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"Scalar-plus-Compact" property

A separable space X is a L8 space, if there exists a
constant C ¡ 0 and an increasing sequence of finite
dimensional spaces pFnqn such that each Fn is
C-isomorphic to `8pdimFnq and YnFn � X .

(Lewis - Stegall) If X is a separable L8 space then X� � `1
or X� � Mr0,1s.

(Pelczynski) If X� is non-separable then X isomorphically
contains `1.



"Scalar-plus-Compact" property

A separable space X is a L8 space, if there exists a
constant C ¡ 0 and an increasing sequence of finite
dimensional spaces pFnqn such that each Fn is
C-isomorphic to `8pdimFnq and YnFn � X .

(Lewis - Stegall) If X is a separable L8 space then X� � `1
or X� � Mr0,1s.

(Pelczynski) If X� is non-separable then X isomorphically
contains `1.



"Scalar-plus-Compact" property

A separable space X is a L8 space, if there exists a
constant C ¡ 0 and an increasing sequence of finite
dimensional spaces pFnqn such that each Fn is
C-isomorphic to `8pdimFnq and YnFn � X .

(Lewis - Stegall) If X is a separable L8 space then X� � `1
or X� � Mr0,1s.

(Pelczynski) If X� is non-separable then X isomorphically
contains `1.



"Scalar-plus-Compact" property

A separable space X is a L8 space, if there exists a
constant C ¡ 0 and an increasing sequence of finite
dimensional spaces pFnqn such that each Fn is
C-isomorphic to `8pdimFnq and YnFn � X .

(Lewis - Stegall) If X is a separable L8 space then X� � `1
or X� � Mr0,1s.

(Pelczynski) If X� is non-separable then X isomorphically
contains `1.



"Scalar-plus-Compact" property

In 1980 J. Bourgain and F. Delbaen constructed the first
L8 space not containing c0.

Bourgain-Delbaen method was a critical ingredient for the
solution of the "scalar-plus-compact" problem.



"Scalar-plus-Compact" property

In 1980 J. Bourgain and F. Delbaen constructed the first
L8 space not containing c0.

Bourgain-Delbaen method was a critical ingredient for the
solution of the "scalar-plus-compact" problem.



"Scalar-plus-Compact" property

In 1980 J. Bourgain and F. Delbaen constructed the first
L8 space not containing c0.

Bourgain-Delbaen method was a critical ingredient for the
solution of the "scalar-plus-compact" problem.



"Scalar-plus-Compact" property

Theorem (S. A., R. Haydon 2011)
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XK such that X�K is isomorphic to `1pNq and every T : XK Ñ XK
is of the form T � λI � K with K a compact operator.

This is the first example of a Banach space X such that
every operator T P LpX q admits a non trivial closed
invariant subspace.
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Every further subspace of Y satisfies the "scalar-plus-compact"
property.
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Every infinite dimensional closed subspace of Y does not satisfy
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Problem (weaker version)
Assuming that the space X has a Schauder basis, what is the
answer to the above for the class of all block subspaces of X.
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A reflexive space with ISP

Theorem (S.A, Pavlos Motakis, Proc.LMS (2014))
There exists a reflexive HI Banach space XISP satisfying the
following:

(i) For every Y closed subspace of XISP , every T P LpY q is of the
form T � λI � S, with S strictly singular.

(ii) For every Y and Q,S,T : Y Ñ Y strictly singular operators, the
composition QST is a compact one.

Every Banach space satisfying (i) and (ii), also satisfies the
hereditary Invariant Subspace Property (i.e. for every
infinite dimensional closed subspace Y of XISP and every
operator T P LpY q admits a non trivial closed invariant
subspace).
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the classical ones, namely the space c0 and the spaces
Cpαq where α is an infinite ordinal number with the usual
order topology.
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If such a space exists then passing to a subspace we may
assume that a L8 space exists which is L8 saturated and
does not contain c0.

Any L8 space which is L8 saturated has separable dual.
Moreover, if it does not contain c0 then it does not contain
unconditional basic sequences. Hence, by Gowers
Dichotomy it contains an HI subspace.
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A solution to the Rosenthal’s Problem will yield answers to
some of the problems stated before.

The aim of the present talk is to present some recent joint
work with Pavlos Motakis related to Rosenthal’s problem.

Theorem
There exists a L8 space X with a basis pdnqn such that for
every infinite subset L of N the subspace XL �   dn : n P L ¡
contains a L8 space.
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General Bourgain-Delbaen construction

A BD L8 space is a separable subspace X of `8pΓq with
the supremum norm.

The set Γ is countable, Γ � Y8n�1Γn where pΓnq is an
increasing sequence of finite sets.

We set ∆1 � Γ1 and ∆n�1 � Γn�1zΓn.

There exists C ¡ 0 and extension operators

in : `8pΓnq Ñ `8pΓq

(i.e. inpxq|Γn � x) such that }in} ¤ C for every n P N.

Hence in is C- isomorphic embedding for every n P N.



General Bourgain-Delbaen construction

A BD L8 space is a separable subspace X of `8pΓq with
the supremum norm.

The set Γ is countable, Γ � Y8n�1Γn where pΓnq is an
increasing sequence of finite sets.

We set ∆1 � Γ1 and ∆n�1 � Γn�1zΓn.

There exists C ¡ 0 and extension operators

in : `8pΓnq Ñ `8pΓq

(i.e. inpxq|Γn � x) such that }in} ¤ C for every n P N.

Hence in is C- isomorphic embedding for every n P N.



General Bourgain-Delbaen construction

A BD L8 space is a separable subspace X of `8pΓq with
the supremum norm.

The set Γ is countable, Γ � Y8n�1Γn where pΓnq is an
increasing sequence of finite sets.

We set ∆1 � Γ1 and ∆n�1 � Γn�1zΓn.

There exists C ¡ 0 and extension operators

in : `8pΓnq Ñ `8pΓq

(i.e. inpxq|Γn � x) such that }in} ¤ C for every n P N.

Hence in is C- isomorphic embedding for every n P N.



General Bourgain-Delbaen construction

A BD L8 space is a separable subspace X of `8pΓq with
the supremum norm.

The set Γ is countable, Γ � Y8n�1Γn where pΓnq is an
increasing sequence of finite sets.

We set ∆1 � Γ1 and ∆n�1 � Γn�1zΓn.

There exists C ¡ 0 and extension operators

in : `8pΓnq Ñ `8pΓq

(i.e. inpxq|Γn � x) such that }in} ¤ C for every n P N.

Hence in is C- isomorphic embedding for every n P N.



General Bourgain-Delbaen construction

A BD L8 space is a separable subspace X of `8pΓq with
the supremum norm.

The set Γ is countable, Γ � Y8n�1Γn where pΓnq is an
increasing sequence of finite sets.

We set ∆1 � Γ1 and ∆n�1 � Γn�1zΓn.

There exists C ¡ 0 and extension operators

in : `8pΓnq Ñ `8pΓq

(i.e. inpxq|Γn � x) such that }in} ¤ C for every n P N.

Hence in is C- isomorphic embedding for every n P N.



General Bourgain-Delbaen construction

A BD L8 space is a separable subspace X of `8pΓq with
the supremum norm.

The set Γ is countable, Γ � Y8n�1Γn where pΓnq is an
increasing sequence of finite sets.

We set ∆1 � Γ1 and ∆n�1 � Γn�1zΓn.

There exists C ¡ 0 and extension operators

in : `8pΓnq Ñ `8pΓq

(i.e. inpxq|Γn � x) such that }in} ¤ C for every n P N.

Hence in is C- isomorphic embedding for every n P N.



General Bourgain-Delbaen construction

The operators in are compatible. Namely, for n   k
`∞(Γn) `∞(Γk)

`∞(Γ)

PΓk
◦ in

ikin

For γ P ∆q we set dγ � iqpeγq and

X � xtdγ : γ P Γuy



General Bourgain-Delbaen construction

The operators in are compatible. Namely, for n   k
`∞(Γn) `∞(Γk)

`∞(Γ)

PΓk
◦ in

ikin

For γ P ∆q we set dγ � iqpeγq and

X � xtdγ : γ P Γuy



General Bourgain-Delbaen construction

The operators in are compatible. Namely, for n   k
`∞(Γn) `∞(Γk)

`∞(Γ)

PΓk
◦ in

ikin

For γ P ∆q we set dγ � iqpeγq and

X � xtdγ : γ P Γuy



General Bourgain-Delbaen construction

The operators in are compatible. Namely, for n   k
`∞(Γn) `∞(Γk)

`∞(Γ)

PΓk
◦ in

ikin

For γ P ∆q we set dγ � iqpeγq and

X � xtdγ : γ P Γuy



General Bourgain-Delbaen construction

The operators in are compatible. Namely, for n   k
`∞(Γn) `∞(Γk)

`∞(Γ)

PΓk
◦ in

ikin

For γ P ∆q we set dγ � iqpeγq and

X � xtdγ : γ P Γuy



The functionals c�γ

For every γ P ∆q�1 we define a linear functional

c�γ � e�γ � iq : `8pΓqq Ñ R.

For every p ¤ q and x P `8pΓpq

ippxqpγq � c�γ piqpippxq|Γq qq

The above explains that the construction of specific BD
spaces essentially concerns the definition of the
functionals c�γ , γ P Γ which by induction determine the
extension operators iq,q P N.
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The space X is a C � L8 space.

Indeed, for q P N xtdγ |Γq : γ P Γquy � `8pΓqq.

Setting Fq � iqr`8p∆qqs, pFqqq is an FDD for the space X.

In particular, tdγ : γ P Γu is a Schauder basis for the space
X.

For I an interval of N we denote with PI the projection with
respect to the FDD pFqqq.
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We denote with e�γ the evaluation functional restricted on
X. Then the family te�γ : γ P Γu is equivalent to `1 basis.
Moreover if tdγ : γ P Γu is shrinking, then te�γ : γ P Γu
generates the dual of X.

The biorthogonals td�γ : γ P Γu are defined as

d�γ � e�γ � c�γ .
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definition yields spaces with divergent properties.
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The evaluation analysis of e�γ

The mixed Tsirelson BD-L8 space is defined by induction
by setting ∆1 � Γ1 � tγ1u with wpγ1q.

Assuming that ∆1, . . . ,∆q have been defined, ∆q�1 is
defined by taking all possible φ P `1pΓqq of the previous
form with wpφq � mj , j ¤ q � 1.

It is shown that the extensions operators
iq : `8pΓqq Ñ `8pΓq satisfy }iq} ¤ 1 � 8{m1.
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n2j`�1�1¸
i�1

dθi ,

Thus every η of multiple weight norms a vector xη.
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