equipped with the law of multiplication by scalars: λz := λz,
for every λ ∈ C and z ∈ Z.

• Z and Z are isometric as real spaces.

• XI = X−I .

• S. Szarek (86), Bourgain (86), Kalton (95) There exist spaces not
isomorphic to their complex conjugate.
These spaces admit at least two complex structures.
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Twisted sums

Definition
Let X and Y be two Banach spaces. A twisted sum of X and Y is a
quasi-Banach space Z which contains a subspace X ′ ⊆ Z isomorphic to
X such that the quotient Z/X ′ is isomorphic to Y .

Equivalently,

0→ X
j→ Z

q→ Y → 0.

Every twisted sum is equivalent to one of the type X ⊕Ω Y for a
quasi-linear operator Ω : Y → X.

X ⊕Ω Y is the space X × Y endowed with the quasi-norm:

‖(x, y)‖Ω = ‖x− Ωy‖+ ‖y‖

The twisted sum is trivial if it is equivalent to X ⊕ Y ⇐⇒ Ω = B + L.
F. Cabello Sánchez, J. Castillo, J. Suárez (2012): The quotient map q is
strictly singular iff the restriction of Ω to every infinite dimensional closed
subspace is never trivial. In this case Ω is said to be singular.
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strictly singular iff the restriction of Ω to every infinite dimensional closed
subspace is never trivial. In this case Ω is said to be singular.



Twisted sums

Definition
Let X and Y be two Banach spaces. A twisted sum of X and Y is a
quasi-Banach space Z which contains a subspace X ′ ⊆ Z isomorphic to
X such that the quotient Z/X ′ is isomorphic to Y . Equivalently,

0→ X
j→ Z

q→ Y → 0.

Every twisted sum is equivalent to one of the type X ⊕Ω Y for a
quasi-linear operator Ω : Y → X.

X ⊕Ω Y is the space X × Y endowed with the quasi-norm:

‖(x, y)‖Ω = ‖x− Ωy‖+ ‖y‖

The twisted sum is trivial if it is equivalent to X ⊕ Y ⇐⇒ Ω = B + L.
F. Cabello Sánchez, J. Castillo, J. Suárez (2012): The quotient map q is
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Z2 Kalton-Peck space

Z2 = `2 ⊕Ω2 `2 is the twisted Hilbert space obtained by considering the
non-trivial quasi-linear map (defined on finitely supported sequences)

Ω2(x)(n) = x(n) log
‖x‖
|x(n)|

.

Properties

• Ω2 is singular.

• Z2 has a 2-dimensional unconditional decomposition generated by
the subspaces En = span{(en, 0), (0, en)}.

• Z2 has no unconditional basis. Moreover, it does not admit
G.L− l.u.st

• Every infinite-dimensional complemented subspace of Z2 contains a
complemented subspace isomorphic to Z2.

• Z2 is isomorphic to its square.

Question
Z2 is isomorphic to its hyperplanes?
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Complex structures on Z2

Proposition
The following complex spaces are isomorphic.

• Z
(u2,u2)
2 , where (u2, u2)(x, y) = (u2x, u2y).

• Z2 ⊕C Z2.

• Z2(C) = `2(C)⊕ΩC
2
`2(C).

Corollary
For any complex structure w on Z2

• The space Zw2 is isomorphic to a complemented subspace of Z2(C).

• The space Zw2 is Z2(C)-complementably saturated and
`2(C)-saturated.

• If Zw2 is isomorphic to its square then it is isomorphic to Z2(C).

Question
Does Z2 admit unique complex structure?
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• The space Zw2 is isomorphic to a complemented subspace of Z2(C).

• The space Zw2 is Z2(C)-complementably saturated and
`2(C)-saturated.

• If Zw2 is isomorphic to its square then it is isomorphic to Z2(C).

Question
Does Z2 admit unique complex structure?



Compatible complex structures on Z2 and its hyperplanes

Theorem
No complex structure on `2 can be extended to a complex structure on
the hyperplane `2 ⊕Ω2i H.

Theorem
There exists a complex structure U on `2 that can not be extended to
any operator on Z2.

An essential element to prove this is the following result:

Theorem (V. Ferenczi, E. Galego, 2007)
Let T, u be complex structures on, respectively, an infinite dimensional
Banach space X and some hyperplane H of X. Then the operator
T |H − u is not strictly singular.
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Compatible complex structures on Z2 and its hyperplanes

Definition
The pair of operators (α, β) is said to be compatible with Ω if there
exists an operator γ such that the diagram is commutative.

0 // X //

α

��

X ⊕Ω Y // Y //

β

��

0

0 // X // X ⊕Ω Y // Y // 0

Proposition. The pair (α, β) is compatible with Ω iff αΩ− Ωβ is trivial.

Example. The pair (u2, u2) is compatible with Ω2.
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Compatible complex structures on Z2 and its hyperplanes

Proposition
For every operator T : `2 → `2, and for every block subspace W of `2,
the commutator Ω2T − TΩ2 is trivial on some block subspace of W .

Proposition
Let (T,U) be a pair of compatible operators on Z2. Then T − U is
compact.

Sketch of the proof: Let u be a complex structure on `2. Suppose that
can be extended to U on `2 ⊕Ω2i H

0 // `2 //

u

��

`2 ⊕Ω2i H
//

U

��

H //

v

��

0

0 // `2 // `2 ⊕Ω2i H
// H // 0

Extending v to a complex structure V on `2, we have that (u, V ) is
compatible with Ω2. Then u− V is compact.
On the other side, it follows from Ferenczi-Galego theorem that u|H − v
is not strictly singular. So we get a contradiction.
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