CHAPTER 2
FOURIER SERIES

In Chapter | we derived three problems concerning the expansion of functions
in terms of sines and cosines. The most fundamental of these is the expansion of
periodic functions, which is of importance not only for boundary value problems
but for the analysis of any sort of periodic phenomena, and which has provided
either direct or indirect inspiration for many of the developments of modern
mathematical analysis. Most of this chapter is devoted to the study of periodic
functions. Once they are understood, the other two expansion problems of §1.3
can be solved without difficulty, as we shall see in §2.4.

In many respects it is simpler and neater to work with the complex expo-
nential function e’ instead of the trigonometric functions cos 6 and sinf. We
recall that these functions are related by the formulas

eiﬁ + e—iG eiG

. — e~ 10
cosf = — sinf =

2i ’
e’ = cosf + isin 6.
The advantages of cosine and sine are that they are real-valued and are, respec-
tively, even and odd; the advantages of the exponential are that its differentiation
formula (')’ = ie? and addition formula e/(?+9) = ¢/0¢i¢ are simpler than the
corresponding formulas for cosine and sine. Accordingly, it is worthwhile to be
able to translate one formulation into the other without much effort; we urge the
readers who have not yet acquired this facility to spend a little time doing so. A
more complete list of the properties of exponential and trigonometric functions
of complex variables will be found in Appendix 2.

2.1 The Fourier series of a periodic function

Suppose that f(8) is a function defined on the real line such that f(8+2n) = f(8)
for all §. Such functions are said to be periodic with period 27, or 2z-periodic for
short. We shall assume that f is Riemann integrable on every bounded interval;
this will be the case if f is bounded and is continuous except perhaps at finitely
many points in each bounded interval. (We shall consider various other hypothe-
ses on f in subsequent sections.) Since we shall be using the complex exponential
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2.1 The Fourier series of a periodic function 19

function, we shall allow f to be complex-valued rather than merely real-valued.
This bit of extra generality causes no additional difficulties and indeed simplifies
some things; moreover, in more advanced work it is often crucial to use complex
functions.

We wish to know if f can be expanded in a series

f(6) = jag+ > (ancosnf + by sinn). (2.1)
I

Here %ao is the coefficient of the constant function 1 = cos 08, and the factor of
117 is incorporated in it for reasons of later convenience (see the remark following
equation (2.6)). There is no by because sin 08 = 0.

In view of the formulas cosnf = (ei"? + ¢=i"0)/2 and sinnf = (e? —
e~i"0)/2i (2.1) can be rewritten as

f(6)= i‘cne‘"" (2.2)

where
co= 340,  Cn=3(an—ibn) and c_p = §(an + iby) for n=1,2,3,... (2.3)

Alternatively, if we start out with (2.2), by using the formulas e/" = cosnf +

isinnf, cos(—n)8 = cosnf, and sin(—n)f = —sinnf, we can put it in the form
(2.1) where
ag = 2¢g; an=cn+Cc-n and bpn=i(ch —c—p) forn=1,2,3,... (2.4)

In what follows we shall work primarily with (2.2), but we shall also show how
to interpret the results in terms of (2.1).

As a first step towards analyzing general periodic functions in terms of
trigonometric series, let us consider the following question. If we know to begin
with that f(6) has a series expansion of the form (2.2), how can the coefficients
¢n be calculated in terms of f? The answer to this question is appealingly simple.
Let us multiply both sides of (2.2) by e~*? (k being an integer) and integrate
from —n to n. Taking on faith for the moment that it is permissible to integrate
the series term by term, we obtain

n . o T,
f(8)e™*0do =3¢, / ein=k10 g,
- o -
But

n
i(n—k)8 19 _ 1 i(n—k)8
[ e = e

2 n
/ ek - [" ge=2n ifn=k.

-7 bt (3
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= i = k) =0 if n #k,
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Hence the only term in the series that survives the integration is the term with
n =k, and we obtain

n .
f(0)e~*0 4 = 2nc,.
—-n

In other words, relabeling the integer k as n, we have the desired formula for the
coefficients cp:

1 [ —ing
Cn = 5— 6)e™'"" d6. 2.5
=z ]SO (2.3)
It is now an easy matter to find the coefficients a, and b, for the series (2.1):
n
ap = 2¢o = % 1(6)d6
-
and forn=1,2,3,.
1 T iné in 1 [t
An=Cpn+C_p= ——/ S(0)e ™" + ") do == [ f(B)cosnbdo,
2n - T J—n
. n ) . n
bn=ilcn —c—n) = 2L/ f(8)(e~"0 — ¢inf) dg = 1 f(8)sinnbd6,
TJ_ . T J_ g

that is,

|'—‘ r‘-ll'—‘
a

/ 0)cosnfdo (n>0);
. (2.6)
/ 0)sinnfdé (n>1).

(Note that the formula for a, here holds also for n = 0; this is the reason for the
factor of 4 3 in (2.1).)

To recapitulate: if f has a series expansion of the form (2.1) (or (2.2)), and
if the series converges decently so that term-by-term integration is permissible,
then the coefficients a, and b, [or c4] are given by (2.6) [or (2.5)]. But now if
f is any Riemann-integrable periodic function, the integrals in (2.5) and (2.6)
make perfectly good sense, and we can use them to define the coefficients an, bn,
and c,. We are now in a position to make a formal definition.

Definition. Suppose f is periodic with period 2z and integrable over [-=, x].
The numbers ¢, defined by (2.5), or the numbers a, and b, defined by (2.6), are
called the Fourier coefficients of f, and the corresponding series

o0 X oC
> cne™® or lag+ ) “(ancos nb + by sin n)
- I

is called the Fourier series of f.

Instead of integrating from —x to z in (2.5) and (2.6), one could equally well
integrate over any interval of length 2=z, for instance from 0 to 2z. The result
will be the same since the integrands are all 2z-periodic. This is an instance of
the following general fact, which is sufficiently useful to merit a special mention.
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Lemma 2.1. If F is periodic with period P, then fa‘“P F(x)dx is independent of
a.

Proof: Let

g(a)=/:+PF(x)dx=/()a+PF(x)dx—/OaF(x)dx

By the fundamental theorem of calculus, g'(a) = F(a + P) — F(a), so by the
periodicity of F, g’ vanishes identically. Thus g is constant. 1

Another useful observation in this context is that

F( )dx—{zf F(x)dx if F iseven,
if F is odd.

—a

(Recall that F is even if F(—x) = F(x) and odd if F(—x) = —F(x).) Since cosnf
is even and sin #@ is odd, we have the following result.

Lemma 2.2. With reference to the formulas (2.6),

n
if f is even, an = %/ f(8)cosnBdl and b,=0;
0

n
if fisodd, an=0 and bn=%/ f(8)sinn6 do.
0

Whether the Fourier series of a 2z-periodic function f is written in the
trigonometric form (2.1) or the exponential form (2.2), the constant term in the
series is

1 n
=lag==— 0)dé
740 7 —nf()

which is nothing but the average or mean value of f on the interval [-x,n]. By
Lemma 2.1, it is also the mean value of f on any interval of length 2z. This fact
is very useful, and it may be more easily remembered than the integral formula;
accordingly, we display it as a lemma.

Lemma 2.3. The constant term in the Fourier series of a 2rn-periodic function f is
the mean value of f on an interval of length 2x.

The preceding discussion shows that if we wish to find a trigonometric series
that converges to a given periodic function f, the Fourier series of f is the only
reasonable candidate; but we do not yet know whether it always does the job.
Before tackling this general question, let us compute a couple of examples.



22 Chapter 2. Fourier Series

(b)

(d)

(e)

FiGURE 2.1. The triangle wave of Example 1 and some partial sums of its
Fourier series: (a) the triangle wave, (b) Sy, (c) 83, (d) S3, and (e) Sy, where
Sk = m—(4/m) K2k - 1)"%cos(2k - 1)8.
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Example 1. Let f be the 2n-periodic function determined by the formula
f(6)=10] for —m<O<m

that is, f is the triangle wave depicted in Figure 2.1(a). Since f is even, we can
calculate the coefficients a, and b, by using Lemma 2.2. We have b, = 0 and

2 [" 2 [T
=—/ f(B)cosn0d0=—/ fcosnbdb.
T Jo T Jo

Thus, for n =0,
n n
ao=3/ 046 = Lo?| =z,
T Jo 4 0
and for n > 0,
_20sinnf|™ 2 ["sinnb 2cosnf|"  2(-1)"-1
an=2 _2 dg=2csnof_20=0) -1
mnoon |y mly n m on2 |y m n

since sinnm = 0 and cosnm = (—1)". Now, (—1)" — 1 equals —2 when » is odd
and 0 when # is even. Therefore, the Fourier series of f is

4 1 _ cos(2k — 1)6
_Enzgsuﬁcosne 7 —Z k=12 (2.7)

TS

The graphs of the first few partial sums of this series are shown in Figure 2.1(b-e).
Evidently they provide good approximations to f: after only five terms (including
the constant term), the graph of the partial sum is almost indistinguishable from
the graph of f, except that the corners are a bit rounded. Moreover, we can easily
see that the whole series converges absolutely, by comparison to the convergent
series 5% n =2,

Example 2. Let g be the 2n-periodic function determined by the formula
g0)=0 for —m<B<m.

In other words, g is the sawtooth wave depicted in Figure 2.2(a). We could use
Lemma 2.2 to calculate a, and b, since g is odd, but for the sake of variety we
shall use (2.5) to calculate ¢, instead. For n = 0 we have

1 n
CO=E 0d8=0,

-n

and for n # 0 we integrate by parts to obtain

1 1 n e—inﬂ

2n J_

2n
_ L —inf
= ¢ (—m )

1 He_”‘g

n
cn = e —inbge . 78
—in

T 2nmJ_, —in

n+1
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Ficure 2.2. The sawtooth wave of Example 2 and some partial sums of
its Fourier series: (a) the sawtooth wave, (b) S3, (c) Ss, and (d) Si4, where
Sy =25 (=1)""'n"!sinne.
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since e~"** = (—1)". Hence the Fourier series of g is
-1 n+l
Z ( ii«, emﬁ.
n#0

Here n runs through all positive and negative integers. Since (—1)" = (-1)7",
the nth and (—n)th terms of this series can be combined to give

inf —inf _1yn+!
(-1t (e— + & ) = X ;) sin n6,

in —in

and thus the Fourier series of g is

25 D™ e 28
; ——— sinnf. (2.8)

The graphs of some partial sums of this series are shown in Figure 2.2(b-d).
One can see that these partial sums do approximate the original function g, but
a comparison of Figures 2.1 and 2.2 shows that the quality of the approximation
here is markedly inferior to that in Example 1. One must add many more terms
to the series to get a comparably close fit to the original curve, particularly near
the discontinuities. (See also Figure 2.8 in §2.6, showing the 40th partial sum
of the Fourier series of the reversed sawtooth wave, for an even more dramatic
demonstration of this fact.)

Analytically, the reason for this is that the terms in the series (2.7) tend to
zero much more rapidly than the terms in the series (2.8). Precisely, if one disre-
gards the even-order terms in (2.7) (which are all zero), the nth term in (2.7) is of
the order of magnitude of (2n—1)~2, whereas the nth term in (2.8) is of the order
of magnitude of n~!. Thus, the contributions of the high-order terms is much
less in (2.7) than in (2.8). As we shall see in §2.3, this phenomenon is intimately
related to the fact that the triangle wave is smoother than the sawtooth wave:
the former is everywhere continuous, whereas the latter has jump discontinuities.
The point is that the rougher a function is, the more difficult it is to approximate
it with perfectly smooth functions like linear combinations of cos #6 and sin n8.

In fact, there sems to be some danger that the series (2.8) will not converge:
the nth term has magnitude roughly n~! in general, and 3°5° n~! diverges. On
the other hand, at a given point € some of the functions sin n6 will be positive
and others will be negative, so there may be some cancellation effects that will
prevent divergence. This is in fact the case, as we shall prove in the next section.
For the moment, we simply wish to impress on the reader that the convergence
of Fourier series is not a simple matter.

Table | gives a list of some elementary Fourier series. It includes all the ex-
amples we shall need later on. The fact that all the functions in this table really
are the sums of their Fourier series (except perhaps at their points of discontinu-
ity) follows from Theorem 2.1 in §2.2.

We conclude this section by deriving an estimate on the Fourier coefficients
that will be needed to establish convergence results in the following sections.
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TABLE 1. FOURIER SERIES

The functions f in this table are all understood to be 2z-periodic. The formula
for f(6) on either (—x, m) or (0, 27) (except perhaps at its points of discontinuity)
is given in the left column; the Fourier series of f is given in the right column;
and the graph of f is sketched on the facing page.

< (_1)n+l
.| f(6)=60 (-m<6@<m) 2y _— sinnf
T
_ _ T 4 Scos(2n-1)6
2.| f(8)=16] (-n<8<n) 3 nzl:_(Zn—l)z
= sin nf
3./ f)=n-6 (0<6<2n) 221: ”
[0 (-m<0<0) T 2 cos(2n—1)8
4 f(o)‘{e (0<8<n) Z‘E; 2n-1)?
x (_1)(n+l)
+21: —— sinnf
5. | f(6) =sin? @ 1 —1cos26
_[-1 (-m<6<0) 4 Xsin(2n - 1)6
6. f(a)_{l (0<86<n) E; =1
[0 (-m<6<0) 1 2 &sin(2n-1)6
7 f(g)_{l (0<6<n) 7“721: 2n—1
o 2 4 X cos2nb
8. | f(8) =|sin 0| ;—Ezl:‘mz_l
_ 2 4 (-1)"cos2nb
9. | f(8) = |cos | - nzl:—4n2_1
_f0 (-m<0<0) 1 2cos2nf 1 .
10. f(e)_{sine (0<6<m) E_Ezl:4n2—l+fsm0
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TABLE 1 (continued)

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

0 (~a<f<a)
f(6)={ af= (a<f<m
aztl (-1 <6< -a)

_[@a)™" (l6l<a)
f(e)‘{o (a< || <m)
_[Qa)™" (16-60| < a)
f(e)_{o (a<|¢(9)—00;'<n)
Il (-a<f<a)
f(0)={—1 (2a < 6 < 4a)
0  elsewhere in (-m, @)

_[a*a-i8)) (161<a)
f(e)'{o (a< 8| <n)

f6)=6* (-n<f<n)
f(6)=6(rn-10)) (-m<b<m)
f@)y=e® (-m<B<n)

f8)=eb (0<6<2n)

f(@)=sinhf (-n<§<n)

+sin nfy sinng)

nné

1 | &sinna
—+ = cos nfgcos nf
+ 22—y (cosnfo

X .
> smnna [(1 — cos 3na) cos nf
1

—sin3nasinn0]
1 2& 1-cosha
E+Ezl:—’1—2az—cosne
oc
”T z coan
1
gi 1n(2n—l 6
n 4 (2n—1)3
sinh b7 & (—l)n inf
n _Z.cb—ine
”b—l o emﬂ
2n _ocb—in
oc n+1
Zsmhnz smn0

{
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Bessel’s Inequality. If f is 2n-periodic and Riemann integrable on [-n,n], and
the Fourier coefficients cn are defined by (2.5), then

S eal? < L / " 161248
_Zo:c|c’1| = 2 . |f( )|
Proof* Since |z|? = zZ for any complex number z,
N2
110 =3 ene'™
-N
N o N .
= (f(e) - ZCnema) (f(ﬁ) - ane_me)
N -~

N N
= |f(0)|2 - Z [Cnf(g) inf +Tnf(0 '"6] + z Cmfnei(m_")g,
-N mun=—N

Now divide both sides by 27 and integrate from —x to n. Taking account of the
formulas

- 4 —inf _ L r i(m—n)@ _ { 0 if m # n,
[ nee="a0 =cx, 2n["e ag={ {7
we obtain
1 n N - 2
o f(6) - che’” do
—n ~

N
= 1/ 9)°d6 - Z[cncn+cncn]+zcn5n
-N
N N
= / 6)1d6 — > |enl®.
-

But the integral on the left is certainly nonnegative, so
0< _/ 1£(6)2d6 - Z|c,,|2

Letting N — oo, we obtain the desired result. 1

Bessel’s inequality can also be stated in terms of the coefficients a, and b
defined by (2.6). Indeed, by equation (2.4), for n > 1 we have

|an|2 + |bn|2 = anan + ann
= (Cn + C—n)(En + E—n) + ll(Cn - C_n)(—i)(-c—n - E—n)
= 2CnEn + 2C—nE—n,
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so that

|ao|2 = 4|c0|2, |a,,|2 + |b,,|2 = 2(|c,.|2 + |c_,,|2) forn>1.

Therefore,

oC

1 2 1 e 2 2 2 1 T 2
30+ 33 (anl +161%) = 3 len <5 [ Ine)Pds.

It turns out, as we shall see later, that Bessel’s inequality is actually an equal-
ity. For now, its main significance is simply the fact that the series 3" |an|?,
5 |bn|2, and 5 |cn|? are all convergent. As a consequence, we obtain the follow-
ing result, which is a special case of a theorem known as the Riemann-Lebesgue
lemma.

Corollary 2.1. The Fourier coefficients an, bn, and cn all tend to zero as n —
(and as n — —oc in the case of cn).

Proof: |an|?, |ba|?, and |cx|? are the nth terms of convergent series, so they
tend to zero as n — oc; hence so do ay, bu, and c¢y. 1

EXERCISES

Verify the formulas of Table 1. That is, for 3 < n < 20, Exercise # is to show
that the series in the right column of entry » in Table 1 is the Fourier series of
the function in the left column. (Entries I and 2 are Examples | and 2 in the
text.) Some of these functions are related to each other, and you may be able
to use this fact to avoid caclulating all the Fourier coefficients from scratch each
time. Entries 3 and 4 can be derived from entries | and 2; entry 7 can be derived
from entry 6; entries 9 and 10 can be derived from entry 8; entries 13 and 14
can be derived from entry 12; and entries 19 and 20 can be derived from entry
18.

2.2 A convergence theorem

Question: does the Fourier series of a periodic function f converge to f? The
answer is certainly not obvious — for example, why should one be able to expand
nonsmooth functions like the examples in §2.1 in a series whose individual terms
cos nx and sinnx possess derivatives of all orders? Fourier’s assertion that the
answer is yes was initially greeted with a certain amount of disbelief. In fact, the
answer Is always yes provided that things are interpreted suitably, although the
situation is somewhat more delicate than one might initially expect.

In this section we shall show that the Fourier series of f converges to f under
certain reasonably general hypotheses on f later, in §2.3, §2.6, §3.4, and §9.3, we
shall present some variants of this result under other conditions on f. We first
define the class of functions with which we shall be working,.
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Suppose —oc < a < b < oc. We say that a function f on the closed interval
[a, b] is piecewise continuous provided that
(1) f is continuous on [a, b] except perhaps at finitely many points xi,..., Xx;
(ii) at each of the points xy,..., X, the left-hand and right-hand limits of f,

flxj=-) = _}im f(x;j—h) and f(xj+)=h—.l(%n}1.>of(xj+h)’

exist. (If the endpoint a (or ) is one of the exceptional points x;, we require

only the right-hand (or left-hand) limit to exist.)

That is, f is piecewise continuous on [q, b] if f is continuous there except for

finitely many finite jump discontinuities. (When we say that the limits f(x;*)

exist, we mean in particular that they are finite: oc is not allowed as a value.) We

denote the class of piecewise continuous functions on [a, b] by PC(a, b).

Next, we say that a function f on [a, b] is piecewise smooth if f and its first
derivative f” are both piecewise continuous on [a, b], and we denote the class of
piecewise smooth functions on [a, b] by PS(a, b). More precisely, f € PS(a,b)
if and only if

(i) f € PC(a,b);

(ii) f’ exists and is continuous on (a, b) except perhaps at finitely many points
X{,...,Xg (which will include any points where f is discontinuous), and the
one-sided limits f'(x;-) and f'(x;+) (j = 1,...,K), and also f'(a+) and
S'(b-), exist.

In other words, f is piecewise smooth if its graph is a smooth curve except

for finitely many jumps (where f is discontinuous) and corners (where f’ is

discontinuous). We do not allow infinite discontinuities (such as f(x) = 1/x has

at x = 0) or sharp cusps (where f” becomes infinite). See Figure 2.3.

AN Y \Jk/{/’

FIGURE 2.3. A piecewise smooth function (left) and a function that is not
piecewise smooth (right).

One last bit of terminology: a function defined on the whole real line R
is said to be piecewise continuous or piecewise smooth on R if it is so on every
bounded interval [a, b]. (That is, f or f’ may have infinitely many discontinuities
on the whole line but only finitely many in any bounded interval.) We denote the
spaces of piecewise continuous and piecewise smooth functions on R by PC(R)
and PS(R).
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We now return to consideration of the Fourier series of a 2z-periodic func-
tion f(6). We recall that this is defined to be

o

o
ag+ Y _(ancosnf + bpsinng) = 3 cpe™ (2.9)
1 —

N—

where

n
an=l/ flw)cosny dy, b,,—l f )sinny dy,
T J_n T

1 /™ »
C"=H/_,,f("’)e "dy.

(We have labeled the variable of integration in (2.10) as  simply for later con-
venience.)

What meaning is to be attached to this series? Of course, the sum of any
infinite series is defined to be the limit of its partial sums. When we write the
series (2.9) in trigonometric form, we agree always to group together the terms
involving cos nf and sin n@ as indicated above; correspondingly, when we write
it in exponential form, we agree always to group together the terms involving
e"% and e~"0 (This convention will always be in force.) Thus we take the Nth
partial sum of the series (2.9) to be the sum S,{,(B) defined by

(2.10)

N N
S(8) = $ag+ Y (ancosnf + bnsinn) =y cre'™?, (2.11)
1 —_

and our aim is to show that S,{, converges to f as N — oc.
If we plug the definition (2.10) of ¢, into (2.11), we see that

£(6) = o= f: " fw)em @y — iﬁjfﬁ f(w)e"v=0gy
2n J-n 2n ) x '

The last equality results from replacing n by —n; this does not affect the sum
since n ranges from —N to N. If we now make the change of variable ¢ = v — 0
and use Lemma 2.1, we obtain

- 53

n+6

f(6+8)emdg = - Z/ £(6+ ¢)ei"dg.

n+6

In short,

¥4 N .
SL6)= | f(6+)Dy(¢)dd, where Dy(¢) = % Y e, (2.12)
-7 _AI
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The function Dy(¢) is called the Nth Dirichlet kernel. We can express Dy
in a more computable form by recognizing that it is the sum of a finite geometric
progression:

N
_ 1 —ing io o ,i2Ngy _ 1 _ing ine
DN(¢)—2ne (I+e®+.--+e )__Zne 20 e’

Since "X r” = (rK+! — 1)/(r - 1) for any r # 1, for ¢ # O we have
QNS _ | | piN+6 _ ,—iN®

_ 1 -inge -1
Dy(¢) = 5-€ e T S s (2.13)

Moreover, on multiplying top and bottom by e~/%/2, we obtain

exp[i(N + $)¢] —exp[-i(N + )6] | sin(V + })¢

exp(i}9) - exp(—i}9) 2 singg
From this formula it is easy to sketch the graph of Dy it is the rapidly oscillating
sine wave y = sin(N + %)¢ amplitude-modulated to fit inside the envelope y =

+(2m) " csc 3¢. See Figure 2.4.

(2.14)

Dy(9) = 5=

Wh""nn AR
- A v v_v‘vw dvy,v_v.v S =

FiGure 2.4. Graphs of the Dirichlet kernel D,5(¢) (solid) and its envelope
+(2m)~' csc §¢ (dashed) on the interval - < ¢ < 7.

The pictorial intuition behind the fact that S,{,(G) — f(6) is as follows: in
the integral formula (2.12) for S,{,(B), the sharp central spike of Dy(¢) at ¢ =0
picks out the value f(8), and the rapid oscillations of Dy(¢) away from ¢ = 0
kill off most of the rest of the integral because of cancellations between positive
and negative values. Before proceeding to the actual proof, however, we need
one more fact about Dy.
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Lemma 2.4. For any N,

0 n
Dy(6)d6 =/0 Dy(6)d6 =

—-n

N —

Proof: From formula (2.12) we have

N
l l
Dy(8) = TR ¥cos né,
so that
r 6 1 <Lsinnd . 1
JCEE R e ]0= 7
and likewise for the integral from —x to 0. |

Here at last is our main convergence theorem. It says that the Fourier series
of a function f € PS(R) converges pointwise to f, provided that we (re)define f
at its points of discontinuity to be the average of its left- and right-hand limits.

Theorem 2.1, If f is 2n-periodic and piecewise smooth on R, and S 1{, is defined by
(2.10) and (2.11), then

Jim s£(0) = 4[1(6-) + £(6+)]

Jor every 8. In particular, limy_, S,{,(G) = f(8) for every 6 at which f is contin-
uous.

Prooft By Lemma 2.4, we have
0 n
§1(6-)=f(0-) [ Du(@)ds,  3/(6+)=1(6+) [  Duto)do,

and hence by equation (2.12),
$(8) - §[£(6-) + f(6+)]
0
= [ [f6+¢)- 1(6-)]|Du@)do+ [ [116+9) 1(6+)]Du(9)ds.

n
-7 0

We wish to show that for each fixed 8, this quantity approaches zero as N — cc.
But by formula (2.13), we can write it as
1 n

37 | 8(@)(e' W — ) dg (2.15)
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where g(¢) is defined to be

f(6+¢) - f(6-)
eié — |

f(0+¢) - f(6+)

P forO<o¢<m.

for —m<¢ <0,

g is a well-behaved function on [-7, 7], as smooth as f is, except near ¢ = 0
(where e'® — 1 vanishes). However, by I'Hépital’s rule,
o SO+ = f(04) _ 1 f(0+9) _ [1(8+)

lim = lim . = —
¢-+O+g(¢) ¢—0+ el — 1 ¢—0+ lel? 1

Similarly, g(¢) approaches the finite limit i~! f'(§—) as ¢ approaches zero from
the left. Hence g is actually piecewise continuous on [—7x, n], so by the corollary
to Bessel’s inequality in §2.1, its Fourier coefficients

Cr=3 [ 8@ do

tend to zero as n — *oc. But the expression (2.15) is nothing but C_y,1) — Cy,
so it vanishes as N — oc; and this is what we needed to show. 1

Let us see what this theorem says with regard to the two examples of the pre-
vious section. The function f of Example | is piecewise smooth and everywhere
continuous, so the Fourier series of f converges to f at every point. Thus,

4 cos(2n-1)8

Z_2NT2R4n— v —n<6<m. .

3 n; 2n 1) 6] for —x<f<m (2.16)
On the other hand, the function g of Example 2 is piecewise smooth and contin-
uous except at the points § = kn with £ odd. At these discontinuities we have
glkn—)=n and g(kn+) = -, so 3[g(kn—) + g(kn+)] = 0. Thus the Fourier
series of g converges to g at all points except § = kn (k odd), where it converges
to zero. Hence,

o ¢ 1yn+l
S EU Gnno=9 for —z<o<n. (2.17)
T n 2

In particular, if we take § = 0 in (2.16), we obtain the formula
f:__l——1+l+L+L+...—_
1(2k—1)2_ 9 25 49 T8

(As the reader may check, the same formula results from taking taking 6 = x.)
Moreover, if we take = %n in (2.17) and use the fact that sin %nn is alternately
1 and —1 when # is odd and O when n is even, we find that

< (_1)k+1
; k-1 =1~

+

. T
-z

W —
w| —
~|—
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These are two interesting instances where numerical series can be evaluated as
special values of Fourier series. Others can be found in the exercises.

Theorem 2.1 says that the Fourier series of a 2z-periodic piecewise smooth
function f converges to f everywhere, provided that f is (re)defined at each of
its points of discontinuity to be the average of its left- and right-hand limits there.
Henceforth, when we speak of piecewise smooth functions, we shall assume that
this adjustment has been made, unless we explicitly state otherwise. This will
obviate the need to single out the points of discontinuity for special attention. In
particular, with this understanding, we have the following uniqueness theorem.

Corollary 2.2. If f and g are 2n-periodic and piecewise smooth, and f and g have
the same Fourier coefficients, then [ = g.

Proof: f and g are both the sum of the same Fourier series. 1

EXERCISES

1. Which of the following functions are continuous, piecewise continuous, or
piecewise smooth on [-x, n]?
a. f(@)=csch. b. f(O)=(sinB)Y3. ¢ [f(6)=(sinf)*3.
d. f(f)=cosfif 6 >0, f(6) =—cosfif §<0.
e. f(B)=sinfif 8 >0, f(0 = sm20 if 6 <0.
f. f(6) = (sin@)'/° if 6 < §m, f(6) =cos b if 6 > jm.
2. To what values do the series in entries 6, 7, 12, and 18 of Table 1, §2.1,
converge at the points where their sums are discontinuous?

The Fourier series for a number of piecewise smooth functions are listed in Table
1 of §2.1, and Theorem 2.1 tells what the sums of these series are. By using this
information and choosing suitable values of 8 (usually 0, %n, or n), derive the
following formulas for the sums of numerical series. (The relevant entries from
Table 1 are indicated in parentheses.)

3. 11 i(—l)”“:n—Z (8).

00
;4;12—1 2 Lednl-1 T4
xl_nz oc(1)n+l_n2
4.213?—6, ; =13 (16
00 1 3
(_l)n+ _7!_
;(2;1—1)3 37 (7
o0
)" _
6. ; nT b2 = 3B cschbr 352 (18 or 19).
= 1 n 1 D s
7. 21: bl ncothbn 352 (18 or 19; this 1s a bit tricky).
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2.3 Derivatives, integrals, and uniform convergence

This section is devoted to an examination of the behavior of Fourier series in
relation to the processes of calculus.

We shall be largely concerned here with periodic functions that are both
continuous and piecewise smooth. Pictorially, the graph of such a function is a
smooth curve except that it can have “corners” where the derivative jumps. The
fundamental theorem of calculus,

b
= [ r®ae
a

applies to functions f that are continuous and piecewise smooth, even though
S’ 1s undefined at the “corners.” To see this it suffices to express the integral
on the right as the sum of integrals over the subintervals of [a, b] on which f is
differentiable; the continuity of f guarantees that the endpoint evaluations at the
intermediate subdivision points cancel out. For example, if f is differentiable
except at the point ¢ € (a, b), we have

/f’ 0)d6 = /f d8+/f
= [fe) - 1@)] + [1(8) f(c] 1(6) - f(a)

This observation will be used implicitly in several of the following calculations,
including the proof of Theorem 2.2.

Our first main result relates the Fourier coefficients of a function to those of
its derivative. The fact that this relation is so simple is one of the main reasons
underlying the utility of Fourier series.

Theorem 2.2. Suppose [ is 2mn-periodic, continuous, and piecewise smooth. Let
an, bn, and cn be the Fourier coefficients of f defined in (2.5) and (2.6), and let
ay, by, and ¢y be the corresponding Fourier coefficients of f'. Then

an = nby, b, = —nap, ch = incn.

Proof: This is a simple matter of integration by parts. For example,

b LT o —ing g ] —ing|" 1 [ . —ind
¢l = E/_nf ()" d0 = [0 — o [ f(0)(-ine=")ae.
The first term on the right vanishes because f(—7) = f(n) and e!"™ = ¢~i"" =
(—1)", and the second term is inc,. The argument for aj and b, is the same; we

leave the details to the reader. 1

Combining this result with the theorem of the previous section, we easily
obtain the basic results on differentiation and integration of Fourier series.
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Theorem 2.3. Suppose f is 2r-periodic, continuous, and piecewise smooth, and
suppose also that [’ is piecewise smooth. If

is the Fourier series of f(8), then f'(8) is the sum of the derived series
> incne'"® = ) “(nbncos nb — nansinnd)
—00 l

for all 8 at which f'(6) exists. At the exceptional points where ' has jumps, the
series converges to %[f’(e—) + f’(8+)].

Proof: Since f' is piecewise smooth, by Theorem 2.1 it is the sum of its
Fourier series at every point (with appropriate modifications at the jumps). By
Theorem 2.2, the coefficients of e"?, cos n6, and sin 6 in this series are incy,
nbp, and —nay,. The result follows. 1

In considering integration of Fourier series, one must keep in mind that the
indefinite integral of a periodic function may not be periodic. For example, the
constant function f(6) = 1 is periodic, but its antiderivative F(8) = 0 is not.
However, the integral of every term in a Fourier series is periodic except for the
constant term, from which we see that a periodic function has a periodic integral
precisely when the constant term in its Fourier series vanishes, i.e., when its mean
value on [-7, 7] is zero. We therefore arrive at the following result.

Theorem 2.4. Suppose f is 2n-periodic and piecewise continuous, with Fourier
coefficients an, bn, cn, and let F(6) = foo f(@)de. If g (= Lag) =0, then for all 6
we have

. oC
F(6) = C0+Zf—;e'"9 = 5A0+Z(ﬁn". sinn — %”-cosn@) (2.18)
n#0 1

where the constant term is the mean value of F on [-r, n]:

1 n

=2/, (6)dé. (2.19)

Co = 340

The series on the right of (2.18) is the series obtained by formally integrating the
Fourier series of f term by term, whether the latter series actually converges or not.
If cg # O, the sum of the series on the right of (2.18) is F(8) — c8.

Proof: F is continuous and piecewise smooth, being the integral of a piece-
wise continuous function. Moreover, if ¢y = 0, F is 2x-periodic, for

6+2n n
F(9+2n)—F(9)=/; f(¢)de = _nf(¢)d¢=27wo=0-
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Hence, by Theorem 2.1, F(6) is the sum of its Fourier series at every §. But
by Theorem 2.2 applied to F, the Fourier coefficients 4, By, and Cy of F are
related to those of f by
dp=-br g o O a0
n’ n’ in

The formula (2.19) for the constant C, or %Ao is just the usual formula for the
zeroth Fourier coefficient of F. If ¢y # 0, these arguments can be applied to the
function f(8) — cg rather than f(8), yielding the final assertion. |

Example. Let f be the periodic function such that f(8) =1 for 0 < § < & and
f(8)=-1for —m < 6 <0, and let F(8) = fg f(¢)d¢. Clearly F(6) = || for
|6] < m. By entry 4 of Table 1, §2.1, the Fourier series of f is (4/7)37°(2n —
1)~!sin(2n - 1)8, so by Theorem 2.4 we have

oc

_ 4 cos(2n—1)0 1 r n
F(e)—co—;;——(m- Whereco—ﬁfn|6‘d0—7.

Thus we recover the result of entry 2 of Table 1.

Theorem 2.1 gave conditions under which the Fourier series of f converges
pointwise to f. However, experience in working with infinite series teaches us
that simple pointwise convergence of a series can be a tricky business, and that
we are much better off if the convergence is absolute and uniform. We recall
the definitions: suppose the series >_5° gn(x) converges to g(x) on a set S. The
convergence is absolute if the series 3_7° |gn(x)| also converges for x € S, and
uniform if not only does the difference g(x) — 2{" gn(x) tend to zero for each
x € S, but so does the maximum of this difference over the whole set S:

sup

N
g(x) - Zgn(x)‘ —0 as N —oc.
x€S 1

The most useful criterion for guaranteeing absolute and uniform convergence is
the Weierstrass M -test: if there is a sequence M, of positive constants such that

o0
lgn(x)| < My, forxesS, and ZMn<oo,
1

then the series 3_7° gn(x) is absolutely and uniformly convergent.
In the case of Fourier series, we have the obvious estimates
|an cos nb| < |anl, |bn sin n6| < |byl, |Cn€in6| = |Cn.
Hence the Weierstrass M-test will apply to a Fourier series in trigonometric form
if 3267 lan| < oc and 3_7° |bn| < oc, and to a Fourier series in exponential form if
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S-* . lcnl < oc. Since it follows from the equations (2.3) and (2.4) relating ap,
bn, and cp that

|cenl < |@n| + 1bnl,  |@n| < lcal + lc=nl,  |bnl < len| + lc—nl,

the conditions }_g° |an| < oo and }_{°|ba| < oo are completely equivalent to
the condition 3 |cn| < oc. We now present a sufficient (but not necessary)
condition for them to hold.

Theorem 2.5. If f is 2mn-periodic, continuous, and piecewise smooth, then the
Fourier series of f converges to f absolutely and uniformly on R.

Proof: By Theorem 2.1 and the remarks just made, it suffices to show that
the series 5°%°_ |cn| converges. Let ¢, denote the Fourier coefficients of f’. By
Theorem 2.2 we know that ¢, = (in)~ !¢}, for n # 0, and by Bessel’s inequality
applied to f”,

o0 n
S el < in/ (68 < oo,
fpo —-n

Hence, by the Cauchy-Schwarz inequality,

oo : 1/2 1/2

D lenl =leol+ Y |21 < leol + (Z n_2) (ZCZIZ) < o,

—oc n#0 n#0 n#0
since 32,,0(1/n%) = 2329°(1/n?) < co. (In case the reader needs reminding: the
Cauchy-Schwarz inequality says that the dot product of two vectors is bounded
by the product of their norms. It is valid in any number » of dimensions and
also in the limit as # — oc. We shall discuss it in more detail in Chapter 3.) 1

Let us return to Theorem 2.3. If f has many derivatives, Theorem 2.3 can be
applied several times in succession to calculate the Fourier series of f*, f”, f'",
etc. Each time one takes a derivative, the magnitude of the Fourier coefficients
cn (or an and by) increases by a factor of |n|, which means that the derived series
converges more slowly than the original series. Or, to put it another way, if the
derived series converges at all, the original series must converge relatively rapidly.
Thus there is a connection between the differentiability properties of a function
and the rate of convergence of its Fourier series. Here is a precise result along
these lines.

Cn
n

Theorem 2.6. Suppose f is 2m-periodic. If f is of class C*~Y) and f*-1) jg
piecewise smooth (thus ) exists except at finitely many points in each bounded
interval and is piecewise continuous), then the Fourier coefficients of f satisfy

Yolnfant <00, Yo In*bal <o, S inkenl < oo

In particular,

nka, — 0, nkb, — 0, nken — 0 as n — oc.

On the other hand, suppose the Fourier coefficients cn (n # 0) satisfy |cn| <
Cln|~%+) (equivalently, |an| < Cn=%*+®) and |bs| < Cn=%+)) for some C > 0
and o> 1. Then f is of class C),
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Proof: For the first part, we apply Theorem 2.2 k times to conclude that

the Fourier coefficients c(k) of f%) are given by c(k) = (in)kcn, and similarly for

f,k and bf,k). The conclusions then follow from Bessel’s inequality (applied to
/%)) and its corollary. For the second part, we observe that since a > 1,

S iden < €Y nTE It <20y n <0 for j < k.
n#0 n#0 n>0

Thus, by the Weierstrass M-test, the series 3% _(in)’ 'cne'"® are absolutely and

uniformly convergent for j < k. They therefore define continuous functions,
which are the derivatives /) of f(8) = 3 cpei?. 1

The two halves of Theorem 2.6 are not perfect converses of each other; this
is in the nature of things. (There is no simple “if and only if” theorem of this
sort.) However, the moral is clear: the more derivatives a function has, the more
rapidly its Fourier coefficients will tend to zero, and vice versa. In particular, f
has derivatives of all orders precisely when its Fourier coefficients tend to zero
more rapidly than any power of n (for example, ¢, = e~€"l).

Another aspect of this phenomenon: the basic functions e"® or cosn@
and sin n@ are, of course, perfectly smooth individually, but they become more
“jagged,” that is, more highly oscillatory, as # — oc. In order to synthesize non-
smooth functions from these smooth ingredients, then, the proper technique is
to use relatively large amounts of the high-frequency (i.e., large-n) functions.

These points are worth remembering; they are among the basic lessons of
Fourier analysis. The reader can see how they work by examining the entries
Table 1 in §2.1. For instance, the sawtooth wave in entry 2 is piecewise smooth
but not continuous; its Fourier coefficients are on the order of n~'. The triangle
wave in entry 1 is one step better — continuous and piecewise smooth, with
a piecewise smooth derivative; its Fourier coefficients are on the order of n~?2
These examples are quite typical.

EXERCISES

1. Derive the result of entry 16 of Table 1, §2.1, by using equation (2.17) and
Theorem 2.4.
2. Starting from entry 16 of Table 1 and using Theorem 2.4, show that

a. -n%0= 122 smnH (-m<<n);

_1\n+1 4
b. 04—2n292=482—-1)7f"—5”—9-7l (-m <6 <)
1

\Ola

>0 1
© Yk

3. Evaluate °3°(2n — 1)~* cos(2n — 1)@ by using entry 17 of Table 1.
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4. By entry 8 of Table 1, we have

sin 8 =

Ao

o
-3y s <o, (+)
1

and we also have

6

d . )
cosf = Esme— —/7;/251n¢d¢.

Show that the series (*) can be differentiated and integrated termwise to yield
two apparently different expressions for cos 8 for 0 < § < x, and reconcile
these two expressions. (Hint: Equation (2.17) is useful.)

5. Let f(6) be the periodic function such that f() = e for —n < 6 < 7, and
let - cqe'"? be its Fourier series; thus e? = 3~ cqe'"? for |6 < n. If we
formally differentiate this equation, we obtain e? = 5 incne'®. But then
¢n = incp, or (1 —in)cn = 0, so ¢y = O for all n. This is obviously wrong;
where is the mistake?

6. The Fourier series in entries 11 and 12 of Table 1 are clearly related: the
second is close to being the derivative of the first. Find the exact relationship
(a) by examining the series and (b) by examining the functions that the series
represent.

7. How smooth are the following functions? That is, how many derivatives can
you guarantee them to have?

o .
em0

a. f(0)=2m€—_7 b. f(0)=

Zcos2”0.

2.4 Fourier series on intervals

Fourier series give expansions of periodic functions on the line in terms of
trigonometric functions. They can also be used to give expansions of functions
defined on a finite interval in terms of trigonometric functions on that interval.

Suppose the interval in question is [-z,n]. (Other intervals can be trans-
formed into this one by a linear change of variable; we shall discuss this point
later.) Given a bounded, integrable function f on [-=,n], we extend it to the
whole real line by requiring it to be periodic of period 2z. Actually, to be com-
pletely consistent about this we should start out with f defined only on the half-
open interval (—m,n] or [-7,#), or else (re)define f at the endpoints so that
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f(-n) = f(n). To be definite, we follow the first course of action; then the
periodic extension of f to the whole line is given by

f(6+2nm)= f(6) forall € (—n,n] and all integers n.

For instance, the periodic functions discussed in Examples 1 and 2 of §2.1 are
the periodic extiensions of the functions f(8) = |6| and g(8) = 8 from (—=, 7]
to the whole line.

If f is a piecewise smooth function on (—=, ], we can expand its periodic
extension in a Fourier series, and then by restricting the variable 8 to [-=, x],
we obtain an expansion of the original function. All of what we have said in the
previous sections applies to this situation, but there is one point that needs at-
tention. If the original f is piecewise continuous or piecewise smooth on [—7x, x],
then its periodic extension will be piecewise continuous or piecewise smooth on
R. However, even if f is perfectly smooth on [, ], there will generally be dis-
continuities in the extended function or its derivatives at the points (2n+ 1)z, n
an integer, where (so to speak) the copies of f are glued together. To be precise,
suppose f is continuous on [—7, 7]. Then the extension will be continuous at the
points (2n + 1)z if and only if f(—n) = f(x), and in this case the extension will
have derivatives up to order k at (2n + 1)z if and only if fU)(-n+) = fU)(n-)
for j < k. (This is illustrated by the examples in §2.1: see Figures 2.1(a) and
2.2(a).) These phenomena must be kept in mind when one studies the relations
between the smoothness properties of f and the size of its Fourier coefficients as
in Theorem 2.6.

Two interesting variations can be made on this theme. Suppose now that
we are interested in functions on the interval [0, z] rather than [-7,n]. We can
make such a function f into a 2z-periodic function, and hence obtain a Fourier
expansions for it, by a twofold extension process: first we extend f in some
simple way to the interval [—x, z], then we extend the result periodically. There
are two standard ways of performing the first step: we extend f to [-x, n] by
declaring it to be either even or odd. That is, we have the even extension feven of
S to [-n, n] defined by

Seven(—8) = f(8) for 6 € [0, 7]
and the odd extension fy44 of f to [-7,n] defined by
Joaa(=0) = —f(0) for 6 € (O,m],  foaa(0) = 0.
(See Figure 2.5.) The advantage of using feven Or fyqq rather than any other

extension is that the Fourier coefficients turn out very simply. Indeed, it follows
from Lemma 2.2 of §2.1 that

n n
Joven(6) cos nf d6 = 2/0 f(6)cosn0d6, [ feven(6)sinn6d6 =0,
-7 -n
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whereas
n n n
fosa(6) cos 6 d6 =0, foga(8)sin n0dO = 2/0 £(6) sin n6 dé.
- -7

Thus the Fourier series of feven involves only cosines and the Fourier series of
Joqa involves only sines; moreover, the Fourier coefficients for these two cases
can be computed in terms of the values of the original function f on [0, z]. We
are thus led to the following definitions.

Definition. Suppose f is an integrable function on [0, z]. The series
o0 2 n
380+ Y _ancosnf, where a, = - / f(8)cosnb de,
0
1
is called the Fourier cosine series of f. The series

o0 n
S basinn6, where by = % / £(6)sinn6 46,
l 0

is called the Fourier sine series of f.

A A NAA ANA

VoA

FIGURE 2.5. A function defined on [0, #] (left), its even extension (middle),
and its odd extension (right).

If f is piecewise continuous or piecewise smooth on [0, n], its even periodic
and odd periodic extensions will have the same properties on R, but as before,
one must watch for extra discontinuities at the points nz (n an integer) where
the pieces are joined together. If f is continuous on [0, ], the even periodic
extension will be continuous everywhere, but its derivative will have jumps at the
points 2nz or (2n + 1)x unless f/(0+) =0 or f'(z—) = 0, respectively. The odd
periodic extension is less forgiving: it will have discontinuities at the points 2ax
or (2n+ 1)m unless f(0) = 0 or f(x) = 0, respectively. (As for higher derivatives:
there are potential problems with the odd-order derivatives of the even periodic
extension and with the even-order derivatives of the odd periodic extension at
the points nx.)
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Example 1.  Consider the function f(8) = 6 on [0, z]. Its even and odd periodic
extensions are given on (—7, ) by feven(8) = |6| and fy4q(8) = 8; these are the
functions whose Fourier series we worked out in §2.1. Hence,

4iw 0<6<n).

T (2n—1)2

(=" smnﬁ i1
0= 22 =5-=

1

Here f is perfectly smooth on [0, n], but f,4q has discontinuities at the odd
multiples of 7. feven iS continuous everywhere, but its first derivative has dis-
continuities at all integer multiples of #. The reader may find other examples in
Table 1.

At any rate, if we keep these remarks in mind and apply Theorem 2.1, we
arrive at the following result.

Theorem 2.7. Suppose f is piecewise smooth on [0,n]. The Fourier cosine series
and the Fourier sine series of f converge to %[f(e—) + f(8+)] at every 6 € (0, m).
In particular, they converge to f(6) at every 6 € (0,n) where f is continuous. The
Fourier cosine series of f converges to f(0+) at 6 = 0 and to f(n—) at 8 = n; the
Fourier sine series of f converges to 0 at both these points.

The results of the previous section on termwise differentiation and uniform
convergence can be applied to these series, provided that one takes account of
the behavior at the endpoints as indicated above.

Finally, we may wish to consider periodic functions whose period is some-
thing other than 2z, or functions defined on intervals other than [z, 7] or [0, 7].
These situations can be reduced to the ones we have already studied by making
a simple change of variable.

For instance, suppose f(x) is a periodic function with period 2/. (The factor
of 2 is merely for convenience.) We make the change of variables

x—l—o g(9)=f(X)=f(1—0>-

/(4 /(4

Then g is 2n-periodic, so if it is piecewise smooth we can expand it in a Fourier
series:

—-n

g0) =3 cae™, o= % g(6)e™"0do.

If we now substitute § = mx// into these formulas, we obtain the 2/-periodic
Fourier series of the original function f-

o0 . 1 ! .
=S e, gy =L / Fx)e~inmxll gy (2.20)
21/,
—0o0
The corresponding formula in terms of cosines and sines is

+Z [an cos 2% | b, sin #] , (2.21)
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where
nnx nmx
l/ flx dx, bn = 1/ f(x sm—dx (2.22)

From this it follows that the Fourier cosine and sine expansions of a piece-
wise smooth function f on the interval [0, /] are

!
f(x)=}ag+ Zan cos mlzx an = %/0 f(x)cos —mlz—xdx, (2.23)

and

o0
. X 2 mrx
fx)=3 basin 22, / fix x. (2.24)
T [
These formulas are probably worth memorizing; they are used very frequently.
Another point worth remembering is that, just as in the case of Fourier series for
periodic functions, the constant term %ao in the Fourier cosine series of a function

f on an interval is the mean value of f on that interval: 7a0 =/-! fé f(x)dx

Example 2. Let us find the Fourier cosine and sine expansions of f(x) = x on
[0,/]. Having set 8 = mx/[, this amounts to finding the expansions of g(8) =16/n
on [0, n], which we have done above. Namely, for 0 < § < & we have

gi (=0 . opmx 1 4l i 1 (2n - )nx
m 4 n n (2n-1)2 /

Finally, what if we wish to use an interval of length / whose left endpoint is
not 0, say [a, a + {]? Simply apply the preceding formulas to g(x) = f(x + a);
we leave it to the reader to write out the resulting formulas for f(x)

EXERCISES

In Exercises 1-6, find both the Fourier cosine series and the Fourier sine series of
the given function on the interval [0, #7]. Try to use the results of Table 1, §2.1,
rather than working from scratch. To what values do these series converge when
6=0and 0 =n?

1. f()=1.
2. f(6)=m-0.
3. f(8) =sin8.

4. f(6) =cos8.
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5. f(8) = 62. (For the sine series, use entries ! and 17 of Table 1.)
6. f(6)=0for0< 6 < im, f()=n-6 for in < 6 < m. (For the sine series,
use entry 11 of Table 1, and for the cosine series, entry 2.)

In Exercises 7-11, expand the function in a series of the indicated type. For
example, “sine series on [0, /]” means a series of the form 3~ by sin(nnx/l). Again,
use previously derived results as much as possible.

7. f(x) =1, sine series on [0, 67].

8. f(x) =1 — x; cosine series on [0, I].

9. f(x)=1for0<x <2, f(x)=-1 for 2 < x < 4, cosine series on [0, 4].

10. f(x) = Ix — x?; sine series on [0, /].

11, f(x)=e*; series of the form Y- cne?™"% on [0, 1].

12. Suppose f is a piecewise continuous function on [0, z] such that f(6) =
f(mn - 8). (That is, the graph of f is symmetric about the line § = %n.) Let
an and by, be the Fourier cosine and sine coefficients of f. Show that a, =0
for n odd and b, = 0 for n even.

2.5 Some applications

At this point we are ready to complete the solutions of the boundary value prob-
lems that were discussed in §1.3. The first of these problems was the one describ-
ing heat flow on an interval [0, /], where the initial temperature is f(x) and the
endpoints are held at temperature zero,

Ur = ki, u(x,0) = f(x) for x €l0,1], u(0,t)=u(l,t)=0 fort>0,

and we derived the following series as a candidate for a solution:

oo 2,2
u(x,t) = Zl:bn exp ( n 17; kt) sin mlzx,
~ - (2.25)
where f(x) = El:bn sin ==
The questions that we left open were: (1) Can the initial temperature f be ex-
pressed as such a sine series? (2) Does this formula for  actually define a solution
of the heat equation with the given boundary conditions? We now know that the
answer to the first question is yes, provided that f is piecewise smooth on [0, /]
(certainly a reasonable requirement from a physical point of view): we have
merely to expand f in its Fourier sine series (2.24). Let us therefore address the
second question.
The individual terms in the series for u solve the heat equation, by the way
they were constructed. Moreover, when ¢ > 0 the factor exp(—n?n2kt/1) tends to
zero very rapidly as n — oc, so that the series converges nicely. More precisely,
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since the coefficients b, tend to zero as n — oc and in particular are bounded by
some constant C, for any positive € we have

b (—nznzkt) . AmX nlke
1 €XP sin

2
0< < Ce %" fort>e€, where 6 =

12 ) 2

The same sort of estimate also holds for the first z-derivative and the first two
x-derivatives of the terms of the series for #, with an extra factor of n2 thrown
in. Since }_{° nke—on* converges for any k, we see by the Weierstrass M -test that
these derived series converge absolutely and uniformly in the region 0 < x < /,
t > €, and we deduce that termwise differentiation of the series is permissible.
Conclusion: u is a solution of the heat equation.

As for the boundary conditions, it is evident that u(0,¢) = u(/,t) = 0, since
all the terms in the series for u vanish at x = 0,/, and u(x,0) = f(x) by the
choice of the coefficients b,. However, as we pointed out in §1.1, we really
want a bit more, namely, the continuity condition that u(x,t) should tend to
zero as X — 0,/ and to f(x) as t — 0. The preceding discussion shows that
the first of these requirements is always satisfied: for each 7 > 0, the series for
u(x,t) converges uniformly on [0, /],s0 u(x, ) is a continuous function of x. (In
particular, as x — 0 or x — [/, u(x, ) approaches (0, ?) or u(/, t), which are zero.)
Moreover, if f is continuous and piecewise smooth on [0,/] and f(0) = f(/) =0,
then the odd periodic extension of f is continuous and piecewise smooth, so
S 1bn| < oo by Theorem 2.5. The Weierstrass M-test then shows that the series
for u converges uniformly on the whole region 0 < x </, ¢t > 0, and hence that
u is continuous there; in particular, u(x,?) — u(x,0) = f(x) as t — 0.

If f has discontinuities or is nonzero at the endpoints, it is still true that
u(x,t) — f(x) as t — 0 provided that 0 < x < / and f is continuous at x, but the
proof is more delicate. (See Walker [53], §4.7.) We shall not concern ourselves
with such technical refinements, as we have already established the main point:
under reasonable assumptions on the initial temperature f, the function u satisfies
all the desired conditions.

One question we have not really settled is the uniqueness of the solution.
That is, we have constructed one solution; is it the only one? The answer is
yes. One can argue that any solution u(x,!) must be expandable in a Fourier
sine series in x for each ¢ and then use the differential equation to show that the
coefficients of this series must be the ones we found above. Alternatively, one
can invoke some general uniqueness theorems for solutions of the heat equation;
see John [33] or Folland [24]. Similar considerations apply to the other problems
we solve later, and we shall not worry about uniqueness from now on except in
situations where pitfalls actually exist.

Lest the reader become too complacent, however, let us briefly consider the
problem of solving the heat equation for times ¢ < 0 — that is, given the temper-
ature distribution at time ¢ = 0, to reconstruct the distribution at earlier times. If
we take 7 < 0 in (2.25), the factors e~n'T°kt/I* tend rapidly to infinity rather than
zero as n — oo, with the result that the series for u(x, ) will almost certainly di-
verge unless the coefficients b, of the initial function f happen to decay extremely
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rapidly as n — oc. Thus (2.25), in general, does not give a solution to the heat
equation when ¢ < 0. This is not merely a failure of mathematical technique,
however. The initial value problem for the time-reversed heat equation is simply
not well posed, a reflection of the fundamental physical fact that the direction of
time is irreversible in diffusion processes. One can mix hot water and cold water
to get warm water, but one cannot then separate the warm water back into hot
and cold components! More to the point, one cannot tell by examining the warm
water which part was initially hot and which part was initially cold, or what their
initial temperatures were.

Exactly the same considerations apply to the problem of heat flow on [0,/]
with insulated endpoints,

Ur = Klxx, u(x,0) = f(x), ux(0,1) = ux(l,1) = 0,

whose solution is

. = —n?n2kt nmx
u(x, t) = 34y + E an €Xp 12
T

where

FIGURE 2.6. The solution (2.25) of the heat equation with k = g, /

I l=1

25 - 3
by=-4,by=-¢},andbp=0forn>2,ontheregion0<x<1,0<r< 1.
Let us pause a moment to see what these solutions tell us about the physics

of the situation. In the limit as ¢ — oc, the exponential factors all vanish, so the
solution u approaches a constant — namely, 0 in the case where the endpoints
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are held at temperature 0 and iao in the case of insulated endpoints. The first
of these is easy to understand: the interval [0, /] comes into thermal equilibrium
with its surroundings. As for the second, if we recall that

ao——/f

we see that the limiting temperature iao is simply the average value of the initial
temperature. In other words, no heat enters or escapes, so the various parts of
the interval simply come into thermal equilibrium with each other. Moreover, in
both cases, the high-frequency terms (i.e., the terms with » large) damp out more
quickly than the low-frequency terms: this expresses the fact that the diffusion
of heat tends to quickly smooth out local variations in temperature. A simple
illustration of these assertions can be found in Figure 2.6.

Now let us turn to the problem of the vibrating string:
Ut = Cgx,  u(x,0) = f(x), w(x,0)=g(x), w0,1)=u(l,1)=0

According to the discussion in §1.3, we should expand f and g in their Fourier
sine series,

} " bnsin ﬂ E:B,, sin 27X ”"x (2.26)
and then take
i nax nnct  IB nxct
1))=Y sin == (bn c0s —— 4+ —2sin ———) . (2.27)
n ] ! nmc !

Here the analysis is more delicate than for the heat equation, because there are
no exponentially decreasing factors in this series to help the convergence. The
series (2.27) for u is likely to converge about as well as the sine series for f and
g, but if we differentiate it twice with respect to x or ¢ in order to verify the wave
equation, we introduce a factor of #2; and this may well be enough to destroy
the convergence.

We can avoid this difficulty by making sufficiently strong smoothness as-
sumptions on f and g. For instance, let us suppose that f and g are of class C3)
and C?), respectively, that /™ and g are piecewise smooth, and that f, g, /",
and g"” vanish at the endpoints 0 and /. These conditions guarantee that the odd
periodic extensions of f and g will have the same smoothness properties (even
at the points nx), and hence, by Theorem 2.6, that the coefficients b, and B, will
satisfy

bal < Cn™%,  |Ba < Cn7>,

Now the nth term in the series (2.27) will be dominated by n~*, and if we
differentiate it twice in either x or ¢ it is still dominated by n~2. Since 3.3° n~?
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converges, the M-test guarantees the absolute and uniform convergence of the
twice-derived series, and we are in business.

This is not entirely satisfactory, however. It is physically reasonable to as-
sume that f and g are continuous and perhaps piecewise smooth, but one may —
and indeed should — have the feeling that the extra differentiability assumptions
are annoyances that reflect a failure of technique rather than a real difficulty in
the original problem.

We can obtain more insight into this problem by recalling the trigonometric
identities

singcosb = [sin(a +b)+sin(a— b)] , sinasinb=1} [cos(a —b)—cos(a+ b)] ,
by means of which the series (2.27) can be rewritten

1

an sin 22 (x + c1) + 32 basin #(x—ct)

_Mg

1 By Ly /B nm
2_27 0s = (x —cz)——zn;cosT(x+ct)
1 1

The first two sums on the right are just the Fourier sine series for f, evaluated at
X +ct, and the last two are (up to constant factors) just the Fourier sine series for
g, integrated once and then evaluated at x + ¢z. To restate this: let us suppose
that f and g are piecewise smooth, so that the expansions (2.26) are valid on the
interval (0,/). We use the formulas (2.26) to extend f and g from this interval
to the whole line; that is, we extend f and g to R by requiring them to be odd
and 2/-periodic. We then have

u(x,t) = %[f(x +ot) + flx - cz)] + zic [G(x +ct) - G(x - cz)], (2.28)

where G is any antiderivative of g.
From this closed formula it is perfectly plain that if f is twice differentiable
and g is once differentiable, then u satisfies the wave equation, for

62

2
s fxxct) = ciz%f(x tet) = fMx % ct), (2.29)

and likewise for G. Even here the differentiability assumptions seem a bit arti-
ficial; one would like, for example, to allow f to be a function with corners in
order to model plucked strings. Indeed, in some sense the first equation in (2.29)
should be correct, simply as a formal consequence of the chain rule, even if f” is
ill-defined. The idea that is crying to be set free here is the notion of a “weak solu-
tion™ of a differential equation, which enables one to consider functions u defined
by (2.28) as solutions of the wave equation even when the requisite derivatives
of f and g do not exist. We shall say more about this in §9.5.
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Another point should be raised here. One does not have to go through
Fourier series to produce the formula (2.28) for the solution of the vibrating string
problem; an elementary derivation is sketched in Exercise 6 of §1.1. It is then
fair to ask what good the complicated-looking formula (2.27) is when the simple
(2.28) is readily available. There are two good answers. First, the trick in Exercise
6, §1.1, that quickly produces the general solution of the I-dimensional wave
equation does not work for other equations (including the higher-dimensional
wave equation), whereas the Fourier method and its generalizations often do.
Second, although (2.28) tells you what you see if you look at a vibrating string,
(2.27) tells you what you hear when you listen to it. The ear, unlike the eye, has
a built-in Fourier analyzer that resolves sound waves into their components of
different frequencies, which are perceived as musical tones.* Typically, the first
term in the series (2.27) is the largest one, so one hears the note with frequency
2rc/l colored by the “overtones™ at the higher frequencies 2znc/! with n > 1.

The difference in the convergence properties of the series solutions (2.25) and
(2.27) of the heat and wave equations reflects a difference in the physics: diffusion
processes such as heat flow tend to smooth out any irregularities in the initial
data, whereas wave motion propagates singularities. Thus, the solution (2.25) of
the heat equation becomes smoother as ¢ increases, and this is reflected in the
exponential decay of the high-frequency terms. (See the discussion of smoothness
versus rates of convergence at the end of §2.3.) However, any sharp corners in
the initial configuration of a vibrating string will not disappear but merely move
back and forth, as is clear from (2.28); hence there is no improvement in the
rate of convergence of the solution (2.27). (Compare Figures 2.6 and 2.7, which
show solutions of the heat and wave equations with the same initial values up to
a constant factor and the same boundary conditions; the initial variations damp
out in the first case, but not in the second.)

We shall see other applications of Fourier expansions of functions on an
interval in Chapter 4. Fourier expansions are also the natural tool for analyzing
periodic functions on the line. In practice, there are two principal sources of
such functions. The first is the angular variable in polar or cylindrical coordi-
nates or the longitudinal angular variable in spherical coordinates; in this context
periodicity is an immediate consequence of the geometry of the situation. The
other is physical phenomena that vary periodically (or approximately periodi-
cally) in time, such as certain types of electrical signals, the length of a day, daily
or seasonal variations in temperature, and so forth.

As an example, let us analyze the variations in temperature beneath the
ground due to the daily and seasonal fluctuations of temperature at the surface of
the earth. We shall concern ourselves only with the temperature near a particular
spot on the surface, over distances of (say) at most 100 meters. We therefore
neglect the fact that at great depths the earth is hotter than at the surface, and
we assume that (1) the earth is of uniform composition; (ii) the temperature at
the surface is a function f(¢) of time only, not of position; (iii) f(¢) is periodic

* Of course, this is an oversimplification.
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FIGURE 2.7. The solution (2.27) of the wave equation with [ = ¢ = 1,
b, = -0.2, by = -0.1, by = 0 for n > 2, and B, = 0 for all », on the region
0<x<1,0<t< 1.

of period 1 and so has a Fourier series
o< -
f(l) — Z Cneant'
—00

(We may take the unit of time to be | year, so that the dominant terms in
the series will be n = 1, corresponding to seasonal variations, and n = +365,
corresponding to daily variations. With a bit more accuracy, we could take the
unit of time to be 4 years and the dominant terms to be n = +4 and n = £1461
(= £4 x 365%). Or, we could take an even longer period to account for long-term
climatic changes.) The boundary value problem to be solved is therefore

Uy = kuxx forx >0, u(0,1) = f(1).

Since f is periodic in ¢, we expect u to have the same property, so we look for
solutions of the form

u(x, 1) = fj Cn(x)e*™™,

Taking on faith that this series can be differentiated termwise, we find that

o0 o0
U = Z(2nin)Cn(x)e2"'”’, Uxx = Y Cl (x)e*mint,
. -0

Hence, taking into account the initial condition, we have

Cr(x) = 2mink™'Ca(x) =0,  Ca(0) = cn.
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Since the square roots of 2in are +£(1+i)n'/? if n > 0 and £(1 —§)|n|'/? if n < 0,
the general solution of this differential equation is

aexp((1+i),/”7”x)+bexp(-(1+i),/§kﬁx> if n>0,
aexp((l—i) %x)+bexp(—(l—i) %x) if n<0,

ax+b if n=0.

In each case we must take @ = O because of the physical requirement that the
temperature should remain bounded as x increases. (In effect we are imposing
a boundary condition at X = oc to supplement the one at x = 0.) The initial
condition then implies that » = ¢,. Hence, upon grouping together the nth and
(—n)th terms, we obtain the solution

u(x,1)=co+»_exp (— % x)
1

x [cn exp <2nint - i,/—’%x) + C—n €Xp (—2nint+ i‘/zt—kﬂx)] .

It is now easy to check that this function u really does solve the problem.

The main features to be noted here are the following. First, all of the non-
constant terms in u (the ones with n # 0) die out exponentially fast as x increases,
and the high-frequency ones die out faster than the low-frequency ones. (In ac-
tual fact, the daily variations in temperature become negligible at a depth of a
few centimeters, and the seasonal ones become negligible at a depth of a few
meters, where the temperature remains essentially constant at the annual mean
¢o.) Second, the temperature variations at depth x are out of phase with those
at the surface by an amount proportional to x and /|n|, because the heat takes
time to penetrate. For example, if the n = 1 term, representing the main seasonal
variations, is the dominant one, at depth x = vk the temperature is warmer in
winter and cooler in summer.

In considering the usefulness of Fourier series or any other sort of infinite
series, one should not lose sight of the fact that the partial sums of the series pro-
vide approximations to the full sum, and that such approximations may be just
what one needs to obtain a computationally manageable solution to a problem.
The questions about smoothness and rates of convergence that we have discussed
in some detail have a computational as well as a theoretical significance: rapidly
converging series such as (2.25) yield accurate answers much more readily than
slowly converging ones such as (2.27). An interesting discussion of rates of con-
vergence of infinite series, and the implications for numerical calculations, can
be found in Boas [7].

On the other hand, in many situations one knows the initial data only to a
finite degree of accuracy. For example, one may be studying a physical quantity
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f(1) that varies periodically with the time 7, and one may know the values of f
approximately from physical measurements. In this context the point of Fourier
analysis is that it is usually appropriate to take a trigonometric polynomial of
fairly low degree, whose coefficients are determined so as to fit the data well, as
a mathematical model for f.

EXERCISES

1. Arod 100 cm long is insulated along its length and at both ends. Suppose that
its initial temperature is #(x,0) = x (x in cm, # in °C, ¢ in sec, 0 < x < 100),
and that its diffusivity coefficient k is 1.1 cm?/sec (about right if the bar is
made of copper).

a. Find the temperature u(x,t) for ¢t > 0. (It is something of the form
50 + 3-5° an(t) cos(nmx/100), and an () = 0 when n is even.)

b. Show that the first three terms of the series (i.e., 50+a,(¢) cos(mx/100)+
a;(t)cos(3nx/100)) give the temperature accurately to within 1 unit
when ¢ = 60. Using this fact, find (0, 60), u(10, 60), and u(40, 60).

= 1 n2 1
50 23:(2n—1)2‘T‘ -

s 1

Hint : 2(27_1—)7:

2
/(4
z ~.123.

O| —

c. Find a number T > 0 such that u(x, ) is within 1 unit of its equilibrium
value 50 for all x when 1> T.

2. Redo Exercises la and lc with k = .0l (a reasonable figure if the bar is
made of ceramic). Now how many terms of the series are needed to get an
accuracy of 1 unit when ¢ = 60?

3. Consider again the copper rod of Exercise 1 (k = 1.1). Suppose that the rod
is initially at temperature 100°C and that the ends are subsequently put into
a bath of ice water (at 0°C).

a. Assuming no heat loss along the length of the rod, find the temperature
u(x,t) at subsequent times.

b. Use your answer to find ¥(50, ¢) numerically when ¢ = 30, 60, 300, 3600.

c. Prove that your answers in (b) are correct to within 1 unit. (Hint: The
series for u(50,¢) is alternating,)

4, Consider a vibrating string occupying the interval 0 < x < /. Suppose the
string is plucked in the middle in such a way that its initial displacement
u(x,0) is 2mx/l for 0 < x < 3/ and 2m(l - x)/I for 11 < x < I (so the
maximum displacement, at x = %l, is m), and its initial velocity u,(x,0) is
Zero.

a. Find the displacement u(x,t) as a Fourier series.
b. Describe u(x,t) in the closed form (2.28) and show that at times ¢ > 0,
u(x,t) (as a function of x) typically looks like the following figure:
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N,
DN

5. Consider a vibrating string as in Exercise 4. Suppose the string is plucked at
x = a instead of x = }/, so the initial displacement is mx/a for 0 < x < a
and m(l — x)/(! - a) for a < x </, and the initial velocity is zero.

a. Find the displacement u(x, ) as a Fourier series. (Entry 11 of Table 1,
§2.1, will be helpful.)

b. Convince yourself that the terms with large »n contribute more to u(x,?)
when a becomes closer to /. (Musically: plucking near the end gives a
tone with more higher harmonics.)

6. Suppose the string in Exercise 4 is initially struck in the middle so that its
initial displacement is zero but its initial velocity u;(x,0) is 1 for |x — %l [<d
and 0 elsewhere. Find u(x,?) for ¢t > 0.

7. Suppose that the temperature at time ¢ at a point on the surface of the earth
is given by

u(0,t) = 10 — 7cos 2nt — Scos 2rn(365)t.

(Here u is measured in °C and ¢ is measured in years; the coefficients are
roughly correct for Seattle, Washington.) Suppose that the diffusivity coeffi-
cient of the earth is k = .003 cmz/sec ~ 9.46 mz/yr.
a. Find u(x,?) for x > 0.
b. At what depth x do the daily variations in temperature become less than
1 unit? What about the annual variations?

2.6 Further remarks on Fourier series

There is much more to be said about Fourier series than is contained in this
chapter. Some good references for further information on both the theoretical
aspects of the subject and its applications are the books of Dym-McKean [19],
Koérner [34], and Walker [53]. Also recommended is the article of Coppel [15] on
the history of Fourier analysis and its influence on other branches of mathematics,
and the articles by Zygmund, Hunt, and Ash in [2]. Finally, the serious student
of Fourier analysis should become acquainted with the treatise of Zygmund [58],
which gives an encyclopedic account of the subject.

We conclude this chapter with a brief discussion of a few other interesting
aspects of Fourier series.

The transform point of view

Given a 2z-periodic function, its sequence {cs} of Fourier coefficients can be
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regarded as a function f whose domain is the integers:

Fimy=cn= [ f(B)e~"0ds.

The mapping f — f is thus a transform that converts periodic functions on the
line to functions on the integers. The inverse transform is the operation which
assigns to a function ¢(n) on the integers (that decays suitably as n — oo) the
function 3> ¢(n)ei"?. In principle all the information in f is also contained in

its transform f , and vice versa, but the information may be encoded in a more
convenient form on one side or the other. For example, Theorem 2.2 shows that
the transform converts differentiation into a simple algebraic operation: f'(n) =
inf(n). We shall return to this point of view in Chapter 7.

Comparison with Taylor series

Perhaps the most well known and widely used type of infinite series expansion
for functions is the Taylor series, and it is of interest to compare the features of
Taylor series and Fourier series.

In order for a function f(x) to have a Taylor expansion about a point xg,

0 r(n)
f =S L2500 x—xol <,

n!
0

Jf must have derivatives of all orders at xg. If it does, the coeflicients of the Taylor
series are determined by these derivatives, and hence by the values of f in an
arbitrarily small neighborhood of x;. The rate at which these coefficients grow
or decay as n — oc is related to the radius of convergence of the series and hence
to the distance from xg to the nearest singularity of f (in the complex plane). In
general the partial sums of the Taylor series provide excellent approximations to
f near xg but are often of little use when |x — xg| is large.

In contrast, a function f need have only minimal smoothness properties in
order to have a convergent Fourier expansion

f(x)= i‘ ((21)-1 JorH f(y)e-*’""y/’dy) eirx/l xe(a, a+2l).

— o0

The coefficients of this series depend on the values of f over the entire interval
(a, a+2l). The rate at which they decay as n — oo is related to the differentiability
properties of f, or rather of its periodic extension. The partial sums of the Fourier
series will converge to f only rather slowly if f is not very smooth, but they tend
to provide good approximations over the whole interval (a, a + 2/).

Thus Taylor series and Fourier series are of quite different natures: the first
one is intimately connected with the local properties of f near x;, whereas the
second is related to global properties of f. There is a situation, however, in
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which the two can be seen as aspects of the same thing. Namely, suppose f is
an analytic function of the complex variable z in some disc |z — zg| < R. If we
write z — zg in polar coordinates as rei?, the Taylor series for f about Zg turns
into a Fourier series in @ for each fixed r < R:

o]

ian(z —zg)" = Z(anr”)e‘"o.
0

0

The formula (2.5) for the Fourier coefficients, in this case, is nothing but the
Cauchy integral formula for the derivatives of f at zg. This connection between
Fourier analysis and complex function theory has many interesting consequences,
which are discussed in more advanced books such as Dym-McKean [19] and
Zygmund [58].

Convergence of Fourier series

The study of the convergence of Fourier series has a long and complex history.
The convergence theorems we have presented in §§2.2-3 are sufficient for many
purposes, but they do not give the whole picture. Here we briefly indicate a few
other highlights of the story. In the first place, the hypotheses of our Theorem 2.1
can be weakened. The same conclusion is obtained if we assume only that f is of
“bounded variation” on the interval [, ], which means that it can be written
as the difference of two nondecreasing functions on that interval. (It is not hard
to show that piecewise smooth functions have this property.) On the other hand,
it has been known since 1876 that there are continuous periodic functions whose
Fourier series diverge at some points, and for almost a century it was an open
question whether the Fourier series of a continuous function could be guaranteed
to converge at any point. An affirmative answer was obtained only in 1966, with
a deep theorem of L. Carleson to the effect that the Fourier series of any square-
integrable function f must converge to f at “almost every” point, in a sense that
we shall describe in §3.3. See the article by Hunt in [2].

One fundamental fact that has emerged over the years is that, in many sit-
uations, simple pointwise convergence of a series is not the appropriate thing to
look at; and there are many other notions of convergence that may be used. For
example, there is uniform convergence, which is stronger than pointwise conver-
gence; there is also “pth power mean” convergence, according to which the series
35° fa converges to f on the interval [a, b] if

P
lim dx =0.

b
N—oo /g

N
> falx) = f(x)
1

We shall say much more about the case p = 2 in the next chapter. There are also
ways of summing divergent series that can be used to advantage; we shall now
briefly discuss the simplest of these.
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It is easy to see that if a sequence {ax} converges to a, then the average
k—! 2’1‘ an of its first k terms also converges to @ as k — oc, but these averages
may converge when the original sequence does not. For example, the sequence

1,0,1,0,1,0,1,0,...

is divergent; but the average of its first k terms is (k + 1)/2k or 1/2 according as
k 1s odd or even, and this tends to 1/2 as kK — oo. Now, given an infinite series
30" b with partial sums sy = Z(’)V bn, the average of its first k + 1 partial sums,

1
—(Sg+ 851+ +S$
is called its kth Cesaro mean, and the series is said to be Cesaro summable to the
number s if its Cesaro means (rather than just its partial sums) converge to s.
We then have the following theorem, due to L. Fejér.

Theorem 2.8. If f is 2r-periodic and piecewise continuous on R, then the Fourier
series of f is Cesaro summable to %[f(e—) +f(0+)] at every 0. Moreover, if f is
everywhere continuous, the Cesaro means of the series converge to f uniformly.

The proof of this theorem is similar in spirit to that of Theorem 2.1; it can
be found, for example, in §2 of Korner [34] or §2.7 of Walker [53]. The signif-
icance of the theorem is twofold. First, it gives a way of recovering a piecewise
continuous function f from its Fourier coefficients when the Fourier series fails
to converge. Second, even when the Fourier series of f does converge, its Cesdro
means tend to give better approximations to f than its partial sums: for example,
they converge uniformly to f whenever f is continuous, whereas the partial sums
converge uniformly only under stronger smoothness conditions (cf. Theorem 2.5).

The Gibbs phenomenon

Suppose f is a periodic function. If f has a discontinuity at xj, the Fourier
series of f cannot converge uniformly on any interval containing xg, because the
uniform limit of continuous functions is continuous. In fact, for the Fourier
series of a piecewise smooth function f, the lack of uniformity manifests itself
in a particularly dramatic way known as the Gibbs phenomenon: as one adds
on more and more terms, the partial sums overshoot and undershoot f near the
discontinuity and thus develop “spikes” that tend to zero in width but not in
height. One can see this in Figure 2.8, which shows the fortieth partial sum of
the Fourier series of the sawtooth wave function

fl)=n—-0 for0< 0 < 2m, f(6+2nm) = f(6).

A precise statement and proof of the Gibbs phenomenon for this function is
outlined in Exercise 1. It can be shown that the same behavior occurs at any
discontinuity of any piecewise smooth function. See Korner [34] and Hewitt-
Hewitt [28] for interesting discussions of the Gibbs phenomenon.
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FiGURE 2.8. Graph of 22‘1‘0 n~!sinnf, —2n < @ < 2x (an illustration of
the Gibbs phenomenon).
EXERCISE
1. Recall from Table 1, §2.1, that f(6) = 25°°n~'sinnf is the 2z-periodic
function that equals 7 — 6 for 0 < 8 < 27, Let

sin n@
n

N
gn(6)=2Y" —(n-86),

1

so that g(#) is the difference between f(8) and its Nth partial sum for 0 <
6 < 2nm.
a. Show that g, (6) = 2nDy(60) where Dy is the Dirichlet kernel (2.10).
b. Using (2.12), show that the first critical point of gx(8) to the right of
zero occurs at Oy = /(N + ), and that

O~ sin(N + )8
guion) = [ oD% n
0 smIH

¢. Show that .
sin

¢¢d¢—7z.

n
Jim gy (6y) =2 /0

(Hint: Let ¢ = (N + $)6.) This limit is approximately equal to .562.
Thus the difference between f(6) and the Nth partial sum of its Fourier
series develops a spike of height .562 (but of increasingly narrow width)
just to the right of 8 = 0 as N — oc. (There is another such spike on
the left.)



