Ordenação em tempo linear

CLRS cap 8

Problema: Rearranjar um vetor A[1..n] de modo que ele fique em ordem crescente.

Existem algoritmos que consomem tempo $O(n \lg n)$.

Problema: Rearranjar um vetor A[1..n] de modo que ele fique em ordem crescente.

Existem algoritmos que consomem tempo $O(n \lg n)$.

Existe algoritmo assintoticamente melhor?

Problema: Rearranjar um vetor A[1..n] de modo que ele fique em ordem crescente.

Existem algoritmos que consomem tempo $O(n \lg n)$.

Existe algoritmo assintoticamente melhor?

NÃO, se o algoritmo é baseado em comparações.

Prova?

Problema: Rearranjar um vetor A[1..n] de modo que ele fique em ordem crescente.

Existem algoritmos que consomem tempo $O(n \lg n)$.

Existe algoritmo assintoticamente melhor?

NÃO, se o algoritmo é baseado em comparações.

Prova?

Qualquer algoritmo baseado em comparações é uma "árvore de decisão".

Todo algoritmo de ordenação baseado em comparações faz

 $\Omega(n \lg n)$

comparações no pior caso.

Counting Sort Recebe inteiros $n \in k$, e um vetor A[1..n] onde cada elemento é um inteiro entre 1 e k.

Recebe inteiros $n \in k$, e um vetor A[1...n] onde cada elemento é um inteiro entre 1 e k.

Recebe inteiros $n \in k$, e um vetor A[1..n] onde cada elemento é um inteiro entre 1 e k.

```
CountingSort(A, n)
      para i \leftarrow 1 até k faça
           C[i] \leftarrow 0
 3 para j \leftarrow 1 até n faça
           C[A[i]] \leftarrow C[A[i]] + 1
     para i \leftarrow 2 até k faça
 6
           C[i] \leftarrow C[i] + C[i-1]
      para j \leftarrow n decrescendo até 1 faça
 8
           B[C[A[j]]] \leftarrow A[j]
           C[A[i]] \leftarrow C[A[i]] - 1
 9
      devolva B
10
```

Recebe inteiros $n \in k$, e um vetor A[1...n] onde cada elemento é um inteiro entre 1 e k.

```
CountingSort(A, n)
      para i \leftarrow 1 até k faça
           C[i] \leftarrow 0
 3 para j \leftarrow 1 até n faça
 4
           C[A[i]] \leftarrow C[A[i]] + 1
                 /* C[j] é o número de ítens j em A */
      para i \leftarrow 2 até k faça
           C[i] \leftarrow C[i] + C[i-1]
 6
      para j \leftarrow n decrescendo até 1 faça
 8
           B[C[A[j]]] \leftarrow A[j]
           C[A[i]] \leftarrow C[A[i]] - 1
 9
      devolva B
10
```

Recebe inteiros $n \in k$, e um vetor A[1...n] onde cada elemento é um inteiro entre 1 e k.

```
CountingSort(A, n)
      para i \leftarrow 1 até k faça
           C[i] \leftarrow 0
     para j \leftarrow 1 até n faça
  4
           C[A[i]] \leftarrow C[A[i]] + 1
                 /* C[j] é o número de ítens j em A */
  5
      para i \leftarrow 2 até k faça
           C[i] \leftarrow C[i] + C[i-1]
  6
                 /* C[j] é o número de ítens \leq j em A */
      para j \leftarrow n decrescendo até 1 faça
           B[C[A[j]]] \leftarrow A[j]
  8
           C[A[i]] \leftarrow C[A[i]] - 1
  9
      devolva B
10
```

Consumo de tempo

linha	consumo na linha
1	$\Theta(k)$
2	O(k)
3	$\Theta(n)$
4	O(n)
5	$\Theta(k)$
6	O(k)
7	$\Theta(n)$
8	O(n)
9	O(n)
10	Θ(1)
total	2222

Consumo de tempo

linha	consumo na linha
1	$\Theta(k)$
2	O(k)
3	$\Theta(n)$
4	O(n)
5	$\Theta(k)$
6	O(k)
7	$\Theta(n)$
8	O(n)
9	O(n)
10	$\Theta(1)$
total	$\Theta(k+n)$

Counting Sort

```
CountingSort(A, n)
      para i \leftarrow 1 até k faça
      C[i] \leftarrow 0
  3 para j \leftarrow 1 até n faça
           C[A[i]] \leftarrow C[A[i]] + 1
     para i \leftarrow 2 até k faça
           C[i] \leftarrow C[i] + C[i-1]
      para j \leftarrow n decrescendo até 1 faça
  8
           B[C[A[i]]] \leftarrow A[i]
           C[A[i]] \leftarrow C[A[i]] - 1
  9
10
      devolva B
```

Consumo de tempo: $\Theta(k+n)$

Se k = O(n), o consumo de tempo é $\Theta(n)$.

Algoritmo usado para ordenar

- ▶ inteiros não-negativos com d dígitos
- cartões perfurados (Hollerith!)
- registros cuja chave tem vários campos

Algoritmo usado para ordenar

- ▶ inteiros não-negativos com d dígitos
- cartões perfurados (Hollerith!)
- registros cuja chave tem vários campos

campo 1: menos significativo campo *d*: mais significativo

Algoritmo usado para ordenar

- ▶ inteiros não-negativos com d dígitos
- cartões perfurados (Hollerith!)
- registros cuja chave tem vários campos

campo 1: menos significativo campo d: mais significativo

```
RADIXSORT(A, n, d)

1 para i \leftarrow 1 até d faça

2 ORDENE(A, n, i)
```

Algoritmo usado para ordenar

- inteiros não-negativos com d dígitos
- cartões perfurados (Hollerith!)
- registros cuja chave tem vários campos

campo 1: menos significativo campo d: mais significativo

```
RADIXSORT(A, n, d)

1 para i \leftarrow 1 até d faça

2 ORDENE (A, n, i)
```

ORDENE (A, n, i): ordena A[1..n] pelo i-ésimo campo dos registros em A por meio de um algoritmo estável.

Um algoritmo de ordenação é estável se sempre que, inicialmente, A[i] = A[j] para i < j, a cópia A[i] termina em uma posição menor do vetor que a cópia A[j].

Um algoritmo de ordenação é estável se sempre que, inicialmente, A[i] = A[j] para i < j, a cópia A[i] termina em uma posição menor do vetor que a cópia A[j].

Isso só é relevante quando temos informação satélite.

Um algoritmo de ordenação é estável se sempre que, inicialmente, A[i] = A[j] para i < j, a cópia A[i] termina em uma posição menor do vetor que a cópia A[j].

Isso só é relevante quando temos informação satélite.

Quais dos algoritmos que vimos são estáveis?

Um algoritmo de ordenação é estável se sempre que, inicialmente, A[i] = A[j] para i < j, a cópia A[i] termina em uma posição menor do vetor que a cópia A[j].

Isso só é relevante quando temos informação satélite.

Quais dos algoritmos que vimos são estáveis?

- inserção direta? seleção direta? bubblesort?
- mergesort?
- quicksort?
- heapsort?
- countingsort?

Depende do algoritmo ORDENE.

Depende do algoritmo ORDENE.

Se cada campo é um inteiro de 1 a k, então podemos usar o COUNTINGSORT.

Depende do algoritmo ORDENE.

Se cada campo é um inteiro de 1 a k, então podemos usar o COUNTINGSORT.

Neste caso, o consumo de tempo é $\Theta(d(k+n))$.

Depende do algoritmo ORDENE.

Se cada campo é um inteiro de 1 a k, então podemos usar o COUNTINGSORT.

Neste caso, o consumo de tempo é $\Theta(d(k+n))$.

Se d é limitado por uma constante (ou seja, se d = O(1)) e k = O(n), então o consumo de tempo é O(n).

Bucketsort

CLRS sec 8.4

Recebe um inteiro n e um vetor A[1..n] onde cada elemento é um número no intervalo [0,1).

Recebe um inteiro n e um vetor A[1..n] onde cada elemento é um número no intervalo [0,1).

A .47 .93 .82 .12 .42 .03 .62 .38 .77 .91

Recebe um inteiro n e um vetor A[1..n] onde cada elemento é um número no intervalo [0,1).

Recebe um inteiro n e um vetor A[1..n] onde cada elemento é um número no intervalo [0,1).

.47	.93	.82	.12	.42	.03	.62	.38	.77	.91

.47	.93	.82	.12	.42	.03	.62	.38	.77	.91

B[0]:	.03	
B[1]:	.12	
B[2]:		
B[3]:	.38	
B[4]:	.47	.42
B[5]:		
B[6]:	.62	
B[7]:	.77	
B[8]:	.82	
B[9]:	.93	.91

.47	.93	.82	.12	.42	.03	.62	.38	.77	.91

.03	
.12	
.38	
.42	.47
.62	
.77	
.82	
.91	.93
	.12 .38 .42 .62 .77 .82

.47	.93	.82	.12	.42	.03	.62	.38	.77	.91

B[0]:	.03	
B[1]:	.12	
B[2]:		
B[3]:	.38	
B[4]:	.42	.47
B[5]:		
B[6]:	.62	
B[7]:	.77	
B[8] :	.82	
B[9]:	.91	.93

.03	.12	.38	.42	.47	.62	.77	.82	.91	.93

Recebe um inteiro n e um vetor A[1..n] onde cada elemento é um número no intervalo [0,1).

```
BUCKETSORT(A, n)

1 para i \leftarrow 0 até n - 1 faça

2 B[i] \leftarrow_{\text{NIL}}

3 para i \leftarrow 1 até n faça

4 INSIRA(B[\lfloor nA[i] \rfloor], A[i])

5 para i \leftarrow 0 até n - 1 faça

6 ORDENELISTA(B[i])

7 C \leftarrow_{\text{CONCATENE}}(B, n)

8 devolva C
```

Bucket Sort

```
BUCKETSORT(A, n)
1 para i \leftarrow 0 até n - 1 faça
2 B[i] \leftarrow_{\text{NIL}}
3 para i \leftarrow 1 até n faça
4 INSIRA(B[\lfloor nA[i] \rfloor], A[i])
5 para i \leftarrow 0 até n - 1 faça
6 ORDENELISTA(B[i])
7 C \leftarrow_{\text{CONCATENE}}(B, n)
8 devolva C
```

INSIRA(p, x): insere x na lista apontada por p

ORDENELISTA(p): ordena a lista apontada por p

CONCATENE (B, n): devolve a lista obtida da concatenação das listas apontadas por B[0], ..., B[n-1].

Suponha que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Suponha que o OrdeneLista seja o InsertionSort.

Suponha que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Suponha que o OrdeneLista seja o InsertionSort.

Seja X_i o número de elementos na lista B[i].

Suponha que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Suponha que o OrdeneLista seja o InsertionSort.

Seja X_i o número de elementos na lista B[i].

Seja

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-}\text{\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-}\text{\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

Suponha que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Suponha que o OrdeneLista seja o InsertionSort.

Seja X_i o número de elementos na lista B[i].

Seja

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

Observe que $X_i = \sum_j X_{ij}$.

Suponha que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Suponha que o OrdeneLista seja o InsertionSort.

Seja X_i o número de elementos na lista B[i].

Seja

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

Observe que $X_i = \sum_j X_{ij}$.

 Y_i : número de comparações para ordenar a lista B[i].

 X_i : número de elementos na lista B[i]

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

 Y_i : número de comparações para ordenar a lista B[i].

 X_i : número de elementos na lista B[i]

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-}\text{\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-}\text{\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

 Y_i : número de comparações para ordenar a lista B[i].

Logo
$$E[Y_i] \le E[X_i^2] = E[(\sum_j X_{ij})^2].$$

 X_i : número de elementos na lista B[i]

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

 Y_i : número de comparações para ordenar a lista B[i].

Logo
$$E[Y_i] \le E[X_i^2] = E[(\sum_j X_{ij})^2].$$

$$E[(\sum_{j} X_{ij})^{2}] = E[\sum_{j} \sum_{k} X_{ij} X_{ik}]$$
$$= E[\sum_{j} X_{ij}^{2} + \sum_{j} \sum_{k \neq j} X_{ij} X_{ik}]$$

 X_i : número de elementos na lista B[i]

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

 Y_i : número de comparações para ordenar a lista B[i].

Logo
$$E[Y_i] \le E[X_i^2] = E[(\sum_j X_{ij})^2].$$

$$E[(\sum_{j} X_{ij})^{2}] = E[\sum_{j} \sum_{k} X_{ij} X_{ik}]$$
$$= E[\sum_{i} X_{ij}^{2}] + E[\sum_{i} \sum_{k \neq i} X_{ij} X_{ik}]$$

 X_i : número de elementos na lista B[i]

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

 Y_i : número de comparações para ordenar a lista B[i].

Logo
$$E[Y_i] \le E[X_i^2] = E[(\sum_j X_{ij})^2].$$

$$E[(\sum_{j} X_{ij})^{2}] = E[\sum_{j} \sum_{k} X_{ij} X_{ik}]$$
$$= \sum_{i} E[X_{ij}^{2}] + \sum_{i} \sum_{k \neq i} E[X_{ij} X_{ik}]$$

 X_i : número de elementos na lista B[i]

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

 Y_i : número de comparações para ordenar a lista B[i].

Observe que $Y_i \leq X_i^2$. Ademais,

$$\mathrm{E}[Y_i] \leq \sum_j \mathrm{E}[X_{ij}^2] + \sum_j \sum_{k \neq j} \mathrm{E}[X_{ij} X_{ik}].$$

 X_i : número de elementos na lista B[i]

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

 Y_i : número de comparações para ordenar a lista B[i].

Observe que $Y_i \leq X_i^2$. Ademais,

$$\mathrm{E}[Y_i] \leq \sum_j \mathrm{E}[X_{ij}^2] + \sum_j \sum_{k \neq j} \mathrm{E}[X_{ij} X_{ik}].$$

Observe que X_{ij}^2 é uma variável aleatória binária. Vamos calcular sua esperança:

$$E[X_{ij}^2] = Pr[X_{ij}^2 = 1] = Pr[X_{ij} = 1] = \frac{1}{n}.$$

Para calcular $E[X_{ij}X_{ik}]$ para $j \neq k$, primeiro note que X_{ij} e X_{ik} são variáveis aleatórias independentes.

Portanto,
$$E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}].$$

Ademais,
$$E[X_{ij}] = Pr[X_{ij} = 1] = \frac{1}{n}$$
.

Para calcular $E[X_{ij}X_{ik}]$ para $j \neq k$, primeiro note que X_{ij} e X_{ik} são variáveis aleatórias independentes.

Portanto, $E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}].$

Ademais, $E[X_{ij}] = Pr[X_{ij} = 1] = \frac{1}{n}$.

Logo,

$$E[Y_i] \leq \sum_{j} \frac{1}{n} + \sum_{j} \sum_{k \neq j} \frac{1}{n^2}$$

$$= \frac{n}{n} + n(n-1) \frac{1}{n^2}$$

$$= 1 + (n-1) \frac{1}{n}$$

$$= 2 - \frac{1}{n}.$$

Agora, seja $Y = \sum_{i} Y_{i}$.

Note que Y é o número de comparações realizadas pelo BUCKETSORT no total.

Assim E[Y] é o número esperado de comparações realizadas pelo algoritmo, e tal número determina o consumo assintótico de tempo do BUCKETSORT.

Agora, seja $Y = \sum_{i} Y_{i}$.

Note que Y é o número de comparações realizadas pelo BUCKETSORT no total.

Assim $\mathrm{E}[Y]$ é o número esperado de comparações realizadas pelo algoritmo, e tal número determina o consumo assintótico de tempo do $\mathrm{BUCKETSORT}$.

$$E[Y] = \sum_{i} E[Y_i] \le 2n - 1 = O(n).$$

Agora, seja $Y = \sum_{i} Y_{i}$.

Note que Y é o número de comparações realizadas pelo BUCKETSORT no total.

Assim E[Y] é o número esperado de comparações realizadas pelo algoritmo, e tal número determina o consumo assintótico de tempo do BucketSort.

$$E[Y] = \sum_{i} E[Y_i] \le 2n - 1 = O(n).$$

O consumo de tempo esperado do BUCKETSORT quando os números em A[1..n] são uniformemente distribuídos no intervalo $[0,1) \in O(n)$.