
An Introduction to Autotuning
Parallel Applications

Pedro Bruel

phrb@ime.usp.br

DCC - IME

Universidade de São Paulo

São Paulo, June 28, 2015

Contents

1 Introduction 3

2 Autotuning 4

2.1 The Algorithm Selection Problem . 5

2.2 INSIEME Compiler Project . 5

2.3 OpenTuner Framework . 6

3 Pro�ling Tools 7

4 Conclusion 8

References 9

2

1 Introduction

A number of factors make programming High-Performance Computing applications a very com-

plex task. To achieve high performance it is necessary to write programs that take into consideration

the speci�cs of a parallel architecture, as well as the basic concepts of parallel programming. Paral-

lel computing platforms are increasingly available and heterogeneous. Processors are now expected

to be multi-core, and even personal computers have coprocessors and accelerators such as GPUs.

Consequently, it is easy to over-optimize a parallel program to a speci�c parallel computing platform.

This leads to highly e�cient hand-optimized programs, capable of leveraging the potential of

a speci�c parallel computing platform. Although, despite the e�orts made during implementation,

this highly-optimized program will not able to achieve the same performance in a di�erent parallel

architecture. In other words, the performance achieved by extensive hand-optimization is not portable.

The lack of performance portability of HPC applications, as well as the immense e�orts needed to

optimize them, justify the research for automated methods of optimization for parallel programs.

Extensive research in the last decade produced powerful tools for automatically tuning programs, or

autotuners, in a variety of problem domains. Despite being able to achieve good results on porting the

performance of parallel programs,these tools are not widely utilized by the scienti�c and programming

communities, perhaps because of their novelty.

Autotuners can be model-based or empirical. Model-based autotuners predict program perfor-

mance following a model of the target architecture. The model is built previous to the tuning and

execution, during an installation phase. Empirical autotuners discover the best optimization of a pro-

gram by executing di�erent optimized versions and measuring their performance. No model is built

or used, instead empirical autotuner commonly use search techniques to explore the space de�ned by

the possible optimizations of a program, in a given architecture. Despite being arguably slower than

model-base autotuners, given a model is already built, empirical autotuners can produce optimized

versions of a program during tuning time. The empirical tuning strategy allows programmers to fo-

cus their e�orts in designing programs that explicitly expose their implementation and optimization

choices, leaving the task of discovering the best choice to the autotuner.

The search techniques used by an autotuner can target the optimization of various program metrics.

Simple metrics such as runtime can be obtained by simply running the candidate optimization, but

more complex metrics, such as I/O patterns or memory accesses are not so straight-forward to measure.

Pro�lers are tools that o�er such speci�c measurements and analysis of programs during runtime. For

instance, if a programmer was interested in optimizing the CPU load, or the duration and depth of

a function call stack during the execution of her program, she could use a pro�ler to produce such

measurements to an empirical autotuner.

This Introduction to Parallel Tuning aims to familiarize the reader with the state-of-the-art ap-

plications of autotuning techniques to the optimization of high-performance parallel programs. The

following section discuss the autotuning technique under the Algorithm Selection framework. Sec-

tion 2.2 discusses the INSIEME compiler project for parallel applications. Section 2.3 describes the

OpenTuner framework, an autotuning framework that can be used to implement autotuners for par-

allel applications. Section 3 list some pro�ling tools that can be used to measure metrics of parallel

programs. Finally, section 4 summarizes the discussion.

3

2 Autotuning

The idea behind empirical autotuning techniques consists of using the performance-impacting

features of architectures, problems and algorithms in a domain to de�ne sets of possible algorithm

implementations, con�gurations and optimizations. These sets describe a search space that can then

be explored by searching, optimization and Machine Learning techniques.

In contrast, model-based autotuning uses perfomance-impacting features to build a model, and

then uses this model to autotune an application. The model can be obtained by formally describing

an algorithm and analysing its behaviour or, when building a model for a computer architecture,

empirically exploring the search space. Models are then used to implement highly optimized libraries

for a given domain, that are then used to implement programs in that domain. Di�erent compiled

versions of the library functions must be provided for all target architectures.

Instead of manually exploring the search space of algorithm optimizations, con�gurations and

implementations, programmers should be motivated to expose these features to an autotuner. This

approach to designing and implementing computer programs is called Programming by Optimization,

and was �rst described by Hoos [10].

Autotuning techniques have been used since as early as 1997, when the PHiPAC system [3] used

code generators and search scripts to automatically generate high performance code for matrix mul-

tiplication. Since then the autotuning problem has been tackled in multiple domains, with a great

variety of strategies. Whaley et al. [18] introduce the ATLAS project, that produced optimized dense

matrix multiply routines. The OSKI [17] library provides automatically tuned kernels for sparse

matrices. The FFTW [8] library provides tuned C subroutines for computing the Discrete Fourier

Transform.

More recently, there have been e�orts in the direction of breaking the domain boundaries, through

the implementation of tools that generalize autotuning. PetaBricks [1] is a language, compiler and

autotuner for domain-independent applications, that introduce new abstractions such as the either...or

keywords, which let programmers de�ne multiple algorithms for a same problem. The user can de�ne

input features [6] for a given algorithm, which allow Petabricks to group and speci�cally optimize

programs for classes of training inputs.

The OpenTuner framework [2] implements ensembles of search techniques that are used to search

a user-de�ned space of program con�gurations. OpenTuner is further discussed in section 2.3. The

framework has already been used to implement a domain speci�c language for data-�ow program-

ming [4] and a framework for the optimization of recursive parallel algorithms [7]. The ParamILS

framework [11] implements state-of-the-art search methods for algorithm con�guration and parameter

tuning.

In an e�ort to provide a common representation of multiple parallel programming models, the IN-

SIEME compiler project [12] implements abstractions for OpenMP, MPI and OpenCL. The INSIEME

compiler is able to generate optimized parallel code for heterogeneous multi-core architectures. Sec-

tion 2.2 discusses the INSIEME compiler project.

The remaining of this section presents the Algorithm Selection Problem and describes autotuning

as an instance of this problem.

4

2.1 The Algorithm Selection Problem

Figure 1: Schematic diagram of the Algorithm Selection Problem as de-
scribed by Rice [15]. Reproduction of a diagram from Smith-Miles [16].

The description of the Algorithm Selection Problem was �rst published by Rice in 1976 [15]. The

problem is described as follows. Given a set A of algorithms, a set P of problems and a set F of problem

features, the Algorithm Selection Problem consists of �nding a mapping of algorithms to problems

that minimizes the time to solve all problems in the set, taking problem features in consideration.

The performance space Y is composed of the measurements of each algorithm α ∈ A in each problem

x ∈ P .

Note that the algorithms that compose a set are not limited to con�gurations or combinations

of algorithms. Each α ∈ A can represent di�erent abstractions, such as programs, heuristics, or

con�gurations. The set of problems usually contains instances of a problem, and the set of prob-

lem features contains representations of the performance-impacting features. Ding et al. [6] further

discusses the feature extraction processes. Figure 1 shows a schematic diagram for the Algorithm

Selection Problem, as described by Rice.

Kottho� [14] presents a survey of the algorithm selection �eld and its applications in combinatorial

search problems. Smith-Miles [16] surveys the applications of the algorithm selection problem to the

machine learning and meta-learning �elds.

The Algorithm Selection Problem is hard. Its NP-completeness has been proved when calculating

static distributions of algorithms in parallel machines [5]. Its Undecidability in the general case was

also shown [9]. Therefore, methods such as Stochastic Local Search can be used to approach the

algorithm selection problem with good results, as described by Hutter et al. [11].

2.2 INSIEME Compiler Project

The INSIEME Compiler Project1 of the University of Innsbruck is a C/C++ source-to-source

compiler that aims to automatically optimize parallel programs for heterogeneous parallel computing

platforms, regardless of the parallel programming tools used in the implementation of the programs.

INSIEME [12] uses the INSPIRE intermediate representation [13] to commonly represent par-

allel programs in various parallel programming abstractions, such as OpenMP, MPI and OpenCL.

INSIEME also o�ers a runtime system for online tuning and performance monitoring.

An overview of the architectures of the INSIEME compiler and runtime systems is presented in

Figures 2 and 3. Those diagrams can be found at the INSIEME Compiler Project website2.

1insieme-compiler.org
2insieme-compiler.org/architecture.html

5

Figure 2: Overview of the INSIEME compiler.

Figure 3: Overview of the INSIEME runtime.

The runtime uses multiple threads to schedule and distribute work. The optimization and schedul-

ing choices are made based on previous executions of the program and on knowledge of the underlying

parallel computing platform.

2.3 OpenTuner Framework

The OpenTuner framework [2] provides domain-agnostic tools for de�ning search spaces and im-

plementing autotuners.

The search spaces are de�ned by instantiating the di�erent Parameter types provided by the

framework. Each parameter type, such as FloatParameter, IntegerParameter or BooleanParameter

implements its own manipulation functions, that allow the search techniques to navigate the values

allowed to each parameter, thus exploring the search space de�ned by the user. A user of the framework

can implement her own parameter types.

OpenTuner implements ensembles of optimization and Machine Learning techniques that perform

well in di�erent problem domains, and are used to search user-de�ned search spaces. The results

found during the search process are shared between techniques through a common results database.

OpenTuner uses meta-techniques for coordinating the distribution of resources between techniques in

an ensemble.

An OpenTuner application can implement its own search techniques and meta-techniques, adding

them to existing ensembles or creating completely new ones. By separating search space de�nition

from search method implementation, OpenTuner allows fast implementation of autotuners for di�erent

problem domains.

The search techniques implemented in OpenTuner share the results found through a common

database. This allows techniques to bene�t from each other's executions and reach better results

faster.

6

Figure 4 illustrates the main components of the framework, the interactions between them. Note

that both the Search and Measurement components read from and write to the Results Database.

This communication of intermediate results e�ectively steers the autotuning process.

Figure 4: Main components of the OpenTuner framework and their inter-
ations. Reproduction of a diagram found in Ansel et al. [2].

3 Pro�ling Tools

System Features License
perf tools Sampling pro�ler supporting hardware events on several ar-

chitectures.
GPL

LTTng Collects data on processes blocking, context switches, and
execution time. Helps identify performance problems over
multiple processes or threads.

GPL

gprof Several tools with combined sampling and call-graph pro�ling.
A set of visualization tools, VCG tools, uses the Call Graph
Drawing Interface (CGDI) to interface with gprof.

BSD

Allinea MAP I/O, communication, �oating point operation usage, memory
access costs, MPI and OpenMP support.

Proprietary

Streamline Graphical performance visualization of hardware and software
for ARM CPUs, Mali GPUs, OpenCL, power consumption
metrics.

Proprietary

VTune Serial and threaded performance analysis. Hotspot, call tree
and threading analysis on both Intel and AMD x86 processors.
Hardware event sampling that uses the on chip performance
monitoring unit requires an Intel processor.

Proprietary

CodeXL GPU and CPU pro�lers, GPU debugger and static kernel an-
alyzer.

Proprietary

NVIDIA Visual
Pro�ler

Performance pro�ling for optimizing CUDA C/C++ applica-
tions.

Proprietary

Figure 5: Some profilers for parallel applications and their features.

Figure 5 show some of the available pro�ling tools for parallel applications3 and their main features.

Note that there are not many open source pro�ling tools.

3Filtered from wikipedia.org/wiki/List_of_performance_analysis_tools.

7

The INSIEME Compiler Project references three important benchmarks for parallel applications

which can be used as performance pro�lers. The INNCABS4 cross-platform and cross-library of-

fer benchmarks for C++ parallel constructs. uCLbench5 measures various performance metrics of

OpenCL CPU and GPU applications, through a set of micro-benchmarks. MPICacheBench6 mea-

sures the e�ects of CPU caches in point-to-point and collective MPI operations.

4 Conclusion

This work presented a limited overview of some of the most recent research in parallel applications

autotuning, and listed some parallel pro�ling tools and benchmarks. This work is intended to continu-

ously evolve, and future work will extend the description of the INSIEME and OpenTuner systems to

contain samples of implementations and performance analysis. Experiments with pro�ling tools and

benchmarks, targeting di�erent optimization objectives, will also be included. Finally, a new section

describing autotuning applications and domain-speci�c autotuning systems will be included.

4github.com/PeterTh/inncabs
5github.com/PeterTh/uCLbench
6github.com/motonacciu/mpi-cache-bench

8

References

[1] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and Saman

Amarasinghe. Petabricks: A language and compiler for algorithmic choice. In ACM SIGPLAN

Conference on Programming Language Design and Implementation, Dublin, Ireland, Jun 2009.

[2] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Una-May O'Reilly, and Saman Amaras-

inghe. Opentuner: An extensible framework for program autotuning. 2013.

[3] Je� Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Optimizing matrix multiply

using phipac: A portable, high-performance, ansi c coding methodology. In ACM International

Conference on Supercomputing 25th Anniversary Volume, pages 253�260, New York, NY, USA,

2014. ACM. ISBN 978-1-4503-2840-1. doi: 10.1145/2591635.2667174.

[4] Je�rey Bosboom, Sumanaruban Rajadurai, Weng-Fai Wong, and Saman Amarasinghe. Streamjit:

a commensal compiler for high-performance stream programming. In Proceedings of the 2014

ACM International Conference on Object Oriented Programming Systems Languages & Applica-

tions, pages 177�195. ACM, 2014.

[5] Marin Bougeret, P-F Dutot, Alfredo Goldman, Yanik Ngoko, and Denis Trystram. Combining

multiple heuristics on discrete resources. In Parallel & Distributed Processing, 2009. IPDPS 2009.

IEEE International Symposium on, pages 1�8. IEEE, 2009.

[6] Yufei Ding, Jason Ansel, Kalyan Veeramachaneni, Xipeng Shen, Una-May O'Reilly, and Saman

Amarasinghe. Autotuning algorithmic choice for input sensitivity. 2014.

[7] David Eliahu, Omer Spillinger, Armando Fox, and James Demmel. Frpa: A framework for recur-

sive parallel algorithms. Master's thesis, EECS Department, University of California, Berkeley,

May 2015.

[8] Matteo Frigo and Steven G Johnson. Fftw: An adaptive software architecture for the �t. In

Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Con-

ference on, volume 3, pages 1381�1384. IEEE, 1998.

[9] Haipeng Guo. Algorithm selection for sorting and probabilistic inference: a machine learning-

based approach. PhD thesis, Citeseer, 2003.

[10] Holger H Hoos. Programming by optimization. Communications of the ACM, 55(2):70�80, 2012.

[11] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle. Paramils: an automatic

algorithm con�guration framework. Journal of Arti�cial Intelligence Research, 36(1):267�306,

2009.

[12] Herbert Jordan, Peter Thoman, Juan J Durillo, Sara Pellegrini, Philipp Gschwandtner, Thomas

Fahringer, and Hans Moritsch. A multi-objective auto-tuning framework for parallel codes. In

High Performance Computing, Networking, Storage and Analysis (SC), 2012 International Con-

ference for, pages 1�12. IEEE, 2012.

9

[13] Herbert Jordan, Simone Pellegrini, Peter Thoman, Klaus Ko�er, and Thomas Fahringer. Inspire:

The insieme parallel intermediate representation. In Parallel Architectures and Compilation Tech-

niques (PACT), 2013 22nd International Conference on, pages 7�17. IEEE, 2013.

[14] Lars Kottho�. Algorithm selection for combinatorial search problems: A survey. arXiv preprint

arXiv:1210.7959, 2012.

[15] John R Rice. The algorithm selection problem. 1976.

[16] Kate A Smith-Miles. Cross-disciplinary perspectives on meta-learning for algorithm selection.

ACM Computing Surveys (CSUR), 41(1):6, 2008.

[17] Richard Vuduc, James W Demmel, and Katherine A Yelick. Oski: A library of automatically

tuned sparse matrix kernels. In Journal of Physics: Conference Series, volume 16, page 521. IOP

Publishing, 2005.

[18] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software. In Proceed-

ings of the 1998 ACM/IEEE Conference on Supercomputing, SC '98, pages 1�27, Washington,

DC, USA, 1998. IEEE Computer Society. ISBN 0-89791-984-X.

10

	Introduction
	Autotuning
	The Algorithm Selection Problem
	INSIEME Compiler Project
	OpenTuner Framework

	Profiling Tools
	Conclusion
	References

