On Separable Quotients

Cleon S. Barroso

Departamento de Matemática
Universidade Federal do Ceará

BWB 2014

Maresias, SP, Brazil - August 25–29, 2014
The Problem

Open Problem: (SQP)

Given an infinite Banach space E, show that there exists a closed subspace X so that E/X is isomorphic to an infinite-dimensional separable Banach space.
Given an infinite Banach space E, show that there exists a closed subspace X so that E/X is isomorphic to an infinite-dimensional separable Banach space.
Known Contributions

Brief History:

Bessaga-Pelczynski (1958): Spaces whose dual contain c_0.
Hagler-Johnson (1977): Spaces whose dual have unconditional basic sequences.
Plichko (1980): Spaces with fundamental biorthogonal systems.

Remark:
For many other results including characterizations, variants and recent progresses, see Mujica’s survey and recent work of Argyros-Dodos-Kanellopoulos and Dodos, Lopez-Abad and Todorcevic.
Known Contributions

Brief History:
Known Contributions

Brief History:

- Bessaga-Pelczynski (1958): Spaces whose dual contain c_0.
- Hagler-Johnson (1977): Spaces whose dual have unconditional basic sequences.
- Plichko (1980): Spaces with fundamental biorthogonal systems.

Remark:
For many other results including characterizations, variants and recent progresses, see Mujica’s survey and recent work of Argyros-Dodos-Kanellopoulos and Dodos, Lopez-Abad and Todorcevic.
Known Contributions

Brief History:

- Bessaga-Pelczynski (1958): Spaces whose dual contain c_0.
- Hagler-Johnson (1977): Spaces whose dual have unconditional basic sequences.
- Plichko (1980): Spaces with fundamental biorthogonal systems.

Remark: For many other results including characterizations, variants and recent progresses, see Mujica’s survey and recent work of Argyros-Dodos-Kanellopoulos and Dodos, Lopez-Abad and Todorcevic.
Results From "MathOverFlow" - BJ

- If X^* has no HI subspace, then X has a separable quotient.
- If X^* is weak*-separable, then X has a separable quotient.
Open Question (Godunov, 1974)

Let E be a Banach space. Then there exists a continuous vector field $f: \mathbb{R} \times E \to E$ so that

$$u'(t) = f(t, u(t))$$

Does not have solutions at any point.

Positive Answers:

Godunov (1974) for the Hilbert space $E = \ell^2$.

Shkarin (2003) solved for Banach space having complemented subspaces with unconditional Schauder basis.

Hájek-Johanis (Best Answer (2010)): For spaces having Nontrivial Separable Quotients.
Open Question (Godunov, 1974)

Let E be a Banach space. Then there exists a continuous vector field $f : \mathbb{R} \times E \to E$ so that

$$u'(t) = f(t, u(t))$$

Does not have solutions at any point.

Positive Answers:

- Godunov (1974) for the Hilbert space $E = \ell^2$.
- Shkarin (2003) solved for Banach space having complemented subspaces with unconditional Schauder basis.
- Hájek-Johanis (Best Answer (2010)): For spaces having Nontrivial Separable Quotients.
Open Question (Godunov, 1974)

Let E be a Banach space. Then there exists a continuous vector field $f : \mathbb{R} \times E \to E$ so that

$$u'(t) = f(t, u(t))$$

Does not have solutions at any point.

Positive Answers:

- Godunov (1974) for the Hilbert space $E = \ell_2$.
- Shkarin (2003) solved for Banach space having complemented subspaces with unconditional Schauder basis.
- Hájek-Johanis (Best Answer (2010)): For spaces having Nontrivial Separable Quotients.
Theorem (Marrocos, Rebouças: Studia Math. 2013)

E has a SQP iff E^* has a weak*-transfinite Schauder frame.

Definition (WTSF):
That means to say that there exists an ordinal number ξ and a transfinite sequence $(f_\alpha)_{\alpha<\xi}$ in E^* so that:

$$\forall y^* \in \text{span} \{f_\alpha: \alpha<\xi\} \exists (a_{\alpha}(y^*))_{\alpha<\xi} \in \ell_\infty(\xi) \text{ s.t. } \langle y^*, x \rangle = \lim_{\alpha \to \xi} \langle \sum_{\gamma=0}^{\alpha} a_{\gamma}(y^*) f_\gamma, x \rangle$$

$(f_\alpha)_{\alpha<\xi}$ admits a biorthogonal system $(e_\alpha)_{\alpha<\xi}$ in E.

Cleon S. Barroso – UFC

On Separable Quotients
Theorem (–, Marrocos, Rebouças: Studia Math. 2013)

\(E \) has a SQP iff \(E^* \) has a weak\(^*\)-transfinite Schauder frame.
Theorem (—, Marrocos, Rebouças: Studia Math. 2013)

E has a SQP iff E^* has a weak*-transfinite Schauder frame.

Definition (WTSF): That means to say that there exists an ordinal number ξ and a transfinite sequence $(f_\alpha)_{\alpha<\xi}$ in E^* so that:

\[
\forall y^* \in \text{span} \{ f_\alpha : \alpha<\xi \} \exists (a_\alpha(y^*))_{\alpha<\xi} \in \ell_\infty(\xi) \text{ s.t. } \langle y^*, x \rangle = \lim_{\alpha \to \xi} \langle \sum_{\gamma=0}^{\alpha} a_\gamma(y^*) f_\gamma, x \rangle.
\]
Theorem (–, Marrocos, Rebouças: Studia Math. 2013)

E has a SQP iff E^* has a weak*-transfinite Schauder frame.

Definition (WTSF): That means to say that there exists an ordinal number ξ and a transfinite sequence $(f_\alpha)_{\alpha<\xi}$ in E^* so that:

- $\forall y^* \in \text{span}^{w^*} \left\{ f_\alpha : \alpha < \xi \right\}$
 - $\exists \ (a_\alpha(y^*))_{\alpha<\xi} \in \ell_\infty(\xi)$ s.t.

$$\langle y^*, x \rangle = \lim_{\alpha \to \xi} \langle \sum_{\gamma=0}^{\alpha} a_\gamma(y^*) f_\gamma, x \rangle$$
Theorem (–, Marrocos, Rebouças: Studia Math. 2013)

E has a SQP iff E^* has a weak*-transfinite Schauder frame.

Definition (WTSF): That means to say that there exists an ordinal number ξ and a transfinite sequence $(f_\alpha)_{\alpha<\xi}$ in E^* so that:

- $\forall \ y^* \in \overline{\text{span}}^{w*} \left\{ f_\alpha : \alpha < \xi \right\}$ \quad \exists \ (a_\alpha(y^*))_{\alpha<\xi} \in \ell_\infty(\xi) \ \text{s.t.}$

\[
\langle y^*, x \rangle = \lim_{\alpha \to \xi} \langle \sum_{\gamma=0}^{\alpha} a_\gamma(y^*) f_\gamma, x \rangle
\]

- $(f_\alpha)_{\alpha<\xi}$ admits a biorthogonal system $(e_\alpha)_{\alpha<\xi}$ in E.

Cleon S. Barroso – UFC

On Separable Quotients
Idea of the Proof

Let $X := \text{span}\{e_\alpha : \alpha < \xi\}$ and $Y = \text{span}\{f_\alpha : \alpha < \xi\}$.

By the Definition of WTSF, we get $X^\perp \cap Y = \{0\}$ which implies $X + Y$ is dense in E. In particular, we have that $Z = \{x \in E : \sum_{\alpha < \xi} |f_\alpha(x)| \|e_\alpha\| < \infty\}$ is dense in E.

Cleon S. Barroso – UFC

On Separable Quotients
Idea of the Proof

Let \(X := \text{span}\left\{ e_\alpha : \alpha < \xi \right\} \)
Idea of the Proof

Let $X := \text{span}\{e_\alpha : \alpha < \xi\}$ and $Y = \overline{\text{span}}^{w^*}\{f_\alpha : \alpha < \xi\}$.
Let $X := \text{span}\{e_\alpha : \alpha < \xi\}$ and $Y = \text{span}^{w*}\{f_\alpha : \alpha < \xi\}$

By the Definition of WTSF, we get
Idea of the Proof

Let $X := \text{span}\{e_\alpha : \alpha < \xi\}$ and $Y = \overline{\text{span}}^{w*}\{f_\alpha : \alpha < \xi\}$

By the Definition of WTSF, we get

$X^\perp \cap Y = \{0\}$
Idea of the Proof

Let $X := \text{span}\{e_{\alpha} : \alpha < \xi\}$ and $Y = \overline{\text{span}}^{w^*}\{f_{\alpha} : \alpha < \xi\}$.

By the Definition of WTSF, we get

$$X^\perp \cap Y = \{0\}$$

which implies $X + Y_{\perp}$ is dense in E.
Idea of the Proof

Let $X := \text{span}\{e_\alpha : \alpha < \xi\}$ and $Y = \text{span}^{w^*}\{f_\alpha : \alpha < \xi\}$

By the Definition of WTSF, we get

$$X^\perp \cap Y = \{0\}$$

which implies $X + Y^\perp$ is dense in E

In particular, we have that
Let $X := \text{span}\left\{e_\alpha : \alpha < \xi \right\}$ and $Y = \text{span}^w \left\{f_\alpha : \alpha < \xi \right\}$

By the Definition of WTSF, we get

$X^\perp \cap Y = \{0\}$ which implies $X + Y_\perp$ is dense in E

In particular, we have that

$Z = \left\{x \in E : \sum_{\alpha < \xi} |f_\alpha(x)||e_\alpha| < \infty \right\}$ is dense in E
Tools and Approach

\(\ell_1 \)-Fundamental Systems

A biorthogonal system \(\{x_\alpha, x_\alpha^*\}_{\alpha \in \Gamma} \) in \(E \times E^* \) is called \(\ell_1 \)-fundamental if the linear space

\[
\left\{ x \in E : \sum_{\alpha \in \Gamma} |x_\alpha^*(x)||x_\alpha| < \infty \right\}
\]

is dense in \(E \).

Remark. Every Fundundamental Biorthogonal System if \(\ell_1 \)-fundamental.
Let X, Y Hausdorff LCS.
Let X, Y Hausdorff LCS.

- (I) $U \subset X$ is called a barrel in X is it is closed, absolutely convex and absorbing.
- (II) X is called *barreled* if every barrel in X is a neighborhood of 0.
- (III) **Closed Graph Theorem**: If X is barreled, Y is Fréchet and $T : X \to Y$ is a closed linear map, then T is continuous.
- (IV) **Known Characterization**: A Banach space X has an infinite-dimensional separable quotient *iff* X has a non-barreled proper dense subspace.
Theorem

Every Banach space E with a ℓ_1-fundamental biorthogonal system has a non-trivial separable quotient.

Suppose that this is not so. Then E does not contain ℓ_1 and, moreover, as the linear space
Theorem

Every Banach space E with a ℓ_1-fundamental biorthogonal system has a non-trivial separable quotient.

Suppose that this is not so. Then E does not contain ℓ_1 and, moreover, as the linear space

$$Z = \left\{ x \in E : \sum_{\alpha < \xi} |f_\alpha(x)||e_\alpha| < \infty \right\}$$

is dense in E. One readily shows that T has closed linear graph. Since Z is barreled, T is continuous.
Every Banach space E with a ℓ_1-fundamental biorthogonal system has a non-trivial separable quotient.

Suppose that this is not so. Then E does not contain ℓ_1 and, moreover, as the linear space

$$Z = \left\{ x \in E : \sum_{\alpha < \xi} |f_{\alpha}(x)| \|e_{\alpha}\| < \infty \right\}$$

is dense in E.

It is barreled.
Every Banach space E with a ℓ_1-fundamental biorthogonal system has a non-trivial separable quotient.

Suppose that this is not so. Then E does not contain ℓ_1 and, moreover, as the linear space

$$Z = \left\{ x \in E : \sum_{\alpha < \xi} |f_\alpha(x)||e_\alpha| < \infty \right\}$$

is dense in E it is barreled. Define now the linear operator

$$T : Z \to \ell_1(\xi); \quad T(x) = (f_\alpha(x)||e_\alpha||)_{\alpha < \xi}, \quad x \in E.$$
Continuation of the "Proof"

Theorem

Every Banach space E *with a* ℓ_1-*fundamental biorthogonal system has a non-trivial separable quotient.*

Suppose that this is not so. Then E does not contain ℓ_1 and, moreover, as the linear space

$$
Z = \left\{ x \in E : \sum_{\alpha<\xi} |f_\alpha(x)||e_\alpha| < \infty \right\}
$$

it is barreled. Define now the linear operator

$$
T : Z \to \ell_1(\xi); \quad T(x) = (f_\alpha(x)||e_\alpha||)_{\alpha<\xi}, \quad x \in E.
$$

One readily shows that T has closed linear graph. Since Z is barreled, T is continuous.
As T is bounded, it can be linearly extended to the whole space E.

Denote this extension by T, too.

Since T is not compact, $T(B_E)$ contains a semi normalized sequence (x_n) which is equivalent to the unit basis of ℓ_1.

By the lifting property, the formal inverse T^{-1} from $\text{span}\{x_n\}$ back to E is bounded.

Thus, T^{-1} is really the inverse of T.

$\{T^{-1}(x_n)\}$ has a subsequence equivalent to the unit basis of ℓ_1.

Contradiction.
Thanks!