CHAPTER 3
ORTHOGONAL SETS OF FUNCTIONS

Fourier series are only one of a large class of interesting and useful infinite se-
ries expansions for functions that are based on so-called orthogonal systems or
orthogonal sets of functions. This chapter is devoted to explaining the general
conceptual framework for understanding such systems, and to showing how they
arise from certain kinds of differential equations. Underlying these ideas is a
profound analogy between the algebra of Fourier series and the algebra of n-
dimensional vectors, which we now investigate.

3.1 Vectors and inner products

We recall some ideas from elementary 3-dimensional vector algebra and recast
them in a more general form. We identify 3-dimensional vectors with ordered
triples of real numbers; that is, we write

a=(a),ay,a;3) ratherthan a=ai+ ayj+ask.
The dot product or inner product of two vectors is then defined by
a-b= albl +axby + a3b3,
and the norm or length of a vector is defined by
la = va-a=,/a? + a3 + ai.

We propose to generalize these ideas in two ways: by working in an arbitrary
number k of dimensions, and by using complex numbers rather than real ones.
This generalization is not just a mathematical fantasy. Although k-dimensional
vectors do not have an immediate geometrical interpretation in physical space,
they are still useful for dealing with problems involving k independent variables.
For our purposes, the main motivation for the use of complex numbers is their

connection with the exponentials ¢‘?; but it should be noted that the use of
complex vectors is essential in quantum physics. However, in visualizing the
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ideas we shall be discussing, the reader should just think of real 3-dimensional
vectors.
A (complex) k-dimensional vector is an ordered k-tuple of complex numbers:

a=(a,a,...,a)

The vector a is called real if its components a; are all real numbers. Addition
and scalar multiplication are defined just as in the 3-dimensional case, but now
the scalars are allowed to be complex:

a+b=(a +by,...,a; + by),
ca=(cay,...,cax) (ceC).
We denote the zero vector (0,0,...,0) by 0, and we denote the space of all com-

plex k-dimensional vectors by C*.
The inner product of two vectors is defined by

(a,b)=a151 +a252+---+ak5k, (31)
and the norm of a vector is defined by

— _\1/2 1/2
lal = @2 = (@@ + - +ad) = (al+-+lal?) . (32)

The reason for the complex conjugates in the definition of the inner product is
to make the norm (3.2) positive, for we wish to interpret ||a|| as the magnitude
or length of the vector a. (Recall that the absolute value of a complex number
z = x+iy is (x2+y?)1/2, and this is (zZ)!/? rather than (z2)!/2.) Notice, however,
that for real vectors, (3.1) and (3.2) become
(a,b) =a\b; + - + ay by, ||a\|=(af+---+a,%)

the obvious generalization of the familiar 3-dimensional case.

A word about the notation: The inner product (a, b) is often denoted by a-b
or (a,b). Also, in the physics literature it is customary to switch the roles of a
and b, that is, to put the complex conjugates on the first variable rather than the
second. This discrepancy is regrettable, but by now it is firmly entrenched in
common usage.

The inner product (3.1) is clearly linear as a function of its first variable but
antilinear or conjugate linear as a function of its second variable; that is, for any
vectors a, b, ¢ and any complex numbers z, w,

(za + wb, ¢) = z(a,c) + w(b, c),

1/2
3

= — (3.3)
(a, zb+ wc) = Z(a,b) + W(a,c)
Also, the inner product is Hermitian symmetric, which means that
(b,a) = (a,b), (3.4)
and the norm satisfies the conditions
lcall = lclllall  (c€C), (3.5)
la] >0 foralla##0. (3.6)

Using these facts, we now derive some fundamental properties of inner products
and norms.
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Lemma 3.1. For any a and b in Ck,

lla+b|| = [|a||? + 2 Re(a, b) + [[b]|.

Proof: By (3.3), (3.4), and the definition of the norm,

la+b|>=(a+b,a+b)=(a,a)+(ab)+ (b a)+ (b,b)

= (a,8) + (a,b) + {a,b) + (b,b) = |la||* + 2 Re(a, b) + | b]|*. I
The Cauchy-Schwarz Inequality. For any a and b in C¥,
(@, B)] < ljall bl (3.7)

Proof: We may assume that b # 0, since otherwise both sides of (3.7) are 0.
Also, neither l(a, b)l nor |[a|| ||b|| is affected if we multiply a by a scalar of absolute

value one, so we may replace a by ca, with |c| = 1, so as to make (a, b) real. (That
is, if (a,b) = re??, we take ¢ = e~¥.) Assuming then that (a, b) is real, by Lemma
3.1 we see that for any real number ¢,

0 < lla+ tbl|? = ||a)| + 2¢(a, b) + £2||b]|2.

This last expression is a quadratic function of ¢, since ||b|| # 0, and (by elementary
calculus) it achieves its minimum value at 1 = —(a, b)/||b||?. If we substitute this
value for ¢, we obtain

b2 @b)? oo (ab)?
0<fa?—2&D" @b o o0 ,
< llaf| ]2 TG IIbl|“ = lla]| ]2
or
0 < [|all*[Ibll* - (a,b)?,

which, since (a, b} is assumed real, is equivalent to (3.7). 1
The Triangle Inequality. For any a and b in Ck,

lla + bl < lal| + [Ibl|. (3.8)

Prooff By Lemma 3.1, the Cauchy-Schwarz inequality, and the fact that
Rez < |z|, we have
lla +b||? = ||l + 2 Re(a,b) + b||
< |lall® + 2/|al| bl + [b])?

= (1al + 1)’
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a+b b

a

FIGURE 3.1. The sum of two vectors.

Geometrically, the triangle inequality just says that one side of a triangle can
be no longer than the sum of the other two sides; see Figure 3.1. This picture is
perfectly accurate, for the vectors &, b, and a + b always lie in the same plane no
matter how many dimensions they live in.

We recall that two real 3-dimensional vectors are orthogonal or perpendicular
to each other precisely when their inner product is zero. We shall take this as
a definition in the general case: two complex k-dimensional vectors a and b are
orthogonal if (a,b) = 0. The vectors a;,ay,...,a, are called mutually orthogonal
if (a;,a;) = 0 for all / # j. With this terminology, we have a generalization of
the classic theorem about the lengths of the sides of a right triangle:

The Pythagorean Theorem. If'a,a,,...,a, are mutually orthogonal, then

2 2 2 2
llay +a; 4 -+« +anll” = [|a;]|° + [lag)|“ + - + [&n]l" (3.9)

Proof: We have
lay + - +an>=(@; ++ap 8+ +an).

If we multiply out the right side by (3.3), all the cross terms vanish because of
the orthogonality condition, and we are left with

2
(ap,a;) + -+ (an,a0) = lla|> + - + [lan]%. 1

Important Remark. The proofs of the Cauchy-Schwarz and triangle inequal-
ities and the Pythagorean theorem depend only on the properties (3.3) and (3.4)
of the inner product and the definition ||a|| = (a,a)!/2, not on the specific formula
(3.1). They therefore remain valid for any other “inner product” that satisfies
(3.3) and (3.4) and the “norm” associated to it.

Some more terminology: We say that a vector u is normalized, or is a unit
vector, if |u|| = 1. Any nonzero vector a can be normalized by multiplying it by
the reciprocal of its norm: If u = ||a]~!a, then |ju|| = ||a]~}|la]| = 1. We shall call
a collection {a,a,,...} of vectors an orthogonal set if its elements are mutually
orthogonal and nonzero, and an orthonormal set if its elements are mutually
orthogonal and normalized. (See Figure 3.2.) Of course, any orthogonal set can
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be made into an orthonormal set by normalizing each of its elements. Thus, a
set {a;,a,,...} is orthonormal if and only if

(a;,a;) = d;, (3.10)

where d;; is the Kronecker §-symbol:

1 ifi=,
‘5”‘{0 ifi#J. (3.11)

FiGURE 3.2. An orthonormal set of vectors.

The vectors in any orthogonal set {a,,...,a,} are linearly independent; that
is, the equation
cia+---+cnap=0

can hold only when all the scalars c; are zero. To see this, take the inner product
of both sides with a; (1 < j < n); because of the orthogonality and the fact that
a; # 0, the result is

cj(a;,a;) = cj||aj||2 =0, hence ¢;=0.
It follows that the number of vectors in any orthogonal set in C* is at most k,
since C¥ is k-dimensional.

An example of an orthonormal set of k vectors is given by the standard basis
vectors {ey,...,ex}, where

e; =(0,...,0,1,0,...,0) (1 in the jth position, 0 elsewhere).
For any a = (ay,...,a;) € C¥, we clearly have
a=ae + - +age,
so a is expressed in a simple way as a linear combination of the e;’s. But some-
times it is more convenient to use other orthonormal sets that are adapted to a

particular problem, and here too there is a simple way of expressing arbitrary
vectors as linear combinations of the orthonormal vectors.
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Indeed, suppose {uy,...,u;} is an orthonormal set in CX, If a vector a € C*
is expressed as a linear combination of the u 'S,

a=cCcu + -+ Cply,

by taking the inner product of both sides with u; and using (3.10) we find that
the coefficients c¢; are given by

¢;=(au) (1<j<k) (3.12)

Conversely, if a is any vector in C", we may define the constants cy,...,c; by
(3.12) and form the linear combination

a=Clly + -+ Cpll.
Then the difference b = a — @ is orthogonal to all the u;’s:
(b,Uj) = (a,uj) - (E,Uj) =C¢i—¢j= 0.

But this means that b = 0, for otherwise {uy,...,u;, b} would be an orthogonal
set with k + 1 elements, which is impossible. In other words, @ = a, and we have
the following result.

Theorem 3.1. Let {uy,...,u;} be an orthonormal set of k vectors in C*. For any
a € Ck we have
a=(aupu; + -+ (a, W )uy.

Moreover,
2 2 2
llafl® = [{a,up)|* + - - + [(&,ug)|".

Proof: The first assertion has just been proved, and the second one follows
from it by the Pythagorean theorem. 1

EXERCISES
1. Show that [|a+ b2 + la— b|? = 2(||a||2 + [IbI1?) for all a,b € C¥.

2. Suppose {y;,...,¥x} is an orthogonal set in Ck, not necessarily normalized.
Use Theorem 3.1 to show that for any a € Ck,

(a,y0y (8, Y)Yk

ly1l2 [[yiell2

3. Lety, =(2,3i,5) and y, = (3i,2,0).
a. Show that (y;,y;) = 0 and find a nonzero y; that is orthogonal to both
y1 and y;.
b. What are the norms of y;, y;, and y3?
c. Use Theorem 3.1 or Exercise 2 to express the vectors (1,2, 3/) and
(0, 1,0) as linear combinations of y;, y», and ys.
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4, Letu; = %(1,21’, -2i,0),up; = %(2—41’,—2,1’, 0),u3 = 115(4+2i, 5+8i,4+10i,0),
and u, = (0,0,0,i).
a. Show that {uy,...,us} is an orthonormal set in C*.
b. Express the vectors (1,0,0,0) and (2, 10—/, 10-9{, —3) as linear combi-
nations of uy,...,u4 by using Theorem 3.1.

5. Suppose {uy,...,un} is an orthonormal set in CK with m < k. Show that for
any a € C* there is a unique set of constants {cy, ..., cx} such that a-y " cju;
is orthogonal to all the u;’s, and determine these constants explicitly. (Hint:
Consider the proof of Theorem 3.1.)

The following problems deal with k x k complex matrices T = (7;;). We recall
that if T = (T};) and S = (S;;) are k x k matrices, 7S is the matrix whose (ij)th
component is 37, 7;S);, and if a € Ck, Ta is the vector whose ith component is
>_; Tija;. The (Hermitian) adjoint of the matrix T is the matrix 7" obtained by
interchanging rows and columns and taking complex conjugates, that is, (T*);; =
Tji.

6. Show that (Ta,b) = (a, T*b) for all a,b € C*.

7. Show that if T = T*, the “product” defined by (a,b); = (Ta,b) satisfies
properties (3.3) and (3.4).

8. Let t; = (7y;,..., Ty;) be the vector that makes up the jth row of 7. Show
that the following properties of the matrix 7 are equivalent. (Hint: Show
that the (/j)th component of T*T is (t;,t;).)

(i) {t;,...,t;} is an orthonormal basis for C*.
(i) T*T is the identity matrix, i.e., (T T);; = d;;.
(iii) ||Ta|| = [|a| for all a € C.

9. Show that |(a, b)| = ||a]| ||b]| if and only if a and b are complex scalar multiples
of one another, and that ||a+b|| = ||a||+]|b|| if and only if a and b are positive
scalar multiples of one another. (Examine the proofs of the Cauchy-Schwarz
and triangle inequalities to see when equality holds.)

3.2 Functions and inner products

A vectora = (ay,...,a) in Ck can be regarded as a function on the set {1,...,k}
that assigns to the integer j the jth component a(j) = a;, and with this notation
we can write the inner product and norm as follows:

k . k 1/2
@b)=>"a()d{), = (Z |a(j)|2) . (3.13)
1 1

We now make a leap of imagination: Consider the space PC(a,b) of piecewise
continuous functions on the interval [a, b], and think of functions f € PC(a, b) as
infinite-dimensional vectors whose “components” are the values f(x) as x ranges
over the interval [a, b]. The operations of vector addition and scalar multiplica-
tion are just the usual addition of functions and multiplication of functions by
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constants. To define the inner product and the norm, we simply replace the sums
in (3.13) by their continuous versions, i.e., integrals:

1/2

b - b
(f,g)=/a f(x)g(x)dx, I|f||=(_/a If(X)Ide> : (3.14)

This inner product on functions evidently satisfies the linearity and symmetry
properties (3.3) and (3.4), and it is related to the norm by the equation || f| =
(f, NY?. Hence the Cauchy-Schwarz inequality, the triangle inequality, and the
Pythagorean theorem remain valid in this context, with the same proofs. Explicitly,
in terms of integrals, they say the following:

\/ / 1 (x) |2dx\/ lgx)2dx,  (3.15)
b b b
\/ / |f(x)+g(x)|2dxs\/ / |f<x)|2dx+\/ / g(x)2dx,  (3.16)

[l a5 ey

b
when /ﬁ(x)f,-(x)dx=0 for i # j.

/ fx)g(x)dx| <

and

(3.17)

The homogeneity property (3.5) of the norm, i.e., |[cf| = [c|||f]], is clearly
valid in the present situation, but there is a slight problem with the positivity
property (3.6). The integral of a function is not affected by altering the value
of the function at a finite number of points, so if f is a function on [a, b] that
is zero except at a finite number of points, then || f|| = 0 although f is not the
zero function. For the class PC(a, b) with which we are working, there are two
ways out of this difficulty. One is to use the convention suggested by the Fourier
convergence theorem, that is, to consider only functions f € PC(a,b) with the
property that

f(x) = §[f(x) + fix+)] forallx € (a,b), fla)=fla+), f(b)=S(b-).

If f € PC(a,b) satisfies this condition and f(xg) # 0, then [f(x)| > 0 on some
interval containing xg, and hence || f|| > 0. (See Exercises 6 and 7.) The other
is simply to agree to consider two functions as equal if they agree except at
finitely many points. The reader can use whichever of these devices seems most
comfortable; at any rate, we shall not worry any more about this matter.

The concepts of orthogonal and orthonormal sets of functions are defined
just as for vectors in Ck, and we can ask whether there is an analogue of Theo-
rem 3.1. That is, given an orthonormal set {¢,} in PC(a, b), can we express an
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arbitrary f € PC(a,b) as 3_(f,®n)¢dn? Here, for the first time, we have to con-
front the fact that the space PC(a,b), unlike C¥, is infinite-dimensional. This
means, in particular, that we cannot tell whether the set {¢»} contains “enough”
functions to span the whole space just by counting how many functions are in it;
after all, if one removes finitely many elements from an infinite set, there are still
infinitely many left. It also means that the sum 3 (f, ¢n)¢n Will be an infinite
series, so we have to worry about convergence. Hence there is some work to be
done; but we can see that we are on the track of something very interesting by
reconsidering the results of the previous chapter in the light of the ideas we have
just developed.
Consider the functions

dn(x) = 2m)~ V2™, p=0,%1,42,...
We regard these functions as elements of the space PC(-n,x); we then have

_ 1 g imx_inx _ 1 4 i(m—n)x _J1 ifm=n,
(Gmon) = 57 | eTemrdx=qo | e aX=10 itm#n
Thus {¢n}* is an orthonormal set. Moreover, if the Fourier coefficients ¢, of
f € PC(—nr,r) are defined as in Chapter 2, we have

=gz _7; Slxe™" dx = o Zf(x)e‘f?fdx = 2n) (£, ),
and hence
che = Y- [@0) 24,0 [(20) Pa(x)] = S-S b nlx

Thus, the Fourier series of f is just its expansion with respect to the orthonormal
set {¢n}, as one would expect from the discussion in §3.1!

Let us try this again for Fourier cosine series on the interval [0,7]. From
the trigonometric identity

cosacosh = 3 [cos(a + b) +cos(a — b)]

and the fact that

n 1 T
/ coskxdx={k" sinkx|f =0 fork #0,
0 Xjp=m for k =0,

we see that for m,n > 0,

n
/ cosmxcosnxdx = 7/ cos(m + n)x + cos(m n)x]dx
0

n ifm=n=0,
3t ifm=n#0,
0 ifm#n.
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That is, if we define

wolx) = (1/m)"2,  wa(x)=(2/7)?cosnx forn >0,
then {wx}§° is an orthonormal set in PC(0, 7). Moreover, if the Fourier cosine

coefficients a, of f € PC(0, ) are defined as before,

2(1/m)'2(f, wo) for n=0,

2 n
an = ;/0 f(x)cosnxdx = { (2/7:)1/2(fa wn) forn >0,

we have
oC

oo
jag+ Y ancosnx =3 (f, Wn)Wn(x).
0 0
The reader may verify that the trigonometric form of the Fourier series on [-7, ]
and the Fourier sine series on [0, ] are also instances of expansions with respect
to orthonormal sets.

Now, we have been a bit cavalier in this discussion. The reader will recall that
we proved the validity of Fourier expansions only for piecewise smooth functions;
for functions that are merely piecewise continuous there is no guarantee that the
Fourier series will converge at any given point. What this means is that we need
to take a closer look at questions of convergence in the context of the ideas from
vector geometry that we are now using.

EXERCISES
1. Show that {(2/1’)1/2 sin(n — %)(nx/l)}?o is an orthonormal set in PC(0, /).

2. Show that {(2/1)1/2 cos(n — 5)(nx/1)}‘l’° is an orthonormal set in PC(0, /).

3. Show that fy(x) = | and fi(x) = x are orthogonal on [-1,1], and find
constants g and b so that f5(x) = x2 + ax + b is orthogonal to both f; and
f1 on [—1, 1]. What are the normalizations of fy, fi, and f;?

4. Suppose {¢»} is an orthonormal set in PC(0,/), and let ¢} and ¢, be the

even and odd extensions of ¢, to [-/,/]. Show that {2‘1/2¢:} U {2“/2¢;}
is an orthonormal set in PC(—/,/). (Hint: First show that {2‘1/2¢I} and

{2“/2¢;} are orthonormal, and then that (¢}, ¢,,) = O for all m, n.)

5. Let {¢n : n > 0} be an orthonormal set in PC(—/,/) such that ¢, is even
when # is even and ¢, is odd when n is odd. Show that {vV2¢, : n even}
and {vV2¢, : n odd} are orthonormal sets in PC(0, /).

6. Suppose f € PC(a,b) and f(x) = %[f(x—) +f(x+)} for all x € (a,b).
Show that if f(xg) # 0 for some xq € (a,b), then f(x) # O for all x in some
interval containing Xg. (X may be an endpoint of the interval.)

7. Show that if f € PC(a,b), f >0, and fab f(x)dx =0, then f(x) =0 except
perhaps at finitely many points. (Hint: By redefining f at its discontinuities,
you can make f satisfy the conditions of Exercise 6.)
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3.3 Convergence and completeness

If we visualize a k-dimensional vector a as the point in k-space with coordinates
(ay,...,ax) rather than as an arrow, then |la — b is just the distance between the
points a and b as defined by Euclidean geometry. Accordingly, the natural notion
of convergence for vectors is that a, — a if and only if ||a, —a|| — 0. This suggests
a new definition of convergence for functions. Namely, if {f4} is a sequence of
functions in PC(a, b), we say that f, — f in norm if || f, — f| — O, that is,

b
fn— finnorm <= / [fn(x) —f(x)|2dx - 0,

Convergence of f, to f in norm thus means that the difference f, — f tends to
zero in a suitable averaged sense over the interval [a,b]. It does not guarantee
pointwise convergence, nor does pointwise convergence imply convergence in
norm. For example, let [a,b] = [0, 1]. If we define

fmx)=1 for0<x<1/n, fao(x)=0 -elsewhere,

then

2 { 5 3 1/n B
1l —/0 n(x)] d"‘/o dx = 1/n,

s0 fu — 0 in norm, but f,(0) = 1 for all n, so f, does not converge to zero
pointwise. On the other hand, if

gn(x)=n forO<x<1/n, gn(x)=0 -elsewhere,

then g, — 0 pointwise (in fact, gn(0) = 0 for all », and for any x > 0, ga(x) =0
for n > [x|™1), but

1 1/n
lanl? = [ lgntx)Pdx = [ ntdx=n,
so gn 7 0 in norm. However, we have the following simple and useful result,

Theorem 3.2. If fn — f uniformly on [a,b] (-oc < a < b < o), then fu — f in
norm.

Proof: Uniform convergence means that there is a sequence {M,} of con-
stants such that | fu(x) — f(x)| < M, for all x € [a, b] and M, — 0. But then

b b
Ifu— fI2 = / falx) = f0)Pdx < / M2dx = (b-a)M?,

so || fn — f] tends to zero along with M. |
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It should be mentioned that the norm and inner product are themselves
continuous with respect to convergence in norm; that is, if fy — f in norm, then

Il full = 1111, (fn, &) — (f,g) and (g, fu) — (g, f) forallg.

The verification is left to the reader (Exercises | and 2).

PC(a,b) fails in one crucial respect to be a good infinite-dimensional ana-
logue of Euclidean space, namely, it is not complete. This means, intuitively,
that there are sequences that look like they ought to converge in norm, but which
fail to have a limit in the space PC(a, b). The formal definition is as follows. A
sequence {an}{° of vectors (or functions or numbers) is called a Cauchy sequence
if ||am — an|| — 0 as m, n — o, that is, if the terms in the sequence get closer and
closer to each other as one goes further out in the sequence. A space S of vectors
(or functions or numbers) is called complete if every Cauchy sequence in S has
a limit in S. The real and complex number systems are complete, and it follows
easily that the vector spaces C¥ are complete for any k. The set R of rational
numbers is not: if {r4} is a sequence of rational numbers with an irrational limit,
such as the sequence of decimal approximations to 7, then {r,} is Cauchy but
has no limit in R.

One can see that PC(a, b) is not complete by the following simple example.
Take [a, b] = [0, 1], and let

fu(x)=x"Y* forx>1/n,  fu(x)=0 forx<1/n.

If m > n, fm(x) — fu(x) equals x~1/% when m~! < x < n~! and equals 0
otherwise, so

1/n 1/n
||fm_fn||2=/ x'l/zdx=2x1/2| / —2n~ V2 Yy,
1/m 1/m
which tends to zero as m,n — oc. Thus the sequence {fu} is Cauchy; but clearly
its limit, either pointwise or in norm, is the function

fx)=x7Y% forx>0, f(0)=0, (3.18)

and this function does not belong to PC(0, 1) because it becomes unbounded as
x — 0.

It is easy enough to enlarge the space PC(a, b) to include functions such as
(3.18) with one or more infinite singularities in the interval [a, b]: One simply
allows improper (but absolutely convergent) integrals in the definition of the inner
product and the norm. But even this is not enough. One can construct Cauchy
sequences {fn} in which f,; acquires more and more singularities as » increases,
in such a way that the limit function f is everywhere discontinuous — and in
particular, not Riemann integrable on any interval.

Fortunately, there is a more sophisticated theory of integration, the Lebesgue
integral, which allows one to handle such highly irregular functions. The Lebesgue



74 Chapter 3. Orthogonal Sets of Functions

theory does require a very weak regularity condition called measurability, but
this technicality need not concern us. All functions that arise in practice are
measurable, and all functions mentioned in the remainder of this book are tacitly
assumed to be measurable. For our present purposes, we do not need to know
anything about the construction or detailed properties of the Lebesgue integral; all
we need is a couple of definitions and a couple of facts that we shall quote without
proof. Rudin [47] and Dym-McKean [19] contain brief expositions of Lebesgue
integration that include most of the results we shall use; more extensive accounts
of the theory can be found, for example, in Folland [25] and Wheeden-Zygmund
[56].

We denote by Lz(a,b) the space of square-integrable functions on [a,b],
that is, the set of all functions on [a, b] whose squares are absolutely Lebesgue-
integrable over [a, b]:

Lz(a,b)={f:/b|f(x)|2dx<oo}. (3.19)

This space includes all functions for which the (possibly improper) Riemann
integral fab | f(x)|>dx converges, and one should think of it simply as the space
of all functions f such that the region between the graph of |f | and the x-axis

has finite area. Since
st< H(s?+1%)

(because s% + 12 — 25t = (s — )2 > 0) for any real numbers s and ¢, we have
Sx)g01 < § (/1 + 18(x)P),

and thus if f and g are in L?(q, b), the integral

b -
(f.g) = / f(x)gx) dx

is absolutely convergent. Therefore, the definitions of the inner product and norm
extend to the space L2(a,b), as do all their properties that we have discussed
previously.

As in the space PC(a,b), there is a slight problem with the positivity of
the norm, as the condition [|f|> = 0 does not imply that f vanishes identically
but only that the f = 0 “almost everywhere.” The precise interpretation of this
phrase is as follows. A subset E of R is said to have measure zero if, for any
€ > 0, E can be covered by a sequence of open intervals whose total length is
less than €, that is, if there exist open intervals I, I,... of lengths /;,/,... such
that E ¢ U7°I; and 3°1°/; < €. (For example, any countable set has measure
zero: If E = {x1,X3,...}, let I; be the interval of length €/2/ centered at x;.) A
statement about real numbers that is true for all x except for those x in some set
of measure zero is said to be true almost everywhere, or for almost every x.
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It can be shown that if f € L%(a,b), the norm of f is zero if and only
if f(x) = 0 for almost every x € [a,b]. Accordingly, we agree to regard two
functions as equal if they are equal almost everywhere. This weakened notion of
equality then validates the statement that || f|| = 0 only when f = 0, and it turns
out also to be appropriate in many other contexts. Moreover, if two continuous
functions are equal almost everywhere then they are identically equal, so for
continuous functions the ordinary notion of equality is entirely adequate.

The crucial properties of Lz(a, b) that we shall need to state without proof
are contained in the following theorem,

Theorem 3.3. (a) L(a,b) is complete with respect to convergence in norm. (b)
For any f € L*(a,b) there is a sequence f, of continuous functions on [a, b] such
that fu — f in norm. In fact, the functions f, can be taken to be the restrictions
to [a, b] of functions on the line that possess derivatives of all orders at every point;
moreover, the latter functions can be taken to be (b — a)-periodic or to vanish
outside a bounded set.

This theorem says that L%(a, b) is obtained by “filling in the holes” in the
space PC(a,b). The first assertion says that all the holes have been filled, and
the second one says that nothing extra, beyond the completion of PC(a,b), has
been added in. For a proof, see Rudin [47], Theorems 11.38 and 11.42. We
shall indicate how to prove the second assertion — that is, how to approximate
arbitrary L? functions by smooth ones — in §7.1.

We are now ready to discuss the convergence of expansions with respect
to orthonormal sets in PC(a,b), or more generally in L?(a,b). The first step
is to obtain the general form of Bessel’s inequality, which is a straightforward
generalization of the special case we proved in §2.1.

Bessel’s Inequality. If {¢x}$° is an orthonormal set in Lz(a,b) and f € L(a,b),
then

SIS e < AP (3.20)
1

Proof: Observe that

(f:f9m¢n) = L @a)( Sy 8n) = [f: bm)

and that by the Pythagorean theorem,

Hijj(f, bn)n

2 N
=ST 1 e
1
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Hence, for any positive integer N, by Lemma 3.1,
2

N
0< “f— S0

2

= If1? - 2Re<f, ZTj(f, ¢n>¢n> 4 “ﬁ:(f, on)n

N N
= A1 =23 1 + D1 dn)
1 1

N

= 1117 = S 1S dm)l%.

1
Letting N — oo, we obtain the desired result. |

We are now concerned with the following problem: given an orthonormal
set {¢n}$° in L%(a,b), is it true that

oo
EDIA Y (3.21)
1
for all f € L?(a,b)? First we assure ourselves that the series on the right actually
makes sense.

Lemma 3.2. If f € L*(a,b) and {¢n} is any orthonormal set in L*(a, b), then the
series 3 (f,&n)bn converges in norm, and ||Z(f, én)bn| < |If]I-

Proof: Bessel’s inequality guarantees that the series 3 |(f, ¢n)|? converges,
so by the Pythagorean theorem,

n

S (S dn)én

m
Thus the partial sums of the series >_(f, ¢n)¢n form a Cauchy sequence, and
since L2(a, b) is complete, the series converges. Finally, another application of
the Pythagorean theorem and Bessel’s inequality gives

oc 2 2 N
DA = Jim, 321, 0n)

2 n
=Z|(f,¢n>|2—'0 as m,n — oc.
m

N
= ,ggnm\i;<f,¢n>¢n

=SS om)? < IS I
1

Now, an obvious necessary condition for (3.21) to hold for arbitrary f is that
the orthonormal set {¢x} is as large as possible, that is, that there is no nonzero
S which is orthogonal to all the ¢n’s. (If (f, d») = 0 for all n, then (3.21) implies
that f = 0.) Moreover, if (3.21) holds and the Pythagorean theorem extends to
infinite sums of orthogonal vectors, Bessel’s inequality (3.20) should actually be
an equality. With these thoughts in mind, we arrive at the main theorem.
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Theorem 3.4. Let {¢}$° be an orthonormal set in L(a,b). The following condi-
tions are equivalent:
(a) If (f,¢n) = 0 for all n, then f = 0.
(b) For every f € L*(a,b) we have f = S"5°(f, ¢n)dn, Where the series converges
in norm.
(c) For every f € L?(a,b), we have Parseval’s equation:

DT (3.22)

1

Proof: We shall show that (a) implies (b), that (b) implies (c), and that (c)
implies (a).

(a) implies (b): Given f € L?(a, b), the series ¥(f, #n)¢n converges in norm,
by Lemma 3.2. We can see that its sum is f by showing that the difference
g=[—3(f,én)¢n is zero. But

(&, dm) = (f, dm) — Zf¢n Y bn, &m) = (f, dm) — (f,m) =

for all m. Hence, if (a) holds g=0.
(b) implies (c): If £ = 3>(f, ¢n)én, then by the Pythagorean theorem,

2

= N“l“ooz“f’ $n)|? = Z|<f, ¢n)?
1 1

(c) implies (a): If (c) holds and (f,¢n) = O for all » then || f|| = 0, and
therefore f = 0. 1

An orthonormal set that possesses the properties (a)—(c) of Theorem 3.4 is
called a complete orthonormal set or an orthonormal basis for L?(a, b). This usage
of the word complete is different from the one discussed earlier in this section,
but it is obviously appropriate in the present context. If {¢n} is an orthonormal
basis of L(a, b) and f € L*(a, b), the numbers (f, ¢) are called the (generalized)
Fourier coefficients of f with respect to {¢n}, and the series 3_(f, ¢n)odn is called
the (generalized) Fourier series of f.

Often it is more convenient not to require the elements of a basis to be
unit vectors. Accordingly, suppose {¥x} is an orthogonal set (and recall that,
according to our definition of orthogonal set, this entails y, # O for all n). Let
®n = ||Wnl~'wn; then {#n} is an orthonormal set. We say that {y»} is a complete
orthogonal set or an orthogonal basis if {¢»} is an orthonormal basis. In this case
the expansion formula for f € L?(a, b) and the Parseval equation take the form

- (fs wn) (S, wn) 2
r=%4 ||w||2”’ HEDIE S (3.23)

Now, what about the orthonormal sets derived from Fourier series that we
discussed in §3.2? We have not yet proved that they are complete, for we derived
the expansion formula f = 3(f, ¢n)én only when f was piecewise smooth, not
for an arbitrary f € L?(a, b). But there is actually very little work left to do.

117 = ,gignm\]¥<f, Sn)n
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Theorem 3.5. The sets

; oc oc . oo
{e"“‘} and {cos nx} U {sm nx}
n=—o00 n=0 n=1

are orthogonal bases for L*(—n,n). The sets

00 . oo
{cos nx} 0 and {sm nx}
n=

n=

are orthogonal bases for L?(0, ).

Proof: First consider the functions wn(x) = e"*. Suppose f € L¥(-n,7)
and ¢ is a (small) positive number; we wish to show that the Nth partial sum of the
Fourier series of f approximates f in norm to within € if N is sufficiently large.
By part (b) of Theorem 3.3, we can find a 2z-periodic function f possessing
derlvanves of all orders, such that ||f — f|| <€/3. Leten = (2m)~(f, wn) and
Zn = (21)~1(f, wn) be the Fourier coefficients of f and f. By Theorem 2.5 of
§2.3, we know that the Fourier series Y Cnn converges uniformly to f ; hence,
by Theorem 3.3, it converges to f in norm. Thus, if we take N sufficiently large,

we have
_ N
-
—N
Moreover, by the Pythagorean theorem and Bessel’s inequality,
N N 2 N
DICAZED AT IS WAL
-N -N -N

<Y -l < IF - 12 < (5)".

Thus, if we write
N . _ N N N
- ch‘l/n = (f— f) + (f— Zznl//n) + (ZEan - ZCIIWII)
—-N -N —N -N
and use the triangle inequality, we see that

Hf— i‘cn Wn
-N

+i+i=c
3T3°C

This proves the completeness of the set {w,} = {ei”x} in Lz(—n,n), and the
completeness of {cos nx}U{sin nx} is essentially a restatement of the same result.
The completeness of {cos nx} and {sin nx} in L2(0, x) is an easy corollary. (Just
consider the even or odd extension of f € L%(0,7) to [-7, 7].) |
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The normalizing constants for the functions in Theorem 3.5 are, of course,
V1727 for e, Vv 1/m for cosnx and sinnx on [-x, n] (except for n = 0), and
\/2/n for cos nx and sin nx on [0, ] (except for n = 0). With this in mind, one
easily sees that the Parseval equation takes the form

n o0 o0
24, _ 2_T 2 2 2 2,
[l dx=2m3 el = Jlaof + 1) (anl +107). S Li-mm)
where an, bn, and ¢, are the Fourier coefficients of f as defined in §2.1, and
i 2. T2 T o M= 2 2
| ePdx = Glal +#35 lel = 33l SeLiom,

where a, and b, are the Fourier cosine and sine coefficients of f as defined in
§2.4. For example, if we consider the Fourier sine series of f(x) = x on [0, 7] as
derived in §2.1, we find that

2

T 4 n 5 _7[3 s 1_7t
7;F_/oxa'x_7’ or ;F_T’

a result which we derived by other means in Exercise 3, §2.3.
Let us sum up our theorems about the convergence of Fourier series. If f is

a periodic function, then the Fourier series of f converges to f

(i) absolutely, uniformly, and in norm, if f is continuous and piecewise smooth;
(ii) pointwise and in norm, if f is piecewise smooth;
(iii) in norm, if f € L%(a, b).
These results are sufficient for virtually all practical purposes. However, as we
indicated in §2.6, there is more to be said on the subject. Here we shall just
mention one more result that is a natural generalization of the theorems in this
section. If 1 < p < oo, we define L?(a, b) to be the space of Lebesgue-integrable
functions f on [a, b] such that

/b If(xX)Pdx < oc.

If p > 1, the Fourier series of any f € L?(—n, n) converges to f in the “L? norm,
that is, if {cn} are the Fourier coefficients of f,

/

However, this result is false for p = 1.

k1]

N . P
che‘""—f(x)‘ dx -0 asN — .
N

EXERCISES
1. Show that if f, € L%(a,b) and f, — f in norm, then {fy, g) — (f, g) for all
g € L%(a,b). (Hint: Apply the Cauchy-Schwarz inequality to (fx — f, g).)
2. Show that \ WA= lgll \ < ||f — gll- (Use the triangle inequality; consider the
cases || f]| > |lgll and ||f]| < || g]| separately.) Deduce that if f, — f in norm
then || full = [I/1l.
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Show directly that any f € PC(a,b) is the limit in norm of a sequence of
continuous functions on [a, b], by the argument suggested by the following
picture,

= lim

. Suppose {¢x} is an orthonormal basis for L*(a,b). Suppose c > 0andd € R,

and let t//,,( x) =c'"?¢n(cx + d). Show that {wn} is an orthonormal basis for
LZ(a d —d)

. Flmsh the proof of Theorem 3.5. That is, from the completeness of {¢'"*}

on [-=,n], deduce the completeness of {cosnx} U {sinnx} on [-=#, ] and
the completeness of {cosnx} and {sinnx} on [0, #].
Let ¢n(x) = (2/1)"/?sin(n — })(nx/!). In Exercise 1, §3.2, it was shown that
{¢x}5° is an orthonormal set in L?(0,/). Prove that it is actually a basis, via
the following argument,
a. Let y(x) = [7Y/2sin(knx/2/). Show that {y,}$° is an orthonormal
basis for L2(0,2/). (This follows from Theorem 3.5 and Exercise 4.)
b. If f € L?(0,/), extend f to [0, 2/] by making it symmetric about the line
x = [, that is, define the extension f by fix) = flal — x) = f(x) for
x € [0,/]. Show that (f, ¥y,) = 0 and , Wan—1) = 212(f, dn).
c. Conclude that if (f, ¢n) = 0 for all n, then f = 0.

. Show that {(2/1)1/2 cos(n — 7)(7zx/1)}?° is an orthonormal basis for L2(0, /).

(The argument is similar to that in Exercise 6, but this tlme you should
extend f to be skew-symmetric about x = /, that is, f (2l —x) = - f (x) =
- f(x) for x € [0,1].)

. Find the expansions of the functions f(x) = 1 and g(x) = x on [0,/] with

respect to the orthonormal bases in Exercises 6 and 7.
Suppose {¢n} is an orthonormal basis for L2(a, b). Show that for any f, g €

L?(a,b),
(fi g) = Z(f’ ¢n)(g, ¢H)

(Note that the case f = g is Parseval’s equation.)
Evaluate the following series by applying Parseval’s equation to certain of
the Fourier expansions in Table 1 of §2.1.

o | 00 1 00 n2
& ;n_“ b. ;(Zrz—l)ﬁ ¢ Zl:(n2+l)2
&, sin’ na
d. Zl: m (0<a<n)
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11. Suppose f is of class C{!), 2z-periodic, and real-valued. Show that f” is
orthogonal to f in L?(—=,7) in two ways: (a) by expanding f in a Fourier
series and using Exercise 9 and (b) directly from the fact that 21" = (f2)'.

3.4 More about L? spaces; the dominated convergence theorem

In this section we continue the general discussion of L? spaces and introduce
an extremely useful criterion for the integral of a limit to equal the limit of the
integrals.

Other types of L? spaces

The results of the previous section concerning L2(a,b) can be generalized in
various ways, and we shall need some of these generalizations later on.

First, one can replace the element dx of linear measure on [a,b] by a
weighted element of measure, w(x) dx. To be precise, suppose w is a continuous
function on [a, b] such that w(x) > 0 for all x € [a, b]; we call such a w a weight
function on [a,b]. We can then define the “weighted L? space” L2 (a, b) to be the
set of all (Lebesgue measurable) functions on [a, b] such that

b
/ (0 Pw(x) dx < oo,

and we define an inner product and norm on L2 (a,b) by

b L 5 1/2
(f,g)w=/a S(x)g(x)w(x)dx, ||f||w=(/a If(X)Izw(X)dX) .

This inner product and norm still satisfy the fundamental conditions (3.3)-(3.6),
so the theorems of §3.1 apply in this situation. So do Theorems 3.2, 3.3, and 3.4.
w could also be allowed to have some singularities, as long as fab w(x)dx < oo,
or to vanish at a few points. (If w vanishes on a whole subinterval of [a, b], one
loses the strict positivity of the norm.)

Second, one can replace the bounded interval [a, b] with a half-line or the
whole line, or by a region in the plane or in a higher-dimensional space. That is,
let D be a region in R¥. (A “region” can be anything reasonable: an open set, or
the closure of an open set, or indeed any Lebesgue measurable set. It does not
have to be bounded, and indeed may be the whole space.) We define L2(D) to
be the set of all functions f such that

/ f(%)12dx < oo,
D

and we define the inner product and norm on L?(D) by

)= [ S0zmax ISl = ( / lf(x)lzdx>1/2.
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Here [, is a k-tuple integral, and dx is the element of Euclidean measure in
k-space (length when k = 1, area when k = 2, volume when k = 3, etc.). If one
is working only with Riemann integrals, one has to worry a bit about improper
integrals when D is unbounded, but this problem is not serious. (The Lebesgue
theory handles integrals over unbounded regions rather more smoothly.) Again,
this inner product and norm satisfy (3.3)—(3.6), so the results of §3.1 are available,
as is Theorem 3.4. However, the analogue of Theorem 3.2 is false when D is
unbounded (or more precisely, when D has infinite measure), and a glance at its
proof should show why. (See Exercise 6.) We shall state a result shortly that can
be used in its place.
Theorem 3.3 also needs to be reformulated; here is one good version of it.

Theorem 3.6. L2(D) is complete. If f € L*(D), there is a sequence {fx} that
converges to f in norm, such that each fn is continuous on D and vanishes outside
some bounded set. The fy's can be taken to be restrictions to D of functions defined
on all of R that have derivatives of all orders and vanish outside bounded sets.

One can also modify L?(D) by throwing in a weight function, as before.
As a matter of fact, all one needs to develop the ideas of §3.1 are the following
ingredients:
(i) a vector space #, that is, a collection of objects that can be added to each
other and multiplied by complex numbers, such that the usual laws of vector
addition and scalar multiplication hold;
(ii) an inner product (4, v) on # and associated norm ||u|| = (i, u)'/? that satisfy
(3.3)-(3.6).
If, in addition, the space # is complete with respect to convergence in norm, it
is called a Hilbert space. In this case, Bessel's inequality and Theorem 3.4 also
hold. This general setup includes, but is not limited to, the spaces C¥, L%(a, b),
L% (a,b), and L?(D) discussed above.

Another example of a Hilbert space is the space /2 of square-summable se-
quences. That is, the elements of /2 are sequences {cx}° of complex numbers
such that 3°%° |cx|? < oo, and the inner product and norm are defined by

o o 1/2
<{Cn}’{dn}> = chan, “{Cn}H = (ZICnIZ) .
I 1

We have encountered this space before without mentioning it explicitly. Indeed,
suppose {¢»}$° is an orthonormal basis for L?(a,b). Then the mapping that

takes an f € L?(a, b) to its sequence of coefficients {( £, ¢n)} sets up a one-to one

correspondence between L2 (a, b) and /2 that is linear and (by Parseval’s equation)
norm-preserving. Such a mapping is called a unitary operator.

One further comment: We suggested thinking of functions f € L%(a,b) as
vectors whose components are the values f(x), x € [a, b]. The reader who knows
about orders of infinity may be puzzled that there are uncountably many such
“components,” and yet the orthonormal bases we have displayed are countable



3.4 More about L? spaces; the dominated convergence theorem 83

sets. The explanation is that the elements of L2(a, b) are continuous functions or
limits in norm of continuous functions, and the values of a continuous function
are not completely independent of each other. For example, if f is continuous
on [a,b], then f is completely determined by its values at the rational points in
[a, b], of which there are only countably many.

The dominated convergence theorem

We now state one other result from the Lebesgue theory of integration that is
of great utility even in the setting of Riemann integrable functions. It gives a
general condition under which the integral of a limit is the limit of the integrals,
and is an improvement on most of the theorems of this sort that one commonly
encounters in calculus texts. We shall use it frequently throughout the rest of this
book.

The Dominated Convergence Theorem. Ler D be a region in R* (k = 1,2,3,...).
Suppose gn (n=1,2,3,...), g and ¢ are functions on D, such that

(a) ¢(x) >0 and [, ¢(x)dx < o,

(b) 1gn(x)| < ¢(x) for all n and all x € D,

(c) gn(x) — g(x) as n — oc for all x € D.

Then [p, gn(x)dx — [;, g(x) dx.

The proof of this theorem is beyond the scope of this book (see Rudin [47],
Folland [25], or Wheeden-Zygmund [56]), but the intuition behind it can be easily
explained. If g» — g pointwise, how can the relation [, g» — [, g fail? Consider
the following two examples, in which D is the real line:

(x)=1 forn<x<n+1, fa(x)=0 otherwise.
gn(x)=n for0<x<l/n, gn(x) =0 otherwise.

We have
/ fn(x)dx=/ gn(x)dx =1 foralln,

but limp—oo fu(Xx) = limp—oo gn(x) = 0 for all x. The trouble is that as n — oo,
the region under the graph of f, moves out to infinity to the right, and the region
under the graph of g, moves out to infinity upwards, so in the limit there is
nothing left. (See Figure 3.3.)

Now, the dominated convergence theorem essentially says that if this sort
of bad behavior is eliminated, then the integral of the limit is the limit of the
integrals. Hypothesis (a) says that the region under the graph of ¢ has finite area,
and hypothesis (b) says that the graphs of |gn| are trapped inside this region, so
they cannot leak out to infinity.

As a corollary, we obtain the following relation between pointwise conver-
gence and convergence in norm.
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fn gn

FiGURE 3.3. The examples f, and g, of sequences for which the integral of
the limit is not the limit of the integral. The arrows indicate what happens
as n increases.

Theorem 3.7. Suppose fn € L*(D) for all n and fy, — f pointwise. If there exists
w € L¥(D) such that |fx(x)| < |w(x)| for all n and all x € D, then fy — f in
norm.

Proof We have |f(x)| = lim |fy(x)| < |w(x)|, and hence
) = 001 < (a0l +1£00)1) < 2000

Therefore, we can apply the dominated convergence theorem, with g, = | fu—f 2,
g =0, and ¢ = |2y|?, to conclude that

Ifo = fI2 = /D %) = F(X)12dx — 0. '

Best approximations in L*

If {¢n} is an orthonormal basis for L?(D), where D is any interval in R or region
in R", we have S(f, ¢n)n = f for all f € L?(D). On the other hand, suppose
{¢n} is an orthonormal set in L2(D) that is not complete. If f € L?(D), what
significance can we attach to the series 3_(f, &n)d.? We know that it converges
by Lemma 3.2. In general its sum will not be f, but it is the unique best approx-
imation to f in norm among all functions of the form 3_ cnén. (The latter sum
converges in norm precisely when 3" |cn|? < oc, as the argument used to prove
Lemma 3.2 shows.) We state this result as a theorem.

Theorem 3.8. If {¢n} is an orthonormal set in L*(D) and f € L*(D), then

TED ML

< Hf— > cntn

for all choices of cn with 3~ |cn|* < o0o. Equality holds only when cn = (f, ¢n) for
all n.
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Proof: We have

f=Fentn= (1=, 6n)n ) + T (Uf100) = en)

Now, f — 3>(f,®n)¢n is easily seen to be orthogonal to all ¢,; see the first part
of the proof of Theorem 3.4. Hence, by the Pythagorean theorem (and a simple
limiting argument, if there are infinitely many ¢,),

“f— Y " cndn

The last sum on the right is clearly nonnegative, and it is zero precisely when
cn = {f, ®n) for all n; this establishes the theorem. 1

2 2 3
= | £ =S Umen| + Zfis om0 -

FiGURE 3.4. A vector f and its orthogonal projection onto a plane.

The pictorial intuition behind Theorem 3.8 is shown in Figure 3.4. The
horizontal plane represents the space of functions (or vectors) of the form 3~ cn¢a;
the sum Y"(f, #n)®n is the closest point to f in this plane, namely, the orthogonal
projection of f onto the plane.

One situation in which Theorem 3.8 is particularly useful is when {¢x} is
simply a finite subset of an orthonormal basis.

Corollary 3.1. Suppose {¢x}$° is an orthonormal basis for L*(D). If f € L*(D),
the partial sum ¥V (f, dn)dn of the series S°(f, én)dn is the best approximation
in norm to f among all linear combinations of ¢1,...,dn.

EXERCISES

1. Show that {ezni(mx+ny)}
mn=—oo

any square whose sides have length one and are parallel to the coordinate
axes.

2. Find constants a, b, 4, B, C such that fo(x) = 1, fi(x) = ax +b, and f5(x) =
Ax?+ Bx +C are an orthonormal set in L2 (0, oc) where w(x) = e~*. (Hint:
oS x"e ™ dx =n!)

oc .
is an orthonormal set in L%(D) where D is
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3. Let D be the unit disc {x2 + y2 < 1}, and let fy(x,y) = (x + iy)". Show that
{/n}3° is an orthogonal set in L*(D), and compute || fy|| for all n. (Hint: In
polar coordinates, x + iy = re'® and dxdy = rdrdf.)

4. Suppose {¢n} is an orthonormal set in L2 (D). Show that {w!/2¢,} is an
orthonormal set in L2(D) (with respect to the weight function 1).

5. Suppose f : [a,b] — [c,d] and f'(x) > O for x € [a, b]. Show that if {¢,} is
an orthonormal basis for L2(c,d), then {¢n o f} is an orthonormal basis for
L%(a,b) where w = f.

6. Find an example of a sequence {f»} in L2(0, oc) such that f, — 0 uniformly
but fy # 0 in norm.

7. What is the best approximation in norm to the function f(x) = x on the
interval [0, z] among all functions of the form (a) ag + a; cos x + a; cos 2x,
(b) b sinx + by sin 2x, (c) acos x + bsin x?

3.5 Regular Sturm-Liouville problems

In §1.3 we arrived at the orthogonal bases {cos nx}3° and {sin nx}{° for L?(0,m)
by solving the boundary value problems

u'(x)+iux)=0, W(0)=u(r)=0

and
u'(x)+22u(x)=0,  u(0)=u(n)=0.

We derived the orthogonal basis {¢/"*}>, for L(—n, n) by considering periodic
functions, but we could also have found it by solving the boundary value problem

W'(x)+2%ux)=0, u(-n)=u(n), u'(-n)=u'(n).

In fact, there is a large class of boundary value problems on an interval [a, b]
that lead to orthogonal bases for L%(a, b). These problems are the subject of the
present section.
First, a bit of conceptual background from finite-dimensional linear algebra.
We recall that a linear transformation T : Ck — Ck is called self-adjoint or
Hermitian if
(Ta,b) = (a, Th) for all a,b € C*.

(When T is described by a matrix (Tj;), this means that T}; = T;;.) It is one of
the basic results of linear algebra, known as the spectral theorem or the principal
axis theorem, that whenever T is self-adjoint there is an orthonormal basis of Ck
consisting of eigenvectors for 7. What we are aiming for is an analogue of this
theorem for differential operators acting on the space L?(a, b).

Suppose then that S and 7T are linear operators that are defined on certain
subspaces & and D7 of L%(a,b) and map them into L%(a,b). We say that S
and T are adjoint to each other (or that T is the adjoint of S, or vice versa) if

(S(),8)=(/,T(g)) forall fePsand g € .
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S is called self-adjoint or Hermitian if

(SN, &) =(f,S(g)) forall f,g € Ds.

(These definitions will suffice for our purposes; in more advanced work one needs
to be more careful about specifying the domains &5 and Zr.)
Now suppose L is a second-order linear differential operator,

Lf)=rf"+qf +pf,

where r, g, and p are real functions of class C(?) on [a,b]. We shall assume that
the leading coefficient r is nonvanishing on [a, b], as the existence of “singular
points” where r = 0 complicates the theory considerably. (Later we shall some-
times allow r to vanish at one or both endpoints.) For the time being, we take
the domain of L to be the space of all twice continuously differentiable functions
on [a,b].

What is the adjoint of L? If we write out the integral defining (L(f), g), we
can move the derivatives from f onto g by integration by parts, thus:
b
a’

[ergas=- [ rugraxsrrgl = [ soptax+ 13- )]

/ab(qf’)?dx =- /ab flgg)dx + qf?lz.

We therefore have
b
wing) = [[of +af +pNEdx

-/ ’ f[®)" ~ (a8 +pB]dx + 1B~ fr8) +arg]. (329
= (L L) + [r'E - 1) + - 1)rE].

a

where L* is the formal adjoint of L defined by
L*(g)=(rg)" - (qg8) +pg=rg" +(2r —q)g' + (""" —¢' +p)g.  (3.25)

(Here we have used the assumption that r, ¢, and p are real.) We say that L is
formally self-adjoint if L* = L. On comparing the coefficients of L* with L, we
see that this happens precisely when 2¢' — g = ¢ and r" — ¢’ = 0, that is, when
g = r'. In this case, L has the form

LfN)=rf"+rf +pf=(rf) +pf, (3.26)

and moreover, the second boundary term at the end of (3.24) vanishes. We have
therefore proved the following.
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Lagrange’s Indentity. If L is formally self-adjoint,
b
L(f).8) = (L&) + [nS'E - 18] . (3.27)

Evidently the discrepancy between formal and actual self-adjointness lies in
the endpoint terms in (3.27). They can be eliminated by restricting L to a smaller
domain, consisting of functions that satisfy suitable boundary conditions. More
precisely, for a second-order operator L it is usually appropriate to impose two
independent boundary conditions of the form

Bi(f) = e1f(a) + LS (@) + BuS(B) + LS(B) = O, (3.2
By(f) = aaf(a) + o3 f'(a) + Bof (b) + B3f'(b) =
where the o’s and f’s are constants. We say that the boundary conditions (3.28)
are self-adjoint (relative to the operator L) if

[r(f’?— f‘g’)]: =0 forall f, g satisfying (3.28).

Almost all the boundary conditions that arise in practice are of the form
a)+a' fi(a)=0, BfL)+B'f'(b)=0

(@', 8.8 R (a,0)) #(0,0 (5,8 #(0,0)).

Boundary conditions of the form (3.29) are called separated, since each one in-
volves a condition at only one endpoint. Separated boundary conditions are
always self-adjoint (relative to any operator L). In fact, if f and g both satisfy
the boundary condition at a,

af(a)+<o'f'(a)=0, ogla)+a'g'(a) =0, (3.30)

then the expression r(f'g — fZ') vanishes at x = a; likewise at 5. This is obvious
when o = 0, in which case (3.30) becomes f(a) = g(a) = 0; on the other hand,
if o’ # 0, we can rewrite (3.30) as

flay=cfla), g'(a)=cgla) (c=-a/d),

(3.29)

so that
r(a)[f'(a)g(a) - fla)g'(@)] = cr(a)[f(a)g(a) — f(a)g(a)] = 0.

There is also one set of nonseparated boundary conditions that is commonly
used, namely, the periodic boundary conditions

fla)y=f(b),  fla)=["(b). (3.31)

These are self-adjoint relative to L provided that r(a) = r(b), for then the end-
point evaluations at @ and b in (3.27) cancel each other out.

Now we are ready to formulate the boundary value problems that lead to
orthogonal bases for L%(a, b).
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Definition. A regular Sturm-Liouville problem on the interval [a, b] is specified by
the following data:
(i) a formally self-adjoint differential operator L defined by L(f) = (rf") +pf,

where r, ¥, and p are real and continuous on [g, b] and r > 0 on [a, b];

(ii) a set of self-adjoint boundary conditions, B (f) = 0 and B;(f) = 0, for the
operator L;

(iii) a positive, continuous function w on [a, b].

The object is to find all solutions f of the boundary value problem

L) +mwf =0, ie, [r(x)f'(x)] +p(x)f(x) + Aw(x) f(x) =0,
B(f) = B(f) =0,

(3.32)

where . is an arbitrary constant.

(A comment on condition (i): We have assumed from the outset that » does
not vanish on [a, b], so either r > 0 or r < 0. If r < 0, we simply replace r, p,
and A by —r, —p, and —4, which leaves (3.32) unchanged.)

For most values of 4, the only solution of (3.32) is the trivial one, f(x) =0.
If (3.32) has nontrivial solutions, 4 is called an eigenvalue for the Sturm-Liouville
problem, and the corresponding nontrivial solutions are called eigenfunctions.
(This usage of the term eigenvalue is somewhat specialized. A is an eigenvalue
in the usual sense of the word, not of the operator L but rather of the operator
M defined by M(f) = —w~'L(f).) If f and g satisfy (3.32), then so does any
linear combination ¢ f + ¢y g (this is just the superposition principle at work),
so the set of all eigenfunctions for a given eigenvalue 2, together with the zero
function, is a linear space called the eigenspace for A.

We summarize the elementary properties of eigenvalues and eigenfunctions
in the following theorem, which displays the importance of eigenfunctions from
the point of view of orthogonal sets. We recall that if w > 0 is a weight function
on [a, b], the weighted inner product (f, g}, is given by

b -
8w = / f(x)gEw(x)dx = (wf,g) = (f we). (3.33)

Theorem 3.9. Let a regular Sturm-Liouville problem (3.32) be given.

(a) All eigenvalues are real.

(b) Eigenfunctions corresponding to distinct eigenvalues are orthogonal with re-
spect to the weight function w; that is, if f and g are eigenfunctions with
eigenvalues A and i, . # u, then

b —
8w = / S(x)g@w(x) dx = 0.

(c) The eigenspace for any eigenvalue J. is at most 2-dimensional. If the boundary
conditions are separated, it is always 1-dimensional.
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Proof: (a) If i is an eigenvalue, with eigenfunction f, then
Af = Gwf, )y = —(LUL N = ~(LLU) = fawf) =X f,wf) = 1S .

Here we have used (3.27) and (3.33) and the fact that f satisfies self-adjoint
boundary conditions. Since || f]|3 > 0, we conclude that 2 = 4, that is, 4 is real.

(b) Suppose L(f) + swf = 0 and L(g) + uwg = 0, where f and g are
nonzero. We have just shown that A and x4 must be real, and by the same sort of
argument,

Mf, 8)w=(Awf,g)=—(L(f),8) =—(f,L(g)) = (fuwg) = u(f, &)w.

Thus, if 4 # u we must have (f, g)w = 0.

(¢) The fundamental existence theorem for ordinary differential equations
(see Appendix 5) says that for any constants ¢; and ¢, there is a unique solution
of L(f) + Aw f = 0 satisfying the initial conditions f(a) = ¢;. f'(a) = ¢,. That
is, a solution is specified by two arbitrary constants ¢; and c;, so the space of
all solutions of L(f) + Awf = 0 is 2-dimensional. Hence the space of solutions
satisfying the given boundary conditions is at most 2-dimensional. Moreover,
if the boundary conditions are separated, one of them has the form af(a) +
o f'(a) = 0. This imposes the linear relation ac; + o’c; = 0 on the constants c;
and ¢; and hence reduces the dimension of the solution space to one. (Of course
the other boundary condition will usually reduce the dimension to zero; this is
why there are nontrivial solutions only for certain special values of A.) |

At this point it is not evident that a given Sturm-Liouville problem has any
eigenfunctions at all. But, in fact, there are as many as anyone could wish for.

Theorem 3.10. For every regular Sturm-Liouville problem
(rfY +pf+iwf=0, By(f)=By(f)=0

on [a, b}, there is an an orthonormal basis {¢n}$° of L% (a,b) consisting of eigen-
Sfunctions. If Ay is the eigenvalue for ¢n, then limy—oo An = +00. Moreover, if f
is of class C@ on [a, b] and satisfies the boundary conditions B,(f) = By(f) =0,
then the series 3 (f, én)én converges uniformly to f.

In more detail, the content of Theorem 3.10 is as follows. By Theorem 3.9(c),
for each eigenvalue A there are either one or two independent eigenfunctions. In
the latter case we can choose the two eigenfunctions to be orthogonal to each other
with respect to the weight w. (If (f}, 2)w # 0, we can replace f2 by f, = f,—cf;
where ¢ is chosen to make (f}, f,) = 0.) If we put all these eigenfunctions
together, by Theorem 3.9(b) we obtain an orthogonal set; and Theorem 3.10
says that this set is actually a basis. This implies, in particular, that the set of
eigenvalues is countably infinite.

We shall take Theorem 3.10 on faith for the present, but we shall prove it in
the case of separated boundary conditions in §10.3. A proof of the general case,
as well as its generalization to higher-order differential equations, can be found
in Naimark [40], Chapter II.



3.5 Regular Sturm-Liouville problems 91

Example. Consider the problem
ff+af=0,  f(0)=af(0), S)=4S). (3.34)

First let us dispose of the case A = 0. The general solution of f” =01is f(x) =
¢1 + ¢2x. The boundary condition at O says that ¢; = acy, and the boundary
condition at / says that ¢, = f(c;+c,/). The only solution of this pair of equations
isc; = ¢; = 0 unless f = o/(1 +/a), in which case we may take ¢, = 1l and ¢; = a.

Now for 4 # 0, let us set A = v, where v is positive real or positive imaginary
according as 2 > 0 or 2 < 0. (By Theorem 3.9(a), we need only consider real A.)
The general solution of the differential equation f” +Af =0 is

f(x)=cicosvx +cysinvx (1:,,2),

Since f(0) = ¢; and f'(0) = vc¢,, the boundary condition at O says that ¢; =
(a/v)cy. Since a constant multiple of a solution is a solution, we may choose
¢ =V, ¢3 = a, SO that

f(x)=vcosvx + asinvx. (3.39)

Now the boundary condition at / says that

—v¥sinvl + avcosvl = B(vcosvl + asinvl),

or
(a— B)vcosvl = (aff +v?)sinvl,
or finally p
_(a=B)
tanv/ = TR (3.36)

For the case of imaginary v (i.e,, 4 < 0) we set v = iu and use the fact that
tan ix = itanh x to rewrite (3.36) as

tanh uf = (2= B)K (3.37)

aff —p?’
In both cases we need only consider positive values of v and u, since the actual
eigenvalue is v? or —u?.

If v satisfies (3.36), then the function f defined by (3.35) is an eigenfunction
for the problem (3.34). In general it is not normalized, but finding the normal-
ization is a simple matter of calculus, and the equation (3.36) can often be used
to simplify the result. As an illustration, let us work out the case f# = —a. (Other

cases are considered in Exercises 5 and 6.) If f is given by (3.35), then

2

{
1f1% = / (v? cos? ux + 2ow sinvx cosvx + o?sin® vx)dx
0

!

cosvxsinvx)
0

{ 1

= [%uz(x +v ' cosvxsinvx) + asin® vx + %az(x v

cosvisinvl + asin? vl.
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But if § = —a, (3.36) gives

(wt-ao?) o _ acosvl
v tanwv!~ sinv/’
SO
11?2 = $(v? + o)l + efcos? v +sin? vl) = (12 + @) + c. (3.38)

There is no way to describe the values of v and u that solve the transcendental
equations (3.36) and (3.37) in closed form (except when o = ), but it is easy to
find them graphically. Namely, they are the values at which the curves y = tan v/
and y = (a—fB)v/(af+v?) in the vy-plane, or y = tanh u/ and y = (a—f)u/(af -
uz) in the uy-plane, intersect. The relative configuration of these curves depends
on o and f; we shall display a couple of representative cases here and let the
reader work out some others as exercises.

Casel o =1, f = -1,/ =rn. Here the situation is as depicted in Figure 3.5.
There is an infinite sequence of positive solutions to (3.36), say v; < vy < ---,
and vy, is approximately n — | when n is large. There are no positive solutions
to (3.37). Hence, there is an infinite sequence of positive eigenvalues A, = v?
for (3.34), with A, ~ (n — 1)? for n large, and no negative eigenvalues. (Zero is
not an eigenvalue since —1 # 1/(1 + n).) The (unnormalized) eigenfunctions are
given by (3.35):

Jn(X) = vncosvpx + sinvpx.

» S L L - e
T T T 1
RS VANY) V3 12 Vs X

FIGURE 3.5. Left: the graphs of tanznv (solid) and 2v/(v? — 1) (dashed);
the numbers v, are the values of v at which the graphs intersect. Right: the
graphs of tanhzyu (solid) and —2u/(u? + 1) (dashed).

Case Il. a = 1, f§ = 4, | = n. Here the situation is as depicted in Figure
3.6. Again there is an infinite sequence {v4}{° of positive solutions to (3.36),
this time with v, =~ n for large #; and zero is not an eigenvalue of (3.34) since
4 # 1/(1 + ). But now there is also one positive solution ug to (3.37). Hence,
there is an infinite sequence of positive eigenvalues A, = v? for (3.34) and one

negative eigenvalue Ag = —u(z). The (unnormalized) eigenfunction for 1, = 7 is

Jn(X) = vpcosvpx + sinvpx,
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— .z
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!

FiGURE 3.6. Left: the graphs of tanznv (solid) and —3u/(u2 + 4) (dashed).
Right: the graphs of tanh nu (solid) and 3u/(u? — 4) (dashed). The numbers
vn and ug are the values of v and u at which the graphs intersect.

and the eigenfunction for 4y = —u is

Jo(x) = ugcosh ugx + sinh ugx.

EXERCISES

1.

Under what condition on the constants ¢ and ¢’ are the boundary conditions
f(b) =cf(a)and f'(b) = ¢' f'(a) self-adjoint for the operator L(f) = (rf")' +
pf on [a,b]? (Assume as usual that » and p are real.)

. Show that the problem (3.34) has no negative eigenvalues if « > 0 > f and

exactly one negative eigenvalue if # >a>00r0> 8 > a.

. Find the eigenvalues and normalized eigenfunctions for the problem f” +

Af=0, fl0)=0, f'(/)=0on [0,/]. (Cf. Exercise 6, §3.3.)

. Find the eigenvalues and normalized eigenfunctions for the problem f” +

Af=0, f/(0)=0, f(!)=0on [0,/]. (Cf. Exercise 7, §3.3.)

. Find the normalized eigenfunctions for the problem (3.34) in the case a = 0.

(The answer is a bit different in the cases # >0, f =0, and < 0.)

. Find the normalized eigenfunctions for the problem (3.34) in the case § = 0.

(Hint: The change of variable x — / ~ x essentially reduces this to Exercise
5.)

. Find the eigenvalues and normalized eigenfunctions for the problem f”' +

Af =0, f(0)=0, f/(1) =-f(1).

. The Sturm-Liouville theory can be generalized to higher-order equations. As

an example, consider the operator L(f) = f* on the interval [0, /].
a. Prove the analogue of Lagrange’s identity for L:

[0 mt - g w]ds = 75— 15"+ 15"~ '],

b. For the fourth-order equation L({f) — Af = 0 one needs four bound-
ary conditions involving f, f, f”, and f"’. Such a set of boundary
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conditions is called self-adjoint for L if the right side of () vanishes
whenever f and g both satisfy the conditions. Show that one obtains a
self-adjoint set of boundary conditions by imposing any of the following
pairs of conditions at x = 0 and any one of them at x = /:

f=f'=0, f=f"=0, fl=f"’=0, f”=f’”=0-

c. Show that the eigenvalues for the equation L(f)—4f = 0, subject to any
self-adjoint set of boundary conditions, are all real, and that eigenfunc-
tions corresponding to different eigenvalues are orthogonal in L2(0, /).

d. One can show that the analogue of Theorem 3.10 holds here, i.e., there
is an orthonormal basis of eigenfunctions. For example, consider the
boundary conditions f(0) = f”(0) = 0, f({/) = f"(l) = 0. Show that
Ju(x) = sin(nnx/l) is an eigenfunction. What is its eigenvalue? Why
can you guarantee immediately that there are no other independent
eigenfunctions?

9. Suppose p, ¢, and r are real functions of class C and that r > 0. The
differential equation rf” + gf’ + pf + Af = 0 can be written in the form
L(f) + Awf = 0 where w is an arbitrary positive function and L(f) =
wrf" + wgf' + wpf. Show that w can be always be chosen so that L is
formally self-adjoint.

The following two problems use the fact that the general solution of the Euler
equation
2" xX)+axf(x)+bf(x)=0 (x>0)

is ¢;x" + ¢,x™ where r; and r, are the zeros of the polynomial r(r — 1) +ar + b.
(If the two zeros coincide, the general solution is ¢;x" + ¢;x" log x.) In case r;
and r, are complex, it is useful to recall that x = eis108x,

10. Find the eigenvalues and normalized eigenfunctions for the problem

xf +ix7'f=0, f()=f(b)=0 (b>1).

Expand the function g(x) = 1 in terms of these eigenfunctions. (Hint: in
computing integrals, make the substitution y = logx. Orthonormality here
is with respect to the weight w(x) = x~1.)

11. Find the eigenvalues and normalized eigenfunctions for the problem

() +Af =0, f()=f(B)=0 (b>1).
12. Consider the Sturm-Liouville problem
(rfY+pf+2f=0, fla)=f(b)=0. (%)
a. Show that if f satisfies (»*), then

b b b
) 20, _ 12 gy 24y,
/a fdx / rf P dx / plf12dx

(Hint: Use the fact that Af = —(rf") — pf and integrate by parts.)
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b. Deduce that if p(x) < C for all x, then all the eigenvalues A of (xx)
satisfy A > - C.

c. Show that the conclusion of (b) still holds if the boundary conditions
f(a) = f(b) = 0 are replaced by f'(a)—af(a) = f(b)-Bf(b) = 0 where
a < 0and # > 0. (Hint: The analogue of part (a) in this situation is

b b b
A [C1Pdx= [nfPdx- [ o\ dx+ Bro)(b) -ar(a)l (@)

3.6 Singular Sturm-Liouville problems

In §3.5 we considered the differential equation
rf"+rf +pf+Awf=0 (3.39)

on a closed, bounded interval [a, b], in which r, ¥/, p, and w were assumed con-
tinuous on [a, b] and r and w were assumed strictly positive on [a, b]. However, it
often turns out in practice that one or more of these assumptions must be weak-
ened, leading to the so-called singular Sturm-Liouville problems. Specifically, we
allow the following modifications of the basic setup:

(i) The leading coefficient » may vanish at one or both endpoints of [a, b]. In ad-
dition, the weight w may vanish or tend to infinity at one or both endpoints,
and the function |p| may tend to infinity at one or both endpoints.

(ii) The interval [a, b] may be unbounded, that is, a = —oc and/or b = oc.
There is an extensive theory of these more general boundary value problems,
but it is beyond the scope of this book. (Complete treatments can be found
in Dunford-Schwartz [18] and Naimark [40]; see also Titchmarsh [52].) We
shall merely sketch a few of the main features here, and we shall discuss specific
examples in Chapters 5 and 6 and Sections 7.4 and 10.4.

The first problem is to decide what sort of boundary conditions to impose.
Since we wish to use the machinery of inner products and orthogonality, we
wish to use only solutions of (3.39) that are square-integrable. Now, in the reg-
ular case, all solutions of (3.39) are continuous on [a, b] and hence belong to
L,zu(a,b). However, under condition (i), the solutions to (3.39) may fail to be
square-integrable because they blow up at one or both endpoints; whereas un-
der condition (ii), solutions may fail to be square-integrable because they do not
decay at infinity. Thus, we distinguish two cases concerning the behavior of
solutions at each endpoint; to be definite, we consider the endpoint a.

Case I. All solutions of (3.39) belong to L2(a,c) for a < ¢ < b. (It turns
out that if this condition is satisfied for one value of 4, then it is satisfied for all
values of A4.) In this case, we impose a boundary condition at a. In some cases it
may be of the form o f(a) 4o f'(a) = 0, as before, but it may also be a condition
on the limiting behavior of f and f’ at a — for example, the condition that f(x)
should remain bounded as x — a.
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Case I1. Not all solutions of (3.39) belong to L%,(a, ¢). In this case we impose
no boundary condition at @ beyond the one that automatically comes with the
problem, namely, that the solution should belong to L (a, b).

In any event, we require the boundary conditions to be self-adjoint, i.e., if
f and g satisfy the boundary conditions then the boundary term in Lagrange’s
identity should vanish. Precisely, since f and g may have singularities at @ and
b, or a and/or b may be infinite, this requirement should be formulated as

: — 1\15-¢ _
Jim g - 120, =0 (.40
(3.40) implies that

(L(f),8) = (f,L(g)) where L(f)=(rf) +pf,

for any smooth functions f and g that satisfy the boundary conditions, and
once this equation is established, the proof of Theorem 3.9 goes through without
change. Therefore, the eigenvalues are all real and the eigenfunctions with distinct
eigenvalues are orthogonal to each other.

However, the situation with Theorem 3.10 is different: in general, there is no
guarantee that there will be enough eigenfunctions to make an orthonormal basis.
Sometimes there are, sometimes there aren’t. In the latter case, it is still possible
to expand arbitrary functions in L2 (a, b) in terms of solutions of the differential
equation (3.39) that satisfy the given boundary conditions, but the expansion will
involve an integral rather than (or in addition to) an infinite series.

For example, consider the differential equation

f"+Af=0 on (-o,x).
The general solution is
CicosuX +cysinvx  or cie* +ce”* (2 =v2).
None of these functions, for any value of 4, belongs to Lz(—oo, o0), except for
the trivial case ¢; = ¢; = 0. However, any f € L%(—o0, <) can be written as
a “continuous superposition” (i.e., integral) of the functions e'’* as v ranges

over all real numbers, by means of the Fourier transform. This is the subject of
Chapter 7.



