
What Concerns Beginner
Test-Driven Development Practitioners:

A Qualitative Analysis of Opinions in an Agile Conference

Mauricio Finavaro Aniche1, Thiago Miranda Ferreira1, Marco Aurélio Gerosa1

1 Department of Computer Science
Institute of Mathematics and Statistics

University of São Paulo
PO Box 66.281 - 05.508-090 - São Paulo - SP - Brazil

{aniche, gerosa}@ime.usp.br, thiago.miranda.ferreira@usp.br

Abstract. Test-Driven Development (TDD) is an important practice among ag-
ile practitioners. Many studies in the literature, well-known authors, and devel-
opers claim that TDD simplifies code, improves software design, and increases
productivity. This paper reports a qualitative analysis on beginners’ opinions
about TDD, captured in an agile conference. All participants had at most 3
years of experience in TDD, but different levels of experience in software devel-
opment, which allowed a rich discussion about the effects of the practice in the
real world. Based on the participants’ answers, beginners consider TDD as pri-
marily a design technique. They also agree that TDD does not solve problems
by itself, and programmers should have a deep knowledge about design and OO
principles. However, baby steps, productivity, and difficulty in learning are a
polemic topic among them.

1. Introduction

Test-Driven Development (TDD) is one of the agile practices that focus on feedback. In
a more formal definition, TDD is the craft of producing automated tests for production
code, and using that process to drive design and programming. For every tiny bit of
functionality in the production code, programmers first develop a test that specifies and
validate what the code will do. Programmers, then, produce exactly as much code as will
enable that test to pass. Then they refactor (simplify and clarify) both the production and
test code [Alliance 2005].

People usually discuss if TDD is a testing technique, as programmers need to write
unit tests all the time, or a design technique, as the generated tests give feedback about
design and programmers use it to improve the design. Some well-known authors claim
that TDD is in fact a design technique and testing is just a consequence [Martin 2002].

Programmers also discuss about how to do baby steps in real world. Some of
them believe that programmers should do baby steps all the time for every situation and,
on the other side, some programmers claim that there is no need to go that slow. Produc-
tivity is another controversial subject. Although there are some studies showing that TDD
does not reduce productivity [George and Williams 2003] [Erdogmus et al. 2005], some
people still think that TDD makes the development team go slowly.



This paper reports a qualitative analysis, based on Grounded Theory techniques
[Juliet Corbin 2007], of opinions from TDD practitioners inside an agile conference and
compares it with the literature. The opinions were gathered in a session conducted by the
researchers. The objective of the session was to generate a free discussion about TDD
topics with whoever wanted to participate. Most of the participants have less than 3 years
of experience in TDD which may classify them as beginners in the practice.

2. Scope

The “Encontro Ágil” conference (a free translation would be Agile Meeting Conference),
located in São Paulo, is one of the first brazilian conferences about agile software devel-
opment. São Paulo is the largest city and the major economic center in Brazil. In the
2010 edition, the conference evolved its format to a different proposal: no lectures at all.
The idea was to enhance interactions between all the 200 participants and the exchange
of experiences. Because of that, the event program was compound by sessions with open
spaces, dojos, workshops, and games.

2.1. The Test-Driven Development Session

The authors conducted an open session about Test-Driven Development. The main idea
of the session was to understand the vision that people who actually use TDD have about
the practice in their daily work. The objective was to assess what an audience made up of
inexperienced practitioners think about TDD, whether they apply it in their routines and
what opinions they have about the effects of TDD in software design.

The session adopted an informal chat using a technique called fishbowling 1 to
make the discussion more active. In this technique, four people are kept in the center
of the discussion with an extra chair available for whoever wishes to participate. In this
case, when someone sits on the chair, another participant leaves in order to maintain four
people discussing, and one chair available for a new member of the public to join the
discussion.

The session took about 1 hour and a half and the researchers proposed 7 different
questions for discussion. Some questions were provocative in order to promote discussion
among the participants. The following list presents the questions in the order they were
discussed:

1. Is TDD a test practice or a design practice?
2. Discuss the following statement: it is impossible to generate a good design without

doing TDD.
3. How do tests help you create a better design, i.e. classes with low coupling, high

cohesion, simple code, etc.?
4. Many people apply TDD doing “as simple as possible”, even if the code to be

written is very simple (e.g. a simple calculator that does sums, in which the pro-
grammer creates and returns constant values, adds many conditional clauses until
a big refactoring). Do you think it is really necessary?

5. Now that I’ve used my tests to improve the design of the system, can I throw them
away?

1http://en.wikipedia.org/wiki/Fishbowl (conversation). Last access on November 27th 2010

http://en.wikipedia.org/wiki/Fishbowl_(conversation)


6. Some people say that writing tests before programming decreases productivity
(for example, if a programmer writes a hundred lines of code a day, he is going to
write 50 lines of tests and 50 lines of production code). What do you think about
it?

7. Talk about your first time doing TDD.

The participants had about 7 minutes of discussion for each question. As soon
as each slot finished, the researchers asked the public to vote whether the question being
discussed should continue. For the poll, the researchers distributed among the participants
a card with a green face, which meant that they wanted to keep the current discussion, and
a red one, which meant that the topic was not interesting anymore and they could go to
the next question.

The session had 10 participants and all of them entered in the fishbowling at least
once. None of the researchers participated in the discussions as it would have biased
the participants. After the session, the researchers asked them to fill out a survey about
their experience in software development and TDD. Section 2.2 explains the participants’
profile.

For further analysis and discussion of the ideas that emerged at the session, a voice
recorder was placed in the center of the room and all participants were aware that their
opinions were being recorded and their statements would be used anonymously and only
for the purpose of the research.

2.2. Audience Profile

The researchers asked the participants to answer a short anonymous questionnaire about
their experience in software development and TDD. The questionnaire and its possible
answers are represented on Table 1.

Question Options
Time experience in software de-
velopment (in years)

0-1, 1-2, 2-3, 3-4, 4-5, 5-6, 6+

Time experience in TDD (in
years)

0-1, 1-2, 2-3, 3-4, 4-5, 5-6, 6+

Table 1. Questionnaire used during the session

Most respondents had between 0 and 3 years of experience with TDD, and only
two were more experienced than that. Also, only 1 participant had never practiced TDD
before. Regarding experience in software development, the respondents were fairly ho-
mogeneous. Beginner programmers (less than 2 years) represented 30% of the audience
and those who were more experienced (more than 3 years) represented 70%.

Based on these numbers, the audience may be classified as an experienced group
of software developers that are starting to practice TDD. Such profiles are still very com-
mon in industry, as programmers are still getting to know agile practices and TDD specif-
ically.



3. Research Methodology
The research on software engineering practices, since it involves humans, is benefited
from the use of qualitative techniques. In particular, when evaluating the effects of TDD,
for example, it is hard to separate it from other agile practices that are usually done to-
gether [Beck et al. 2001] [Runeson and Host 2009]. Qualitative analysis is well suited for
many kinds of software engineering research, as the objects of study are contemporary
phenomena, which are hard to study in isolation. Case studies do not generate the same
results on e.g. causal relationships as controlled experiments do, but they provide deeper
understanding of the phenomena under study [Runeson and Host 2009]. In this proposal
the researchers chose some techniques based on Grounded Theory [Juliet Corbin 2007].

The researchers created all the questions and some of them intent to stimulate the
discussion. The idea was to generate a discussion and make people comfortable to talk
about the questions. During the session the researchers were only observing the discus-
sion without actually participating on it. The researchers took notes about participants’
feelings, i.e., when they were agreeing or disagreeing with something. Although the num-
ber of participants was quantitatively small (only 10 people), the volume of data gathered
during this one hour and a half session is reasonably high and covers different topics about
the TDD practice.

As mentioned before, the discussion was entirely recorded. The researchers tran-
scripted the audio and double listened in order to check for eventual errors in the tran-
scription. After that, two researchers individually started the coding process, which is the
act of organizing and classifying data into categories or segments of text before trying
to give a meaning to that piece of information [Rossman and Rallis 2003]. At the first
moment, researchers were free to create any code they want. After that, researchers dis-
cussed about each code created and merged them. The intent of this part of the process
is to reduce bias. The codes were then grouped into themes by the researchers, which
became the subsections of Section 4.

As expected, articulated participants talked more than others. That may influence
the discussion to a participant’s point of view. However, when a stronger position was
placed, all participants argued about it until it converged into something that everyone
was comfortable with. Researchers were aware of it and took this into account during the
analysis. Afterwards, participants were invited to review this paper in order to find any
flaw or bias during the analysis. Their revision can be found in Section 7.

4. Findings

4.1. TDD as a Design Technique

Although some definitions of TDD focus on its testing perspective, most of the partici-
pants affirmed that they use TDD mainly as a design technique, just like Robert Martin
[Martin 2002] and Kent Beck state [Beck 2001] [Beck 2002]: “TDD’s goal may be to do
real testing but in order to make the test you end up by influencing the design.”

Participants often had the opinion that design is a consequence of testing: “Tests
are the means to obtain the design.” This concept was reinforced by a few participants
when they talked about the effects of TDD on class coupling. They agreed that if pro-
grammers do not decouple their code they would not be able to write a unit test. Also, if



programmers spend too much time trying to write a simple test, it may indicate that there
is something wrong with the design: “At the moment you are testing unit by unit and you
are writing a unit test and you see that it is too complex, you already know that you need
something. You know that you are doing something you should not do. Tests show that, if
something is really hard to test, then it is because there’s something wrong.”

A participant mentioned the effect of the test feedback. As developers receive
constant and rapid feedback about the code design, they are able to find some design
smells and fix them when it is still cheap and easy: “TDD makes you start writing the
code from the very beginning. After that, you notice that what you have just written at the
beginning is not good enough and then you start to improve the code. This is how TDD
ends up influencing.”

Another interesting point of view raised by one of the participants was that when
programmers are doing TDD and they write a unit test for a class that sometimes do not
even exist, the test is the first client of that class. It encourages developers to write simple
code: “TDD ends up influencing us to simplify the code. As we are the first client of our
own system, we end up trying to simplify the design and reduce coupling, and that is why
our software design keeps evolving constantly.”

On the other hand, there was one participant who did not believe that TDD is a
design technique, but a testing technique. He kept asking questions about testing to the
other participants. He believed that the benefits of TDD are the test suite programmers
have at the end. He asked: “But you need to have some automated test suite, even without
TDD. It will help me change my design anyway, won’t it?” Others replied that there is a
difference in design when writing tests after, as it was mentioned through all this section.

Participants gave most of their opinions about the effects of TDD in design during
questions number 1 and 3. A curious fact is that most participants voted for an extra round
for question number 1, but question number 3 ended before the 7 minutes limit.

4.2. Refactoring Confidence

The opinion of the majority is that refactoring confidence a great advantage when doing
TDD. Programmers can evolve the code and the design without fear. If something goes
wrong the test suite warns them: “TDD influences a lot on design, for sure. However,
the most important thing in my opinion is the safety that it gives me at the moment of
refactoring the system. Without TDD I don’t have a clear criterion whether my refactoring
was successful or not”; “I like the refactoring part the most. When you do your first
refactoring and see a lot of red tests and, then, when you see them turn green, you think: I
can change this code with no fear at all!”. All participants agreed immediately with these
opinions.

This was deeply discussed also in question number 5. That was a tricky question:
if TDD is a design technique and the programmer used the test solely to improve the
design, as soon as the design is done the programmer could delete all tests. This question
was promptly replied by most of them with phrases like “No way!” and “You can’t do it
in any case!” followed by some laughing. One of them made an interesting comparison:
“I’ve done the source code, it did compile and meet the needs. Can I delete the source
code now?”



4.3. Initial Skepticism

Writing the test before the code goes against the traditional approach of software pro-
gramming. All participants that were on the discussion said that, when introduced to
TDD, they did not believe in the practice.

One of them suggested that the best way to see TDD’s benefits is by experimenting
the practice with some pet project at home or at work. They all said that after a certain
time of practice the benefits become evident despite the initial skepticism caused by the
paradigm shift. In their opinion, when developers find that the practice helps them making
better software they start to believe in TDD: “It’s hard to believe because the benefit takes
some time to show up. However, if he thought that TDD would help him develop better
software in a long term, he would believe in it.”

4.4. Experience Matters

All participants agreed that TDD does not solve all design problems by itself. They stated
that there were thousands of projects in the past that still work and have a good design.

In spite of that, they also agreed that doing TDD helps developers to create a
better design in less time than the traditional approach. This view is represented by the
following statement from one of them: “TDD influences and helps (the design) but it is
not mandatory. It is possible to do a good design without TDD but we will face other
problems.”.

4.5. Different Opinions About Baby Steps

TDD states that developers should do the simplest thing that makes the test pass. In
order to achieve that, programmers do it in baby steps, which are small changes in the
code. They help programmers to avoid unnecessary and complicated code, not even at
implementation level, but also at design level. Participants were divided about baby steps.
Some of them believed that programmers should do baby steps all the time and some of
them believed that baby steps all the time are not productive.

The example discussed was the implementation of a simple method sum(int a, int
b) that sums two integer numbers. The idea was to generalize that example to a much
more robust algorithm during the discussion. Baby steps group affirmed that they would
only get into return a+b after a few tests with integers, for example. The other group
affirmed that programmers could go right to the final implementation with just one test
for the sum.

Those who believed that baby steps all the time are mandatory argued that when
programmers do not do it, they may forget to test some corner cases and a refactoring
may change the expected behavior of the system. They would prefer to have 10 unit tests
that test the same behavior than forget one of them. They also argued that it is really hard
to implement the simplest code if programmers do not do baby steps. If programmers do
not do baby steps the chance to write unnecessary code is higher.

On the other hand, the other group said that experience should be taken into ac-
count when doing baby steps. They agreed that doing baby steps all the time are not
productive. A participant paraphrased Kent Beck: “I am not sure if you need baby steps



all the time. Kent Beck says in his XP book that the programmer should use his own ex-
perience. In his TDD book he says that, with experience, you feel whether you make a
bigger step or not.” Some of them also said that 10 tests for a single case is a waste of
time. In addition, they noticed that if there were 10 tests for a feature it would be harder
to change that behavior: the programmer would have to alter 10 tests instead of just one.

The interesting part about the last statement is that participants perceived a pos-
sible coupling between test and production code. Although they did not mentioned the
correct term, they are already aware of it. During another question, a participant com-
mented about testing one case of each equivalence class. It means that, in the calculator
example, the programmer would test only once a sum of two positive integers, then only
once a sum of two negative integers, and so on.

4.6. No Productivity at the Beginning

Almost all participants mentioned that when they started using TDD, they did not feel too
productive. However, in medium terms, the productivity went high as it was much easier
to fix bugs. In their opinion, using traditional approaches, programmers may deliver
code faster but after some time the productivity decreases as they spend too much time
searching for bugs and trying to evolve the software. They also tried to find a definition
for productivity. In their opinion, productivity may not be measured in lines of code, but
they did not reach a conclusion for that question.

The discussion turned to a more philosophical discussion: “We should write code
with quality. Write a code that does not work may help you to achieve the customer’s
deadline, but he will call us incompetent!” They were saying that as developers, they
should do the best they can and write tests (not only TDD), and this is essential to the
success of a project. One of them also cited the doctor’s anecdote: “If you tell a doctor to
do a surgery without cleaning the tools as you want it faster and cheaper he will not do
the surgery; if the customer says the same to you, you should not develop the software!”

4.7. Difficulty in Learning

A topic that was mentioned more than once was that learning TDD is not easy. Some
participants said that learning how to write good unit tests or how to mock objects is not
simple. Even experienced programmers may feel it too. One of them said: “Sometimes I
look to a code and I think: I don’t know how to test this!” He even said that sometimes he
had the feeling of losing productivity.

When the participants were talking about their first time in TDD they started by
mentioning how they have learned it. At least three of them said that they learned it in
Dojo sessions [Sato et al. 2008]. Although they mentioned that they do not usually like
the way programmers do baby steps at Dojo sessions, they agreed that it is a good way to
spread knowledge about the practice.

There were other ways of learning cited during the session. A participant com-
mented about his participation in discussion lists. Another one talked about some prac-
tical videos he has found. The same participant made lots of references to books from
famous authors like Kent Beck and Robert Martin during the discussions and, when that
happened, other participants made a gesture indicating that they already read the book.
Therefore, it is possible to infer that books are another way of learning TDD.



A participant commented about an interesting situation. He was forced to do TDD
by a colleague at work. He said he did not believe at the beginning, but as soon as he
himself started practicing and saw improvements in his design and all automated tests
advantages, he started believing in TDD. Thus, peer learning was the way a participant
learned TDD and in his opinion it was very effective.

5. Discussion

The main topic in the session was that TDD is actually a design technique, which matches
with what is found in literature. Participants talked about many effects of the practice,
such as the need to manage dependencies, and the design simplicity achieved by the urge
to test a class without much effort. It is interesting to notice that practitioners that are
experienced in software development but are beginners in TDD, notice these effects. The
confidence when refactoring was also highly discussed by the participants. The test suite
enables developers to change code with safety. It shows that the testing part of the tech-
nique is also useful.

As participants noticed, experience is fundamental to the process. When trying
to easily write a unit test to a class, a developer needs to use good object orientation
principles. TDD is a technique that gives feedback from the design, and the practitioner
should use it to drive design to better solutions.

Baby steps were also a popular topic. It continued for one more round as most
part of the audience voted for it. It can be justified by the fact that baby steps are one of
the most misunderstood part of the practice. Baby steps try to prevent developers from
creating a complex solution when a simpler one solves the problem. A programmer should
be driven by his experience: if s/he is comfortable with that part of the implementation, the
step may be bigger; if not, a smaller one should be taken. In researchers’ interpretation,
the goal of baby steps is to simplify both implementation and design, and not to remember
programmers about corner case, which is a software testing activity.

However, developers face many problems when starting to practice TDD. As pre-
sented before, most of developers tend not to believe in the practice at first. The relation
between testability and good design is not clear enough at the beginning. It is hard to no-
tice TDD’s effects on design when writing small projects that does not require a flexible
design. In order to believe in the practice, programmers should try to use it so that they
can make their own conclusions, noticing the substantial improvement in the quality of
their code and design.

As participants said, the practice may reduce developers’ productivity at the be-
ginning. However, it is hard to perceive if productivity is reduced when programmers do
not know how to write a unit test or because they were not familiar with OO principles.
But, as noticed by participants, although they do not feel productive at the beginning,
in medium terms productivity grows. This also may explain the the learning difficulty
presented by the participants. Besides learning the fundamental tools to write a unit test,
developers should write decoupled code; both activities have a learning curve.

Interestingly, the effects of TDD in external quality was not mentioned. That can
be explained by the fact that most questions were focused on the design effects. However,
the first question was clearly unbiased, and participants only discussed about the design



part. It may indicate that TDD effects are only in internal quality and external quality is
just a side-effect.

6. Related Work
Many empirical experiments have been done in order to evaluate TDD’s effects on both
internal and external quality. Also, these experiments can be divided into two categories:
industry and academia. Most of experiments in industry show results similar to what is
found in this study.

When talking about external quality, Janzen [Janzen 2005] demonstrated that pro-
grammers using TDD in industry produced code that passed in up to 50% more external
tests than code produced by control groups not using TDD and spent less time to fix
defects. A study from George and Williams [George and Williams 2003] that produced
code passed between 18% and 50% more in external test cases than the code produced
by groups not using TDD. The study from Edwards [Edwards 2003], with 59 students
showed that TDD code has 45% less defects.

Although many other studies relate TDD and external quality, no participants men-
tioned effects on external quality, which may indicate that TDD effects are only in internal
quality and external quality is just a side-effect.

A qualitative analysis in George and Williams showed that 87.5% of the program-
mers believed that TDD approach facilitated requirements understanding and 95.8% be-
lieved that it reduced debugging effort. Regarding quality, 92% of the developers believed
that TDD yielded higher quality code and 79% thought it promoted simpler design.

Another study from Janzen [Janzen and Saiedian 2006] with three different aca-
demic groups (each one using a different approach: test-first, test-last, no test) found that
the code produced by the test-first team better used object-oriented concepts, and respon-
sibilities were separated in thirteen different classes while the other teams produced a
more procedural code. The test-first team also produced more code and delivered more
features. Moreover, tests produced by the test-first team had twice more assertions than
the others and covered 86% more branches than the test-last team. Furthermore, tested
classes had 104% lower coupling measures than untested classes and tested methods were
43% on average less complex than the untested ones. Langr also [Langr 2001] showed
that TDD improved code quality, provided better maintainability, and produced 33% more
tests. Steinberg [Steinberg 2001] showed that TDD code was more cohesive and less cou-
pled and students reported that defects were easier to fix.

Participants agree with most of this results; in their opinion, TDD improves code
quality both in implementation and design, also making it as simple as possible. The writ-
ten code is also easier to maintain as the test suite ensures the behavior, giving freedom
to programmers to refactor the code.

Higher productivity was also an effect claimed by the participants of this study. In
their opinion, although programmers do not feel productive at the beginning, in medium
terms productivity grows. This result is also confirmed by George and Williams who
also found that although TDD might initially reduce productivity among inexperienced
programmers, in a qualitative analysis, 78% of them thought that TDD improved overall
programming productivity. However only 50% of them believed that TDD led to less



code development time. A study from Erdogmus et al [Erdogmus et al. 2005] with 24
undergraduate students showed that TDD increased productivity.

The learning difficulty presented by the participants was also evaluated by re-
searchers. Mugridge [Mugridge 2003] identified two main challenges in teaching TDD
over the last two years: to get students to rethink about design, and to really engage with
this new approach. Also, it is hard to explicitly develop students’ skills in testing, design
and refactoring.

Participants sometimes mentioned steps that are not suggested by TDD cycle. This
is not anomalous. Aniche and Gerosa [Aniche and Gerosa 2010] reported that program-
mers sometimes do not follow TDD steps as described by Kent Beck [Beck 2002]. Some
mistakes identified were: to forget the refactoring step, to build complex test scenarios,
and refactor another piece of code while working on a test. Some mistakes are frequently
made by around 25% of programmers.

7. Participants’ review
Some participants accepted to review the paper. They all agreed with all the research
findings. Some of them also showed their own interpretations of the discussion. For
instance, one participant said that his conclusion about the baby steps discussion was that
there is no need to do small steps for simple code; however, for a more complex one, baby
steps would help him earn experience with the code he is developing. He also said that,
besides the design effect, TDD helps programmers to understand the business they are
dealing with.

8. Threats to Validity
Although many participants showed great theoretical and practical knowledge about
TDD, it is hard to know if they do exactly the way they reported. In addition, a con-
siderable amount of them talked about practices that differ from what TDD suggests. As
some of them do not follow TDD steps the way they theoretically should, it may influence
their opinion.

A few participants also affirmed that do not practice TDD regularly during their
daily jobs. They often practice TDD in pet projects. It may influence the opinion as some
of them lack TDD experience in real world projects.

The 10 participants represented over 7% of the event’s audience and there were
no pre-requirements to join the session. The sample may not be representative in order to
generalize the findings on this paper.

9. Conclusions and Future Work
There are still many experienced programmers adhering to Test-Driven Development.
This paper showed that most of TDD beginners’ opinions and concerns about the practice
match with what is reported in literature. TDD is a technique that makes design problems
more visible, regardless of the level of experience with the practice; it is up to the devel-
opers to see them and improve the design. Moreover, what makes developers fix design
flaws is their experience in software design, and not their experience in TDD itself. This
is reinforced by the participants’ opinions on the influence of experience in the process.



Almost all participants agreed that design is a consequence of testing. Program-
mers use the feedback from the tests to improve the design. However, the specific question
about how programmers get feedback from tests did not reach the time limit, which may
indicate that programmers do not know exactly how they get this feedback. They also
talked a lot about design, and researchers were expecting more citations from good de-
sign techniques, but there were only few mentions to good object-oriented principles. It
may indicate that a study relating unit tests and object-oriented principles need to be done.

When start practicing TDD, beginners are mainly concerned about their productiv-
ity; writing unit tests, constant refactoring, and doing baby steps all the time suggest that
developers will spend too much time to write code. However, as participants suggested,
the best way to see the benefits is by trying to practice TDD.

This work also contributed with a different way to gather data about any agile
practice. Agile conferences with open spaces are becoming popular and it is a good place
for researchers to interview people from industry and also enable participants to learn
with each other. Also, researchers noticed that proposing a fishbowling was a good way
to make people with diverse experience to discuss about the same subject and get different
answers.

10. Acknowledgements

We would like to thank Encontro Agil 2010 organization for the acceptance on our TDD
open space session. In addition, participants were an essential part of the research, and
researchers acknowledge their participation and the allowance for the data analysis. Also,
Caelum Learning and Innovation sponsored Mauricio Aniche and Thiago Ferreira during
this research. Marco Gerosa received an individual grant awarded by CNPq.

References

[Alliance 2005] Alliance, A. (2005). Tdd. http://www.agilealliance.org/programs/
roadmaps/Roadmap/tdd/tdd index.htm.

[Aniche and Gerosa 2010] Aniche, M. F. and Gerosa, M. A. (2010). Most common mistakes
in test-driven development practice: Results from an online survey with developers.
Software Testing Verification and Validation Workshop, IEEE International Conference
on, 0:469–478.

[Beck 2001] Beck, K. (2001). Aim, fire. IEEE Software, 18:87–89.

[Beck 2002] Beck, K. (2002). Test-Driven Development By Example. Addison-Wesley
Professional, 1o edition.

[Beck et al. 2001] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham,
W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B.,
Martin, R. C., Mellor, S., Schwaber, K., and Thomas, J. S. D. (2001). Manifesto for
agile software development. http://agilemanifesto.org/. Último acesso em 01/10/2010.

[Edwards 2003] Edwards, S. H. (2003). Using test-driven development in a classroom: Pro-
viding students with automatic, concrete feedback on performance. International Con-
ference on Education and Information Systems: Technologies and Applications.

http://www.agilealliance.org/programs/roadmaps/Roadmap/tdd/tdd_index.htm
http://www.agilealliance.org/programs/roadmaps/Roadmap/tdd/tdd_index.htm
http://agilemanifesto.org/


[Erdogmus et al. 2005] Erdogmus, H., Morisio, M., and Torchiano, M. (2005). On the ef-
fectiveness of the test-first approach to programming. IEEE Transactions on Software
Engineering, 31:226–237.

[George and Williams 2003] George, B. and Williams, L. (2003). An initial investigation of
test driven development in industry. In Proceedings of the 2003 ACM symposium on
Applied computing, SAC ’03, pages 1135–1139, New York, NY, USA. ACM.

[Janzen and Saiedian 2006] Janzen, D. and Saiedian, H. (2006). On the influence of test-
driven development on software design. Proceedings of the 19th Conference on Soft-
ware Engineering Education and Training (CSEET’06), pages 141–148.

[Janzen 2005] Janzen, D. S. (2005). Software architecture improvement through test-driven
development. In Companion to the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, OOPSLA ’05, pages
240–241, New York, NY, USA. ACM.

[Juliet Corbin 2007] Juliet Corbin, A. S. (2007). Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory. Sage Publications, 3rd edition edi-
tion.

[Langr 2001] Langr, J. (2001). Evolution of test and code via test-first design. http://eisc.
univalle.edu.co/materias/TPS/archivos/articulosPruebas/test first design.pdf. Último
acesso em 01/03/2011.

[Martin 2002] Martin, R. C. (2002). Agile Software Development, Principles, Patterns, and
Practices. Prentice Hall, first edition edition.

[Mugridge 2003] Mugridge, R. (2003). Challenges in teaching test driven development ex-
treme programming and agile processes in software engineering. Lecture Notes in
Computer Science, 2675.

[Rossman and Rallis 2003] Rossman, G. B. and Rallis, S. F. (2003). Learning in the Field:
An Introduction to Qualitative Research. Sage Publications, second edition edition.

[Runeson and Host 2009] Runeson, P. and Host, M. (2009). Guidelines for conducting
and reporting case study research in software engineering. Empirical Softw. Engg.,
14(2):131–164.

[Sato et al. 2008] Sato, D. T., Corbucci, H., and Bravo, M. V. (2008). Coding dojo: An
environment for learning and sharing agile practices. AGILE Conference, 0:459–464.

[Steinberg 2001] Steinberg, D. H. (2001). The effect of unit tests on entry points, coupling
and cohesion in an introductory java programming course. XP Universe.

http://eisc.univalle.edu.co/materias/TPS/archivos/articulosPruebas/test_first_design.pdf
http://eisc.univalle.edu.co/materias/TPS/archivos/articulosPruebas/test_first_design.pdf

	Introduction
	Scope
	The Test-Driven Development Session
	Audience Profile

	Research Methodology
	Findings
	TDD as a Design Technique
	Refactoring Confidence
	Initial Skepticism
	Experience Matters
	Different Opinions About Baby Steps
	No Productivity at the Beginning
	Difficulty in Learning

	Discussion
	Related Work
	Participants' review
	Threats to Validity
	Conclusions and Future Work
	Acknowledgements

