Algorithmic Graph Theory and Sage

David Joyner, Minh Van Nguyen, David Phillips
Version 0.8
2023 June 01

Copyright（C）2010－2013 David Joyner 〈wdjoyner＠gmail．com〉
Copyright（C）2009－2013 Minh Van Nguyen 〈mvngu．name＠gmail．com〉
Copyright © 2013 David Phillips 〈dphillip＠usna．edu〉
Permission is granted to copy，distribute and／or modify this document under the terms of the GNU Free Documentation License，Version 1.3 or any later version published by the Free Software Foundation；with no Invariant Sections，no Front－Cover Texts，and no Back－Cover Texts．A copy of the license is included in the section entitled＂GNU Free Documentation License＂．

The latest version of the book is available from its website at
http：／／code．google．com／p／graphbook／

Edition

Version 0.8
2023 June 01

Contents

Acknowledgments iv
1 Introduction to graph theory 1
1.1 Graphs and digraphs 2
1.2 Subgraphs and other graph types 11
1.3 Representing graphs in a computer 19
1.4 Graph transformations 28
1.5 Isomorphic graphs 28
1.6 New graphs from old 33
1.7 Problems 43
2 Trees and forests 51
2.1 Definitions and examples 51
2.2 Properties of trees 58
2.3 Minimum spanning trees 62
2.4 Binary trees 75
2.5 Huffman codes 85
2.6 Tree traversals 90
2.7 Problems 95
3 Shortest paths algorithms 103
3.1 Representing graphs in a computer 104
3.2 Graph searching 110
3.3 Weights and distances 121
3.4 Dijkstra's algorithm 124
3.5 Bellman-Ford algorithm 127
3.6 Floyd-Roy-Warshall algorithm 128
3.7 Johnson's algorithm 135
3.8 Problems 137
4 Graph data structures 149
4.1 Priority queues 150
4.2 Binary heaps 151
4.3 Binomial heaps 161
4.4 Binary search trees 169
4.5 Problems 176
5 Distance and connectivity 182
5.1 Paths and distance 182
5.2 Vertex and edge connectivity 187
5.3 Menger's theorem 192
5.4 Whitney's Theorem 195
5.5 Centrality of a vertex 196
5.6 Network reliability 198
5.7 The spectrum of a graph 198
5.8 Expander graphs and Ramanujan graphs 203
5.9 Problems 205
6 Centrality and prestige 209
6.1 Vertex centrality 209
6.2 Edge centrality 209
6.3 Ranking web pages 209
6.4 Hub and authority 209
6.5 Problems 209
7 Optimal graph traversals 210
7.1 Eulerian graphs 210
7.2 Hamiltonian graphs 210
7.3 The Chinese Postman Problem 211
7.4 The Traveling Salesman Problem 211
8 Graph coloring 212
8.1 Vertex coloring 212
8.2 Edge coloring 215
8.3 The chromatic polynomial 219
8.4 Applications of graph coloring 221
9 Network flows 223
9.1 Flows and cuts 223
9.2 Chip firing games 228
9.3 Ford-Fulkerson theorem 235
9.4 Edmonds and Karp's algorithm 240
9.5 Goldberg and Tarjan's algorithm 240
10 Algebraic graph theory 241
10.1 Laplacian and adjacency matrices 241
10.2 Eigenvalues and eigenvectors 241
10.3 Algebraic connectivity 241
10.4 Graph invariants 241
10.5 Cycle and cut spaces 241
10.6 Problems 241
11 Random graphs 242
11.1 Network statistics 242
11.2 Binomial random graph model 246
11.3 Erdős-Rényi model 253
11.4 Small-world networks 255
11.5 Scale-free networks 260
11.6 Problems 265
A Asymptotic growth 271
B GNU Free Documentation License 272

1. APPLICABILITY AND DEFINITIONS 272
2. VERBATIM COPYING 274
3. COPYING IN QUANTITY 274
4. MODIFICATIONS 275
5. COMBINING DOCUMENTS 276
6. COLLECTIONS OF DOCUMENTS 277
7. AGGREGATION WITH INDEPENDENT WORKS 277
8. TRANSLATION 277
9. TERMINATION 278
10. FUTURE REVISIONS OF THIS LICENSE 278
11. RELICENSING 278
ADDENDUM: How to use this License for your documents 279
Bibliography 280
Index 288

Acknowledgments

- Fidel Barrera-Cruz: reported typos in Chapter 2. See changeset 101. Suggested making a note about disregarding the direction of edges in undirected graphs. See changeset 277 .
- Daniel Black: reported a typo in Chapter 1. See changeset 61.
- Kevin Brintnall: reported typos in the definition of $\operatorname{iadj}(v) \cap \operatorname{oadj}(v)$; see changesets 240 and 242. Solution to Example 1.14(2); see changeset 246.
- John Costella: helped to clarify the idea that the adjacency matrix of a bipartite graph can be permuted to obtain a block diagonal matrix. See page 22 and revisions 1865 and 1869.
- Aaron Dutle: reported a typo in Figure 1.18. See changeset 125.
- Péter L. Erdős (http://www.renyi.hu/~elp) for informing us of the reference [74] on the Havel-Hakimi theorem for directed graphs.
- Noel Markham: reported a typo in Algorithm 3.5. See changeset 131 and Issue 2.
- Caroline Melles: clarify definitions of various graph types (weighted graphs, multigraphs, and weighted multigraphs); clarify definitions of degree, isolated vertices, and pendant and using the butterfly graph with 5 vertices (see Figure 1.10) to illustrate these definitions; clarify definitions of trails, closed paths, and cycles; see changeset 448. Some rearrangements of materials in Chapter 1 to make the reading flow better and a few additions of missing definitions; see changeset 584. Clarifications about unweighted and weighted degree of a vertex in a multigraph; notational convention about a graph being simple unless otherwise stated; an example on graph minor; see changeset 617. Reported a missing edge in Figure 1.5(b); see changeset 1945.
- Pravin Paratey: simplify the sentence formation in the definition of digraphs; see changeset 714 and Issue 7.
- Henrique Rennó: pointed out the ambiguity in the definition of weighted multigraphs; see changeset 1936. Reported typos; see changeset 1938.
- The world map in Figure ?? was adapted from an SVG image file from Wikipedia. The original SVG file was accessed on 2010-10-01 at http://en.wikipedia.org/wiki/ File:Worldmap_location_NED_50m.svg.

Chapter 1

Introduction to graph theory

— Spiked Math, http://spikedmath.com/120.html
Our journey into graph theory starts with a puzzle that was solved over 250 years ago by Leonhard Euler (1707-1783). The Pregel River flowed through the town of Königsberg, which is present day Kaliningrad in Russia. Two islands protruded from the river. On either side of the mainland, two bridges joined one side of the mainland with one island and a third bridge joined the same side of the mainland with the other island. A bridge connected the two islands. In total, seven bridges connected the two islands with both sides of the mainland. A popular exercise among the citizens of Königsberg was determining if it was possible to cross each bridge exactly once during a single walk. For historical perspectives on this puzzle and Euler's solution, see Gribkovskaia et al. [90] and Hopkins and Wilson [102].

To visualize this puzzle in a slightly different way, consider Figure 1.1. Imagine that points a and c are either sides of the mainland, with points b and d being the two islands. Place the tip of your pencil on any of the points a, b, c, d. Can you trace all the lines in the figure exactly once, without lifting your pencil? Known as the seven bridges of Königsberg puzzle, Euler solved this problem in 1735 and with his solution he laid the foundation of what is now known as graph theory.

Figure 1.1: The seven bridges of Königsberg puzzle.

1.1 Graphs and digraphs

When I use a word, it means just what I choose it to mean - neither more nor less.

- Humpty Dumpty in Lewis Carroll's Through the Looking Glass

The word "graph" is commonly understood to mean a visual representation of a dataset, such as a bar chart, a histogram, a scatterplot, or a plot of a function. Examples of such graphs are shown in Figure 1.2.

Figure 1.2: Visual representations of datasets as plots.
This book is not about graphs in the sense of plots of functions or datasets. Rather, our focus is on combinatorial graphs or graphs for short. A graph in the combinatorial sense is a collection of discrete interconnected elements, an example of which is shown in Figure 1.1. How can we elaborate on this brief description of combinatorial graphs? To paraphrase what Felix Klein said about curves, ${ }^{1}$ it is easy to define a graph until we realize the countless number of exceptions. There are directed graphs, weighted graphs, multigraphs, simple graphs, and so on. Where do we begin?

Notation If S is a set, let $S^{(n)}$ denote the set of unordered n-tuples (with possible repetition). We shall sometimes refer to an unordered n-tuple as an n-set.

[^0]We start by calling a "graph" what some call an "unweighted, undirected graph without multiple edges."

Definition 1.1. A graph $G=(V, E)$ is an ordered pair of finite sets. Elements of V are called vertices or nodes, and elements of $E \subseteq V^{(2)}$ are called edges or arcs. We refer to V as the vertex set of G, with E being the edge set. The cardinality of V is called the order of G, and $|E|$ is called the size of G. We usually disregard any direction of the edges and consider (u, v) and (v, u) as one and the same edge in G. In that case, G is referred to as an undirected graph.

One can label a graph by attaching labels to its vertices. If $\left(v_{1}, v_{2}\right) \in E$ is an edge of a graph $G=(V, E)$, we say that v_{1} and v_{2} are adjacent vertices. For ease of notation, we write the edge $\left(v_{1}, v_{2}\right)$ as $v_{1} v_{2}$. The edge $v_{1} v_{2}$ is also said to be incident with the vertices v_{1} and v_{2}.

Figure 1.3: A house graph.

Example 1.2. Consider the graph in Figure 1.3.

1. List the vertex and edge sets of the graph.
2. For each vertex, list all vertices that are adjacent to it.
3. Which vertex or vertices have the largest number of adjacent vertices? Similarly, which vertex or vertices have the smallest number of adjacent vertices?
4. If all edges of the graph are removed, is the resulting figure still a graph? Why or why not?
5. If all vertices of the graph are removed, is the resulting figure still a graph? Why or why not?

Solution. (1) Let $G=(V, E)$ denote the graph in Figure 1.3. Then the vertex set of G is $V=\{a, b, c, d, e\}$. The edge set of G is given by

$$
\begin{equation*}
E=\{a b, a e, b a, b c, b e, c b, c d, d c, d e, e d, e b, e a\} \tag{1.1}
\end{equation*}
$$

We can also use Sage to construct the graph G and list its vertex and edge sets:

```
sage: G = Graph({"a":["b","e"], "b":["a","c","e"], "c":["b","d"],
... "d":["c","e"], "e":["a","b","d"]})
sage: G
Graph on 5 vertices
sage: G.vertices()
['a', 'b', 'c', 'd', 'e']
sage: G.edges(labels=False)
[('a',';'), ('a', 'e'), ('b', 'e'), ('c', 'b'), ('c', 'd'), ('e', 'd')]
```

The graph G is undirected, meaning that we do not impose direction on any edges. Without any direction on the edges, the edge $a b$ is the same as the edge $b a$. That is why G. edges () returns six edges instead of the 12 edges listed in (1.1).
(2) Let $\operatorname{adj}(v)$ be the set of all vertices that are adjacent to v. Then we have

$$
\begin{aligned}
\operatorname{adj}(a) & =\{b, e\} \\
\operatorname{adj}(b) & =\{a, c, e\} \\
\operatorname{adj}(c) & =\{b, d\} \\
\operatorname{adj}(d) & =\{c, e\} \\
\operatorname{adj}(e) & =\{a, b, d\} .
\end{aligned}
$$

The vertices adjacent to v are also referred to as its neighbors. We can use the function G.neighbors() to list all the neighbors of each vertex.
sage: G.neighbors("a")
['b', 'e']
sage: G.neighbors ("b")
['a', 'c', 'e']
sage: G.neighbors("c")
['b', 'd']
sage: G.neighbors("d")
['c', 'e']
sage: G.neighbors("e")
['a', 'b', 'd']
(3) Taking the cardinalities of the above five sets, we get $|\operatorname{adj}(a)|=|\operatorname{adj}(c)|=$ $|\operatorname{adj}(d)|=2$ and $|\operatorname{adj}(b)|=|\operatorname{adj}(e)|=3$. Thus a, c and d have the smallest number of adjacent vertices, while b and e have the largest number of adjacent vertices.
(4) If all the edges in G are removed, the result is still a graph, although one without any edges. By definition, the edge set of any graph is a subset of $V^{(2)}$. Removing all edges of G leaves us with the empty set \emptyset, which is a subset of every set.
(5) Say we remove all of the vertices from the graph in Figure 1.3 and in the process all edges are removed as well. The result is that both of the vertex and edge sets are empty. This is a special graph known as the empty or null graph.

Example 1.3. Consider the illustration in Figure 1.4. Does Figure 1.4 represent a graph? Why or why not?
Solution. If $V=\{a, b, c\}$ and $E=\{a a, b c\}$, it is clear that $E \subseteq V^{(2)}$. Then (V, E) is a graph. The edge $a a$ is called a self-loop of the graph. In general, any edge of the form $v v$ is a self-loop.

In Figure 1.3, the edges $a e$ and $e a$ represent one and the same edge. If we do not consider the direction of the edges in the graph of Figure 1.3, then the graph has six edges. However, if the direction of each edge is taken into account, then there are 12 edges as listed in (1.1). The following definition captures the situation where the direction of the edges are taken into account.

A directed edge is an edge such that one vertex incident with it is designated as the head vertex and the other incident vertex is designated as the tail vertex. In this

Figure 1.4: A figure with a self-loop.
situation, we may assume that the set of edges is a subset of the ordered pairs $V \times V$. A directed edge $u v$ is said to be directed from its tail u to its head v. A directed graph or digraph G is a graph each of whose edges is directed. The indegree $\operatorname{id}(v)$ of a vertex $v \in V(G)$ counts the number of edges such that v is the head of those edges. The outdegree $\operatorname{od}(v)$ of a vertex $v \in V(G)$ is the number of edges such that v is the tail of those edges. The degree $\operatorname{deg}(v)$ of a vertex v of a digraph is the sum of the indegree and the outdegree of v.

Let G be a graph without self-loops and multiple edges. It is important to distinguish a graph G as being directed or undirected. If G is undirected and $u v \in E(G)$, then $u v$ and $v u$ represent the same edge. In case G is a digraph, then $u v$ and $v u$ are different directed edges. For a digraph $G=(V, E)$ and a vertex $v \in V$, all the neighbors of v in G are contained in $\operatorname{adj}(v)$, i.e. the set of all neighbors of v. Just as we distinguish between indegree and outdegree for a vertex in a digraph, we also distinguish between inneighbors and out-neighbors. The set of in-neighbors $\operatorname{iadj}(v) \subseteq \operatorname{adj}(v)$ of $v \in V$ consists of all those vertices that contribute to the indegree of v. Similarly, the set of out-neighbors $\operatorname{oadj}(v) \subseteq \operatorname{adj}(v)$ of $v \in V$ are those vertices that contribute to the outdegree of v. Then

$$
\operatorname{iadj}(v) \cap \operatorname{oadj}(v)=\{u \mid u v \in E \text { and } v u \in E\}
$$

$\operatorname{and} \operatorname{adj}(v)=\operatorname{iadj}(v) \cup \operatorname{oadj}(v)$.

1.1.1 Multigraphs

This subsection presents a larger class of graphs. For simplicity of presentation, in this book we shall assume usually that a graph is not a multigraph. In other words, when you read a property of graphs later in the book, it will be assumed (unless stated explicitly otherwise) that the graph is not a multigraph. However, as multigraphs and weighted graphs are very important in many applications, we will try to keep them in the back of our mind. When appropriate, we will add as a remark how an interesting property of "ordinary" graphs extends to the multigraph or weighted graph case.

An important class of graphs consist of those graphs having multiple edges between pairs of vertices. A multigraph is a graph in which there are multiple edges between a pair of vertices. A multi-undirected graph is a multigraph that is undirected. Similarly, a multidigraph is a directed multigraph.

Example 1.4. Sage can compute with and plot multigraphs, or multidigraphs, having loops.

```
sage: G = Graph({0:{0:'e0',1:'e1', 2:'e2', 3:'e3'}, 2:{5:'e4'}})
sage: G.show(vertex_labels=True, edge_labels=True, graph_border=True)
sage: H = DiGraph({0:{0:"e0"}}, Loops=True)
sage: H.add_edges([(0,1,'e1'), (0,2,'e2'), (0,2,'e3'), (1,2,'e4'), (1,0,'e5')])
sage: H.show(vertex_labels=True, edge_labels=True, graph_border=True)
```


Figure 1.5: A graph G and digraph H with a loop and multi-edges.

These graphs are plotted in Figure 1.5.
As we indicated above, a graph may have "weighted" edges.
Definition 1.5. A weighted graph is a graph $G=(V, E)$ where each set V and E is a pair consisting of a vertex and a real number called the weight.

The illustration in Figure 1.1 is actually a multigraph, a graph with multiple edges, called the Königsberg graph.

Definition 1.6. For a weighted multigraph G, we are given:

- A finite set V whose elements are pairs $\left(v, w_{v}\right)$, where v is called a vertex and $w_{v} \in \mathbf{R}$ is the vertex weight. (Sometimes, the pair $\left(v, w_{v}\right)$ is called the vertex.)
- A finite set E whose elements are weighted edges. We do not necessarily assume that $E \subseteq V^{(2)}$, where $V^{(2)}$ is the set of unordered pairs of vertices. ${ }^{2}$ Each weighted edge can be represented as a 3-tuple of the form $\left(w_{e}, u, v\right)$, where (u, v) is the edge in question and $w_{e} \in \mathbf{R}$ is the edge weight.
- An incidence function

$$
\begin{equation*}
i: E \rightarrow V^{(2)} \tag{1.2}
\end{equation*}
$$

Such a multigraph is denoted $G=(V, E, i)$. An orientation on G is a function

$$
\begin{equation*}
h: E \rightarrow V \tag{1.3}
\end{equation*}
$$

where $h(e) \in i(e)$ for all $e \in E$. The element $v=h(e)$ is called the head of $i(e)$. If G has no self-loops, then $i(e)$ is a set having exactly two elements denoted $i(e)=\{h(e), t(e)\}$. The element $v=t(e)$ is called the tail of $i(e)$. For self-loops, we set $t(e)=h(e)$. A multigraph with an orientation can therefore be described as the 4 -tuple (V, E, i, h). In other words, $G=(V, E, i, h)$ is a multidigraph. Figure 1.6 illustrates a weighted multigraph.

[^1]

Figure 1.6: An example of a weighted multigraph.

The vertex degree of a weighted multigraph must be defined. There is a weighted degree and an unweighted degree. Let G be a graph as in Definition 1.6. The unweighted indegree of a vertex $v \in V$ counts the edges going into v :

$$
\operatorname{deg}_{+}(v)=\sum_{\substack{e \in E \\ h(e)=v}} 1 .
$$

The unweighted outdegree of a vertex $v \in V$ counts the edges going out of v :

$$
\operatorname{deg}_{-}(v)=\sum_{\substack{e \in E \\ v \in i(e)=\left\{v, v^{\prime} \\ h(e)=v^{\prime}\right.}} 1 .
$$

The unweighted degree $\operatorname{deg}(v)$ of a vertex v of a weighted multigraph is the sum of the unweighted indegree and the unweighted outdegree of v :

$$
\begin{equation*}
\operatorname{deg}(v)=\operatorname{deg}_{+}(v)+\operatorname{deg}_{-}(v) . \tag{1.4}
\end{equation*}
$$

Loops are counted twice.
Similarly, there is the set of in-neighbors

$$
\operatorname{iadj}(v)=\{w \in V \mid \text { for some } e \in E, i(e)=\{v, w\}, h(e)=v\}
$$

and the set of out-neighbors

$$
\operatorname{oadj}(v)=\{w \in V \mid \text { for some } e \in E, i(e)=\{v, w\}, h(e)=w\} .
$$

Define the adjacency of v to be the union of these:

$$
\begin{equation*}
\operatorname{adj}(v)=\operatorname{iadj}(v) \cup \operatorname{oadj}(v) . \tag{1.5}
\end{equation*}
$$

It is clear that $\operatorname{deg}_{+}(v)=|\operatorname{iadj}(v)|$ and $\operatorname{deg}_{-}(v)=|\operatorname{oadj}(v)|$.
The weighted indegree of a vertex $v \in V$ counts the weights of edges going into v :

$$
\operatorname{wdeg}_{+}(v)=\sum_{\substack{e \in E \\ h(e)=v}} w_{v}
$$

The weighted outdegree of a vertex $v \in V$ counts the weights of edges going out of v :

$$
\operatorname{wdeg}_{-}(v)=\sum_{\substack{e \in E \\ v \in i(e)=\left\{v, v^{\prime} \\ h(e)=v^{\prime}\right.}} w_{v} .
$$

The weighted degree of a vertex of a weighted multigraph is the sum of the weighted indegree and the weighted outdegree of that vertex,

$$
\operatorname{wdeg}^{(v)}=\operatorname{wdeg}_{+}(v)+\operatorname{wdeg}_{-}(v)
$$

In other words, it is the sum of the weights of the edges incident to that vertex, regarding the graph as an undirected weighted graph. Unweighted degrees are a special case of weighted degrees. For unweighted degrees, we merely set each edge weight to unity.

Definition 1.7. Let $G=(V, E, h)$ be an unweighted multidigraph. The line graph of G, denoted $\mathcal{L}(G)$, is the multidigraph whose vertices are the edges of G and whose edges are $\left(e, e^{\prime}\right)$ where $h(e)=t\left(e^{\prime}\right)$ (for $\left.e, e^{\prime} \in E\right)$. A similar definition holds if G is undirected.

For example, the line graph of the cyclic graph is itself.

1.1.2 Simple graphs

Our life is frittered away by detail. ... Simplify, simplify. Instead of three meals a day, if it be necessary eat but one; instead of a hundred dishes, five; and reduce other things in proportion.

- Henry David Thoreau, Walden, 1854, Chapter 2: Where I Lived, and What I Lived For

A simple graph is a graph with no self-loops and no multiple edges. Figure 1.7 illustrates a simple graph and its digraph version, together with a multidigraph version of the Königsberg graph. The edges of a digraph can be visually represented as directed arrows, similar to the digraph in Figure 1.7(b) and the multidigraph in Figure 1.7(c). The digraph in Figure 1.7(b) has the vertex set $\{a, b, c\}$ and the edge set $\{a b, b c, c a\}$. There is an arrow from vertex a to vertex b, hence $a b$ is in the edge set. However, there is no arrow from b to a, so $b a$ is not in the edge set of the graph in Figure 1.7(b). The family $\operatorname{Sh}(n)$ of Shannon multigraphs is illustrated in Figure 1.8 for integers $2 \leq n \leq 7$. These graphs are named after Claude E. Shannon (1916-2001) and are sometimes used when studying edge colorings. Each Shannon multigraph consists of three vertices, giving rise to a total of three distinct unordered pairs. Two of these pairs are connected by $\lfloor n / 2\rfloor$ edges and the third pair of vertices is connected by $\lfloor(n+1) / 2\rfloor$ edges.

Notational convention Unless stated otherwise, all graphs are simple graphs in the remainder of this book.

Definition 1.8. For any vertex v in a graph $G=(V, E)$, the cardinality of $\operatorname{adj}(v)$ (as in 1.5) is called the degree of v and written as $\operatorname{deg}(v)=|\operatorname{adj}(v)|$. The degree of v counts the number of vertices in G that are adjacent to v. If $\operatorname{deg}(v)=0$, then v is not incident to any edge and we say that v is an isolated vertex. If G has no loops and $\operatorname{deg}(v)=1$, then v is called a pendant.

Figure 1.7: A simple graph, its digraph version, and a multidigraph.

(a) $\operatorname{Sh}(2)$

(d) $\operatorname{Sh}(5)$

(b) $\operatorname{Sh}(3)$

(e) $\operatorname{Sh}(6)$

(c) $\operatorname{Sh}(4)$

(f) $\operatorname{Sh}(7)$

Figure 1.8: The family of Shannon multigraphs $\operatorname{Sh}(n)$ for $n=2, \ldots, 7$.

Some examples would put the above definition in concrete terms. Consider again the graph in Figure 1.4. Note that no vertices are isolated. Even though vertex a is not incident to any vertex other than a itself, note that $\operatorname{deg}(a)=2$ and so by definition a is not isolated. Furthermore, each of b and c is a pendant. For the house graph in Figure 1.3, we have $\operatorname{deg}(b)=3$. For the graph in Figure 1.7(b), we have $\operatorname{deg}(b)=2$. If $V \neq \emptyset$ and $E=\emptyset$, then G is a graph consisting entirely of isolated vertices. From Example 1.2 we know that the vertices a, c, d in Figure 1.3 have the smallest degree in the graph of that figure, while b, e have the largest degree.

The minimum degree among all vertices in G is denoted $\delta(G)$, whereas the maximum degree is written as $\Delta(G)$. Thus, if G denotes the graph in Figure 1.3 then we have $\delta(G)=2$ and $\Delta(G)=3$. In the following Sage session, we construct the digraph in Figure 1.7(b) and compute its maximum and minimum number of degrees.

```
sage: G = DiGraph({"a":"b", "b":"c", "c":"a"})
sage: G
Digraph on 3 vertices
sage: G.degree("a")
2
sage: G.degree("b")
2
sage: G.degree("c")
2
```

So for the graph G in Figure 1.7, we have $\delta(G)=\Delta(G)=2$.
The graph G in Figure 1.7 has the special property that its minimum degree is the same as its maximum degree, i.e. $\delta(G)=\Delta(G)$. Graphs with this property are referred to as regular. An r-regular graph is a regular graph each of whose vertices has degree r. For instance, G is a 2-regular graph. The following result, due to Euler, counts the total number of degrees in any graph.

Theorem 1.9. Euler 1736. If $G=(V, E)$ is a graph, then $\sum_{v \in V} \operatorname{deg}(v)=2|E|$.
Proof. Each edge $e=v_{1} v_{2} \in E$ is incident with two vertices, so e is counted twice towards the total sum of degrees. The first time, we count e towards the degree of vertex v_{1} and the second time we count e towards the degree of v_{2}.

Theorem 1.9 is sometimes called the "handshaking lemma," due to its interpretation as in the following story. Suppose you go into a room. Suppose there are n people in the room (including yourself) and some people shake hands with others and some do not. Create the graph with n vertices, where each vertex is associated with a different person. Draw an edge between two people if they shook hands. The degree of a vertex is the number of times that person has shaken hands (we assume that there are no multiple edges, i.e. that no two people shake hands twice). The theorem above simply says that the total number of handshakes is even. This is "obvious" when you look at it this way since each handshake is counted twice (A shaking B 's hand is counted, and B shaking A 's hand is counted as well, since the sum in the theorem is over all vertices). To interpret Theorem 1.9 in a slightly different way within the context of the same room of people, there is an even number of people who shook hands with an odd number of other people. This consequence of Theorem 1.9 is recorded in the following corollary.

Corollary 1.10. A graph $G=(V, E)$ contains an even number of vertices with odd degrees.

Proof. Partition V into two disjoint subsets: V_{e} is the subset of V that contains only vertices with even degrees; and V_{o} is the subset of V with only vertices of odd degrees.

That is, $V=V_{e} \cup V_{o}$ and $V_{e} \cap V_{o}=\emptyset$. From Theorem 1.9, we have

$$
\sum_{v \in V} \operatorname{deg}(v)=\sum_{v \in V_{e}} \operatorname{deg}(v)+\sum_{v \in V_{o}} \operatorname{deg}(v)=2|E|
$$

which can be re-arranged as

$$
\sum_{v \in V_{o}} \operatorname{deg}(v)=\sum_{v \in V} \operatorname{deg}(v)-\sum_{v \in V_{e}} \operatorname{deg}(v) .
$$

As $\sum_{v \in V} \operatorname{deg}(v)$ and $\sum_{v \in V_{e}} \operatorname{deg}(v)$ are both even, their difference is also even.
As $E \subseteq V^{(2)}$, then E can be the empty set, in which case the total degree of $G=$ (V, E) is zero. Where $E \neq \emptyset$, then the total degree of G is greater than zero. By Theorem 1.9, the total degree of G is nonnegative and even. This result is an immediate consequence of Theorem 1.9 and is captured in the following corollary.

Corollary 1.11. If G is a graph, then the sum of its vertex degrees is nonnegative and even.

If $G=(V, E)$ is an r-regular graph with n vertices and m edges, it is clear by definition of r-regular graphs that the total degree of G is $r n$. By Theorem 1.9 we have $2 m=r n$ and therefore $m=r n / 2$. This result is captured in the following corollary.

Corollary 1.12. If $G=(V, E)$ is an r-regular graph having n vertices and m edges, then $m=r n / 2$.

1.2 Subgraphs and other graph types

We now consider several common types of graphs. Along the way, we also present basic properties of graphs that could be used to distinguish different types of graphs.

Let G be a multigraph as in Definition 1.6, with vertex set $V(G)$ and edge set $E(G)$. Consider a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. Furthermore, if $e \in E(H)$ and $i(e)=\{u, v\}$, then $u, v \in V(H)$. Under these conditions, H is called a subgraph of G.

1.2.1 Walks, trails, and paths

I like long walks, especially when they are taken by people who annoy me. - Noel Coward

If u and v are two vertices in a graph G, a $u-v$ walk is an alternating sequence of vertices and edges starting with u and ending at v. Consecutive vertices and edges are incident. Formally, a walk W of length $n \geq 0$ can be defined as

$$
W: v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{n-1}, e_{n}, v_{n}
$$

where each edge $e_{i}=v_{i-1} v_{i}$ and the length n refers to the number of (not necessarily distinct) edges in the walk. The vertex v_{0} is the starting vertex of the walk and v_{n} is the end vertex, so we refer to W as a $v_{0}-v_{n}$ walk. The trivial walk is the walk of length $n=0$ in which the start and end vertices are one and the same vertex. If the graph has
no multiple edges then, for brevity, we omit the edges in a walk and usually write the walk as the following sequence of vertices:

$$
W: v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}
$$

For the graph in Figure 1.9, an example of a walk is an $a-e$ walk: a, b, c, b, e. In other words, we start at vertex a and travel to vertex b. From b, we go to c and then back to b again. Then we end our journey at e. Notice that consecutive vertices in a walk are adjacent to each other. One can think of vertices as destinations and edges as footpaths, say. We are allowed to have repeated vertices and edges in a walk. The number of edges in a walk is called its length. For instance, the walk a, b, c, b, e has length 4.

Figure 1.9: Walking along a graph.
A trail is a walk with no repeating edges. For example, the $a-b$ walk a, b, c, d, f, g, b in Figure 1.9 is a trail. It does not contain any repeated edges, but it contains one repeated vertex, i.e. b. Nothing in the definition of a trail restricts a trail from having repeated vertices. A walk with no repeating vertices, except possibly the first and last, is called a path. Without any repeating vertices, a path cannot have repeating edges, hence a path is also a trail.

Proposition 1.13. Let $G=(V, E)$ be a simple (di)graph of order $n=|V|$. Any path in G has length at most $n-1$.

Proof. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set of G. Without loss of generality, we can assume that each pair of vertices in the digraph G is connected by an edge, giving a total of n^{2} possible edges for $E=V \times V$. We can remove self-loops from E, which now leaves us with an edge set E_{1} that consists of $n^{2}-n$ edges. Start our path from any vertex, say, v_{1}. To construct a path of length 1 , choose an edge $v_{1} v_{j_{1}} \in E_{1}$ such that $v_{j_{1}} \notin\left\{v_{1}\right\}$. Remove from E_{1} all $v_{1} v_{k}$ such that $v_{j_{1}} \neq v_{k}$. This results in a reduced edge set E_{2} of $n^{2}-n-(n-2)$ elements and we now have the path $P_{1}: v_{1}, v_{j_{1}}$ of length 1 . Repeat the same process for $v_{j_{1}} v_{j_{2}} \in E_{2}$ to obtain a reduced edge set E_{3} of $n^{2}-n-2(n-2)$ elements and a path $P_{2}: v_{1}, v_{j_{1}}, v_{j_{2}}$ of length 2 . In general, let $P_{r}: v_{1}, v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{r}}$ be a path of length $r<n$ and let E_{r+1} be our reduced edge set of $n^{2}-n-r(n-2)$ elements. Repeat the above process until we have constructed a path $P_{n-1}: v_{1}, v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{n-1}}$ of length $n-1$ with reduced edge set E_{n} of $n^{2}-n-(n-1)(n-2)$ elements. Adding another vertex to P_{n-1} means going back to a vertex that was previously visited, because P_{n-1} already contains all vertices of V.

A walk of length $n \geq 3$ whose start and end vertices are the same is called a closed walk. A trail of length $n \geq 3$ whose start and end vertices are the same is called a closed trail. A path of length $n \geq 3$ whose start and end vertices are the same is called a closed path or a cycle (with apologies for slightly abusing terminology). ${ }^{3}$ For example, the walk a, b, c, e, a in Figure 1.9 is a closed path. A path whose length is odd is called odd, otherwise it is referred to as even. Thus the walk a, b, e, a in Figure 1.9 is a cycle. It is easy to see that if you remove any edge from a cycle, then the resulting walk contains no closed walks. An Euler subgraph of a graph G is either a cycle or an edge-disjoint union of cycles in G. An example of a closed walk which is not a cycle is given in Figure 1.10.

Figure 1.10: Butterfly graph with 5 vertices.
The length of the shortest cycle in a graph is called the girth of the graph. By convention, an acyclic graph is said to have infinite girth.

Example 1.14. Consider the graph in Figure 1.9.

1. Find two distinct walks that are not trails and determine their lengths.
2. Find two distinct trails that are not paths and determine their lengths.
3. Find two distinct paths and determine their lengths.
4. Find a closed trail that is not a cycle.
5. Find a closed walk C which has an edge e such that $C-e$ contains a cycle.

Solution. (1) Here are two distinct walks that are not trails: $w_{1}: g, b, e, a, b, e$ and $w_{2}: f, d, c, e, f, d$. The length of walk w_{1} is 5 and the length of walk w_{2} is also 5 .
(2) Here are two distinct trails that are not paths: $t_{1}: a, b, c, e, b$ and $t_{2}: b, e, f, d, c, e$. The length of trail t_{1} is 4 and the length of trail t_{2} is 5 .
(3) Here are two distinct paths: $p_{1}: a, b, c, d, f, e$ and $p_{2}: g, b, a, e, f, d$. The length of path p_{1} is 5 and the length of path p_{2} is also 5 .
(4) Here is a closed trail that is not a cycle: d, c, e, b, a, e, f, d.
(5) Left as an exercise.

Theorem 1.15. Every u-v walk in a graph contains a u-v path.
Proof. A walk of length $n=0$ is the trivial path. So assume that W is a $u-v$ walk of length $n>0$ in a graph G :

$$
W: u=v_{0}, v_{1}, \ldots, v_{n}=v .
$$

It is possible that a vertex in W is assigned two different labels. If W has no repeated vertices, then W is already a path. Otherwise W has at least one repeated vertex. Let

[^2]$0 \leq i, j \leq n$ be two distinct integers with $i<j$ such that $v_{i}=v_{j}$. Deleting the vertices $v_{i}, v_{i+1}, \ldots, v_{j-1}$ from W results in a $u-v$ walk W_{1} whose length is less than n. If W_{1} is a path, then we are done. Otherwise we repeat the above process to obtain a $u-v$ walk shorter than W_{1}. As W is a finite sequence, we only need to apply the above process a finite number of times to arrive at a $u-v$ path.

A graph is said to be connected if for every pair of distinct vertices u, v there is a $u-v$ path joining them. A graph that is not connected is referred to as disconnected. The empty graph is disconnected and so is any nonempty graph with an isolated vertex. However, the graph in Figure 1.7 is connected. A geodesic path or shortest path between two distinct vertices u, v of a graph is a $u-v$ path of minimum length. A nonempty graph may have several shortest paths between some distinct pair of vertices. For the graph in Figure 1.9, both a, b, c and a, e, c are geodesic paths between a and c. Let H be a connected subgraph of a graph G such that H is not a proper subgraph of any connected subgraph of G. Then H is said to be a component of G. We also say that H is a maximal connected subgraph of G. Any connected graph is its own component. The number of connected components of a graph G will be denoted $\omega(G)$.

The following is an immediate consequence of Corollary 1.10.
Proposition 1.16. Suppose that exactly two vertices of a graph have odd degree. Then those two vertices are connected by a path.

Proof. Let G be a graph all of whose vertices are of even degree, except for u and v. Let C be a component of G containing u. By Corollary 1.10, C also contains v, the only remaining vertex of odd degree. As u and v belong to the same component, they are connected by a path.

Example 1.17. Determine whether or not the graph in Figure 1.9 is connected. Find a shortest path from g to d.

Solution. In the following Sage session, we first construct the graph in Figure 1.9 and use the method is_connected() to determine whether or not the graph is connected. Finally, we use the method shortest_path() to find a geodesic path between g and d.

```
sage: g = Graph({"a":["b","e"], "b":["a","g","e","c"], \
... "c":["b","e","d"], "d":["c","f"], "e":["f","a","b","c"], \
... "f":["g","d","e"], "g":["b","f"]})
sage: g.is_connected()
True
sage: g.shortest_path("g", "d")
['g', 'f,','d']
```

This shows that g, f, d is a shortest path from g to d. In fact, any other $g-d$ path has length greater than 2 , so we can say that g, f, d is the shortest path between g and d.

Remark 1.18. We will explain Dijkstra's algorithm in Chapter 3. Dijkstra's algorithm gives one of the best algorithms for finding shortest paths between two vertices in a connected graph. What is very remarkable is that, at the present state of knowledge, finding the shortest path from a vertex v to a particular (but arbitrarily given) vertex w appears to be as hard as finding the shortest path from a vertex v to all other vertices in the graph!

Trees are a special type of graphs that are used in modelling structures that have some form of hierarchy. For example, the hierarchy within an organization can be drawn as a tree structure, similar to the family tree in Figure 1.11. Formally, a tree is an
undirected graph that is connected and has no cycles. If one vertex of a tree is specially designated as the root vertex, then the tree is called a rooted tree. Chapter 2 covers trees in more details.

Figure 1.11: A family tree.

1.2.2 Subgraphs, complete and bipartite graphs

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. Suppose we have a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. Furthermore, suppose the incidence function i of G, when restricted to $E(H)$, has image in $V(H)^{(2)}$. Then H is a subgraph of G. In this situation, G is referred to as a supergraph of H.

Starting from G, one can obtain its subgraph H by deleting edges and/or vertices from G. Note that when a vertex v is removed from G, then all edges incident with v are also removed. If $V(H)=V(G)$, then H is called a spanning subgraph of G. In Figure 1.12, let G be the left-hand side graph and let H be the right-hand side graph. Then it is clear that H is a spanning subgraph of G. To obtain a spanning subgraph from a given graph, we delete edges from the given graph.

Figure 1.12: A graph and one of its subgraphs.
We now consider several standard classes of graphs. The complete graph K_{n} on n vertices is a graph such that any two distinct vertices are adjacent. As $\left|V\left(K_{n}\right)\right|=n$, then $\left|E\left(K_{n}\right)\right|$ is equivalent to the total number of 2-combinations from a set of n objects:

$$
\begin{equation*}
\left|E\left(K_{n}\right)\right|=\binom{n}{2}=\frac{n(n-1)}{2} . \tag{1.6}
\end{equation*}
$$

Thus for any simple graph G with n vertices, its total number of edges $|E(G)|$ is bounded above by

$$
\begin{equation*}
|E(G)| \leq \frac{n(n-1)}{2} \tag{1.7}
\end{equation*}
$$

Figure 1.13 shows complete graphs each of whose total number of vertices is bounded by $1 \leq n \leq 5$. The complete graph K_{1} has one vertex with no edges. It is also called the trivial graph.

Figure 1.13: Complete graphs K_{n} for $1 \leq n \leq 5$.
The following result is an application of inequality (1.7).
Theorem 1.19. Let G be a simple graph with n vertices and k components. Then G has at most $\frac{1}{2}(n-k)(n-k+1)$ edges.
Proof. If n_{i} is the number of vertices in component i, then $n_{i}>0$ and it can be shown (see the proof of Lemma 2.1 in [$80, \mathrm{pp} .21-22]$) that

$$
\begin{equation*}
\sum n_{i}^{2} \leq\left(\sum n_{i}\right)^{2}-(k-1)\left(2 \sum n_{i}-k\right) \tag{1.8}
\end{equation*}
$$

(This result holds true for any nonempty but finite set of positive integers.) Note that $\sum n_{i}=n$ and by (1.7) each component i has at most $\frac{1}{2} n_{i}\left(n_{i}-1\right)$ edges. Apply (1.8) to get

$$
\begin{aligned}
\sum \frac{n_{i}\left(n_{i}-1\right)}{2} & =\frac{1}{2} \sum n_{i}^{2}-\frac{1}{2} \sum n_{i} \\
& \leq \frac{1}{2}\left(n^{2}-2 n k+k^{2}+2 n-k\right)-\frac{1}{2} n \\
& =\frac{(n-k)(n-k+1)}{2}
\end{aligned}
$$

as required.
The cycle graph on $n \geq 3$ vertices, denoted C_{n}, is the connected 2-regular graph on n vertices. Each vertex in C_{n} has degree exactly 2 and C_{n} is connected. Figure 1.14 shows cycles graphs C_{n} where $3 \leq n \leq 6$. The path graph on $n \geq 1$ vertices is denoted P_{n}. For $n=1,2$ we have $P_{1}=K_{1}$ and $P_{2}=K_{2}$. Where $n \geq 3$, then P_{n} is a spanning subgraph of C_{n} obtained by deleting one edge.

A bipartite graph G is a graph with at least two vertices such that $V(G)$ can be split into two disjoint subsets V_{1} and V_{2}, both nonempty. Every edge $u v \in E(G)$ is such that $u \in V_{1}$ and $v \in V_{2}$, or $v \in V_{1}$ and $u \in V_{2}$. See Kalman [116] for an application of bipartite graphs to the problem of allocating satellites to radio stations.

Example 1.20. The Franklin graph, shown in Figure 1.15, is named after Philip Franklin. It is a 3-regular graph with 12 vertices and 18 edges. It is bipartite, Hamiltonian and has radius 3 , diameter 3 and girth 4 . It is also a 3 -vertex-connected and 3 -edge-connected perfect graph.

(a) C_{6}

(b) C_{5}

(c) C_{4}

(d) C_{3}

Figure 1.14: Cycle graphs C_{n} for $3 \leq n \leq 6$.

```
sage: G = graphs.LCFGraph(12, [5, -5], 6)
sage: G.show(dpi=300)
sage: G.is_bipartite()
True
sage: G.chromatic_number()
2
sage: G.girth()
4
sage: G.is_hamiltonian()
True
sage: G.is_vertex_transitive()
True
sage: G.is_planar()
False
sage: G.is_regular()
True
sage: G.coloring()
[[1, 3, 5, 7, 9, 11], [0, 2, 4, 6, 8, 10]]
```


Figure 1.15: Franklin graph example.

Example 1.21. The Foster graph, shown in Figure 1.16, is a 3-regular graph with 90 vertices and 135 edges. This is a bipartite, Hamiltonian graph that has radius 8, diameter

8 and girth 10 . It is also a 3 -vertex-connected and 3-edge-connected graph.

```
sage: G = graphs.LCFGraph(90, [17, -9,37,-37,9, -17], 15)
sage: G.plot(vertex_labels=False, vertex_size=0, graph_border=True).show(dpi=300)
sage: G.is_vertex_transitive()
True
sage: G.is_hamiltonian()
True
sage: G.girth()
10
sage: G.is_bipartite()
True
sage: len(G.vertices())
90
sage: len(G.edges())
135
```


Figure 1.16: Foster graph example.

Theorem 1.22. A graph is bipartite if and only if it has no odd cycles.
Proof. Necessity (\Longrightarrow) : Assume G to be bipartite. Traversing each edge involves going from one side of the bipartition to the other. For a walk to be closed, it must have
even length in order to return to the side of the bipartition from which the walk started. Thus, any cycle in G must have even length.

Sufficiency (\Longleftarrow) : Assume $G=(V, E)$ has order $n \geq 2$ and no odd cycles. If G is connected, choose any vertex $u \in V$ and define a partition of V thus:

$$
\begin{aligned}
X & =\{x \in V \mid d(u, x) \text { is even }\}, \\
Y & =\{y \in V \mid d(u, y) \text { is odd }\}
\end{aligned}
$$

where $d(u, v)$ denotes the distance (or length of the shortest path) from u to v. If (X, Y) is a bipartition of G, then we are done. Otherwise, (X, Y) is not a bipartition of G. Then one of X and Y has two vertices v, w joined by an edge e. Let P_{1} be a shortest $u-v$ path and P_{2} be a shortest $u-w$ path. By definition of X and Y, both P_{1} and P_{2} have even lengths or both have odd lengths. From u, let x be the last vertex common to both P_{1} and P_{2}. The subpath $u-x$ of P_{1} and $u-x$ of P_{2} have equal length. That is, the subpath $x-v$ of P_{1} and $x-w$ of P_{2} both have even or odd lengths. Construct a cycle C from the paths $x-v$ and $x-w$, and the edge e joining v and w. Since $x-v$ and $x-w$ both have even or odd lengths, the cycle C has odd length, contradicting our hypothesis that G has no odd cycles. Hence, (X, Y) is a bipartition of G.

Finally, if G is disconnected, each of its components has no odd cycles. Repeat the above argument for each component to conclude that G is bipartite.

Example 1.23. The Gray graph, shown in Figure 1.17, is an undirected bipartite graph with 54 vertices and 81 edges. It is a 3 -regular graph discovered by Marion C. Gray in 1932. The Gray graph has chromatic number 2 , chromatic index 3, radius 6 , and diameter 6 . It is also a 3 -vertex-connected and 3 -edge-connected non-planar graph. The Gray graph is an example of a graph which is edge-transitive but not vertex-transitive.

```
sage: G = graphs.LCFGraph(54, [-25,7,-7,13,-13,25], 9)
sage: G.plot(vertex_labels=False, vertex_size=0, graph_border=True)
sage: G.is_bipartite()
True
sage: G.is_vertex_transitive()
False
sage: G.is_hamiltonian()
True
sage: G.diameter()
S
```

The complete bipartite graph $K_{m, n}$ is the bipartite graph whose vertex set is partitioned into two nonempty disjoint sets V_{1} and V_{2} with $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$. Any vertex in V_{1} is adjacent to each vertex in V_{2}, and any two distinct vertices in V_{i} are not adjacent to each other. If $m=n$, then $K_{n, n}$ is n-regular. Where $m=1$ then $K_{1, n}$ is called the star graph. Figure 1.18 shows a bipartite graph together with the complete bipartite graphs $K_{4,3}$ and $K_{3,3}$, and the star graph $K_{1,4}$.

As an example of $K_{3,3}$, suppose that there are 3 boys and 3 girls dancing in a room. The boys and girls naturally partition the set of all people in the room. Construct a graph having 6 vertices, each vertex corresponding to a person in the room, and draw an edge form one vertex to another if the two people dance together. If each girl dances three times, once with with each of the three boys, then the resulting graph is $K_{3,3}$.

1.3 Representing graphs in a computer

Figure 1.17: Gray graph example.

Figure 1.18: Bipartite, complete bipartite, and star graphs.
yourself.

- From the movie The Matrix, 1999

An $m \times n$ matrix A can be represented as

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] .
$$

The positive integers m and n are the row and column dimensions of A, respectively. The entry in row i column j is denoted $a_{i j}$. Where the dimensions of A are clear from context, A is also written as $A=\left[a_{i j}\right]$.

Representing a graph as a matrix is very inefficient in some cases and not so in other cases. Imagine you walk into a large room full of people and you consider the "handshaking graph" discussed in connection with Theorem 1.9. If not many people shake hands in the room, it is a waste of time recording all the handshakes and also all the "non-handshakes." This is basically what the adjacency matrix does. In this kind of "sparse graph" situation, it would be much easier to simply record the handshakes as a Python dictionary. ${ }^{4}$ This section requires some concepts and techniques from linear algebra, especially matrix theory. See introductory texts on linear algebra and matrix theory [19] for coverage of such concepts and techniques.

1.3.1 Adjacency matrix

Let G be an undirected graph with vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set E. The adjacency matrix of G is the $n \times n$ matrix $A=\left[a_{i j}\right]$ defined by

$$
a_{i j}= \begin{cases}1, & \text { if } v_{i} v_{j} \in E, \\ 0, & \text { otherwise }\end{cases}
$$

The adjacency matrix of G is also written as $A(G)$. As G is an undirected graph, then A is a symmetric matrix. That is, A is a square matrix such that $a_{i j}=a_{j i}$.

Now let G be a directed graph with vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set E. The $(0,-1,1)$-adjacency matrix of G is the $n \times n$ matrix $A=\left[a_{i j}\right]$ defined by

$$
a_{i j}= \begin{cases}1, & \text { if } v_{i} v_{j} \in E \\ -1, & \text { if } v_{j} v_{i} \in E \\ 0, & \text { otherwise }\end{cases}
$$

Example 1.24. Compute the adjacency matrices of the graphs in Figure 1.19.
Solution. Define the graphs in Figure 1.19 using DiGraph and Graph. Then call the method adjacency_matrix().

[^3]

Figure 1.19: What are the adjacency matrices of these graphs?

```
sage: G1 = DiGraph({1:[2], 2:[1], 3:[2,6], 4:[1,5], 5:[6], 6:[5]})
sage: G2 = Graph({"a":["b","c"], "b":["a","d"], "c":["a","e"], \
... "d":["b","f"], "e":["c","f"], "f":["d","e"]})
sage: m1 = G1.adjacency_matrix(); m1
[0
[1 1 0 0 0 0 0 0
[0
[1 [10
[0}0000000ccl
```



```
sage: m2 = G2.adjacency_matrix(); m2
```



```
[1 [10 00 1 0 0}
[1 0
[0}10100 0 0 0 1] [
[0
[0
sage: m1.is_symmetric()
False
sage: m2.is_symmetric()
True
```

In general, the adjacency matrix of a digraph is not symmetric, while that of an undirected graph is symmetric.

More generally, if G is an undirected multigraph with edge $e_{i j}=v_{i} v_{j}$ having multiplicity $w_{i j}$, or a weighted graph with edge $e_{i j}=v_{i} v_{j}$ having weight $w_{i j}$, then we can define the (weighted) adjacency matrix $A=\left[a_{i j}\right]$ by

$$
a_{i j}= \begin{cases}w_{i j}, & \text { if } v_{i} v_{j} \in E \\ 0, & \text { otherwise }\end{cases}
$$

For example, Sage allows you to easily compute a weighted adjacency matrix.

```
sage: G = Graph(sparse=True, weighted=True)
sage: G.add_edges([(0,1,1), (1, 2,2), (0,2,3), (0,3,4)])
sage: M = G.weighted_adjacency_matrix(); M
[0}101 3 4] [] [
[1
[3 [12 0 0
[4 0
```


Bipartite case

Suppose $G=(V, E)$ is an undirected bipartite graph with $n=|V|$ vertices. Any adjacency matrix A of G is symmetric and we assume that it is indexed from zero up to
$n-1$, inclusive. Then there exists a permutation π of the index set $\{0,1, \ldots, n-1\}$ such that the matrix $A^{\prime}=\left[a_{\pi(i) \pi(j)}\right]$ is also an adjacency matrix for G and has the form

$$
A^{\prime}=\left[\begin{array}{cc}
\mathbf{0} & B \tag{1.9}\\
B^{T} & \mathbf{0}
\end{array}\right]
$$

where $\mathbf{0}$ is a zero matrix. The matrix B is called a reduced adjacency matrix or a biadjacency matrix (the literature also uses the terms "transfer matrix" or the ambiguous term "adjacency matrix"). In fact, it is known [9, p.16] that any undirected graph is bipartite if and only if there is a permutation π on $\{0,1, \ldots, n-1\}$ such that $A^{\prime}(G)=$ $\left[a_{\pi(i) \pi(j)}\right]$ can be written as in (1.9).

Tanner graphs

If H is an $m \times n(0,1)$-matrix, then the Tanner graph of H is the bipartite graph $G=(V, E)$ whose set of vertices $V=V_{1} \cup V_{2}$ is partitioned into two sets: V_{1} corresponding to the m rows of H and V_{2} corresponding to the n columns of H. For any i, j with $1 \leq i \leq m$ and $1 \leq j \leq n$, there is an edge $i j \in E$ if and only if the (i, j)-th entry of H is 1 . This matrix H is sometimes called the reduced adjacency matrix or the check matrix of the Tanner graph. Tanner graphs are used in the theory of error-correcting codes. For example, Sage allows you to easily compute such a bipartite graph from its matrix.

```
sage: H = Matrix([(1, 1,1,0,0), (0,0,1,0,1), (1,0,0,1,1)])
sage: B = BipartiteGraph(H)
sage: B.reduced_adjacency_matrix()
[1 1
[0}0
[1 0
sage: B.plot(graph_border=True)
```

The corresponding graph is similar to that in Figure 1.20.

Figure 1.20: A Tanner graph.

Theorem 1.25. Let A be the adjacency matrix of a graph G with vertex set $V=$ $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. For each positive integer n, the $i j$-th entry of A^{n} counts the number of $v_{i}-v_{j}$ walks of length n in G.

Proof. We shall prove by induction on n. For the base case $n=1$, the $i j$-th entry of A^{1} counts the number of walks of length 1 from v_{i} to v_{j}. This is obvious because A^{1} is merely the adjacency matrix A.

Suppose for induction that for some positive integer $k \geq 1$, the $i j$-th entry of A^{k} counts the number of walks of length k from v_{i} to v_{j}. We need to show that the $i j$-th
entry of A^{k+1} counts the number of $v_{i}-v_{j}$ walks of length $k+1$. Let $A=\left[a_{i j}\right], A^{k}=\left[b_{i j}\right]$, and $A^{k+1}=\left[c_{i j}\right]$. Since $A^{k+1}=A A^{k}$, then

$$
c_{i j}=\sum_{r=1}^{p} a_{i r} b_{r j}
$$

for $i, j=1,2, \ldots, p$. Note that $a_{i r}$ is the number of edges from v_{i} to v_{r}, and $b_{r j}$ is the number of $v_{r}-v_{j}$ walks of length k. Any edge from v_{i} to v_{r} can be joined with any $v_{r}-v_{j}$ walk to create a walk $v_{i}, v_{r}, \ldots, v_{j}$ of length $k+1$. Then for each $r=1,2, \ldots, p$, the value $a_{i r} b_{r j}$ counts the number of $v_{i}-v_{j}$ walks of length $k+1$ with v_{r} being the second vertex in the walk. Thus $c_{i j}$ counts the total number of $v_{i}-v_{j}$ walks of length $k+1$.

1.3.2 Incidence matrix

The relationship between edges and vertices provides a very strong constraint on the data structure, much like the relationship between points and blocks in a combinatorial design or points and lines in a finite plane geometry. This incidence structure gives rise to another way to describe a graph using a matrix.

Let G be a digraph with edge set $E=\left\{e_{1}, \ldots, e_{m}\right\}$ and vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$. The incidence matrix of G is the $n \times m$ matrix $B=\left[b_{i j}\right]$ defined by

$$
b_{i j}= \begin{cases}-1, & \text { if } v_{i} \text { is the tail of } e_{j}, \tag{1.10}\\ 1, & \text { if } v_{i} \text { is the head of } e_{j} \\ 2, & \text { if } e_{j} \text { is a self-loop at } v_{i}, \\ 0, & \text { otherwise }\end{cases}
$$

Each column of B corresponds to an edge and each row corresponds to a vertex. The definition of incidence matrix of a digraph as contained in expression (1.10) is applicable to digraphs with self-loops as well as multidigraphs.

For the undirected case, let G be an undirected graph with edge set $E=\left\{e_{1}, \ldots, e_{m}\right\}$ and vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$. The unoriented incidence matrix of G is the $n \times m$ matrix $B=\left[b_{i j}\right]$ defined by

$$
b_{i j}= \begin{cases}1, & \text { if } v_{i} \text { is incident to } e_{j} \\ 2, & \text { if } e_{j} \text { is a self-loop at } v_{i} \\ 0, & \text { otherwise }\end{cases}
$$

An orientation of an undirected graph G is an assignment of direction to each edge of G. In other words, each edge has a distinguished vertex called a head. In this case, the letter $D=D(G)$ is sometimes used instead of B for the incidence matrix of a digraph or an oriented graph. The oriented incidence matrix D of G is defined similarly to the case where G is a digraph: it is the incidence matrix of any orientation of G. For each column of D, we have 1 as an entry in the row corresponding to one vertex of the edge under consideration and -1 as an entry in the row corresponding to the other vertex. Similarly, $d_{i j}=2$ if e_{j} is a self-loop at v_{i}.

Sage allows you to compute the incidence matrix of a graph:

```
sage: G = Graph({1: [2, 4], 2: [1, 3], 3: [2, 6], 4: [1, 5], 5: [4, 6], 6: [3, 5]})
sage: G.incidence_matrix()
    [\begin{array}{lllllll}{-1}&{-1}&{0}&{0}&{0}&{0}\end{array}]
    [ [ 0 1rrrrrrrr
    [rrrrrrrrr}[\begin{array}{rrrrr}{1}&{0}&{0}&{0}&{-1}
```

The integral cycle space of a graph is equal to the kernel of an oriented incidence matrix, viewed as a matrix over \mathbb{Q}. The binary cycle space is the kernel of its oriented or unoriented incidence matrix, viewed as a matrix over $G F(2)$.

Theorem 1.26. The incidence matrix of an undirected graph G is related to the adjacency matrix of its line graph $L(G)$ by the following theorem:

$$
A(L(G))=D(G)^{T} D(G)-2 I_{n},
$$

where $A(L(G))$ is the adjacency matrix of the line graph of G.
Proof. Let D_{i} denote the i th column of D.
Consider the dot product of D_{i} and $D_{j}, i \neq j$. The terms contributing to this expression are associated to the vertices which are incident to the i th edge and also to the j th edge. In other words, there is such a vertex (and only one such vertex) if and only if this dot product is equal to 1 if and only if i th edge is incident to the j th edge in G if and only if the vertex in $L(G)$ associated to the i th edge in G is adjacent to the vertex in $L(G)$ associated to the j th edge in G. But this is exactly the condition that the corresponding entry of $A(L(G))$ is equal to 1 .

Consider the dot product of D_{i} with itself. The terms contributing to this expression are associated to the vertices which are incident to the i th edge. There are 2 such vertices so this dot product is equal to 2 . Subtracting, the 2 in $2 I_{n}$, gives 0 , as expect for the diagonal entries of $A(L(G))$.

For a directed graph, the result in the above theorem does not hold in general (except in characteristic 2), as the following example shows.

Example 1.27. Consider the graph shown in Figure 1.21, whose line graph is shown in Figure 1.22.

```
sage: G1 = DiGraph({0:[1,2,4], 1:[2,3,4], 2:[3,4]})
sage: G1.show()
sage: D1 = G1.incidence_matrix(); D1
[-1 -1 -1 0}0
[ [10
[ [10 1
[ [0
sage: A1 = G1.adjacency_matrix()
sage: A1
[0
[0}0
[0}00<00111
[0}00~0,0 0] [
[0
```

```
sage: G = Graph({0:[1,2,4], 1:[2,3,4], 2:[3,4]})
```

sage: G = Graph({0:[1,2,4], 1:[2,3,4], 2:[3,4]})
sage: D = G.incidence_matrix(); D
sage: D = G.incidence_matrix(); D
[-1 -1 -1 0}0
[-1 -1 -1 0}0
[[10 0
[[10 0
[[10 1
[[10 1
[[10

```
[ [10
```

```
sage: D.transpose()*D
\(\left[\begin{array}{rrrrrrrr}{[ } & 2 & 1 & 1 & 1 & 0 & 0 & 1 \\ {[ } & 1 & 2 & 1 & 0 & 0 & 1 & -1\end{array}\right]\)
sage: D*D.transpose()
[[\begin{array}{lllll}{3}&{-1}&{-1}&{0}&{-1}\end{array}]
[-1 
[-1 [-1 
[ [rrrrrr}
[-1 -1 -1 0
sage: (-1)*G.adjacency_matrix()
[ [rllll
[-1
[-1 [-1 
[ [rrrrrr}
[-1 -1 -1 0
sage: V = G.vertices()
sage: [G.degree(v) for v in V]
[3, 4, 4, 2, 3]
sage: MS8 = MatrixSpace(QQ, 8,8)
sage: I8 = MS8(1)
sage: D.transpose()*D - 2*I8
[ 0
[ 1
[ 1
[ 0
[ 0
[ [1
sage: LG = G.line_graph()
sage: ALG = LG.adjacency_matrix()
sage: ALG
[0
[1 0
[1 1
[1 11 0}000\mp@code{1
[1
[0}[\begin{array}{llllllll}{0}&{1}&{0}&{1}&{0}&{0}&{1}\end{array}
sage: G3 = Graph({0:[1,2,3,6], 1:[2,5,6,7], 2:[3,4,5],3:[4],4:[5,7],5:[7]}) ## line graph
sage: G3.adjacency_matrix()
[0
[1 [10 1
```



```
[1 [10
[0
```



```
[1
```


Figure 1.21: A digraph example having 5 vertices and 8 edges.

Figure 1.22: The line graph of a digraph example having 5 vertices and 8 edges.
Theorem 1.28. The rank (over \mathbb{Q}) of the incidence matrix of a directed connected simple graph having n vertices is $n-1$.

Since G is a simple graph, it has fewer edges than vertices.
Proof. Consider the column of D coresponding to $e \in E$. The number of entries equal to +1 is one (corresponding to the vertex at the "head" of e) and the number of entries equal to -1 is also one (corresponding to the vertex at the "tail" of e). All other entries are equal to 0 . Therefore, the sum of all the rows in D is the zero vector. This implies

$$
\operatorname{rank}_{\mathbb{Q}}(D) \leq n-1
$$

To show that equality is attained, we exhibit $n-1$ linearly independent columns of D. Let T be a spanning tree for G. This tree has $n-1$ edges and, if you reindex the vertices of G suitably, the columns of D associated to the edges in T are of the form $w_{k}=(0, \ldots, 0,1,-1,0, \ldots, 0) \in \mathbb{Q}^{n}$, where the k th entry is a 1 and the $(k+1)$ st entry is $-1(1 \leq k \leq n-1)$. These are clearly linearly independent.

1.3.3 Laplacian matrix

The degree matrix of a graph $G=(V, E)$ is an $n \times n$ diagonal matrix D whose i-th diagonal entry is the degree of the i-th vertex in V. The Laplacian matrix \mathcal{L} of G is the difference between the degree matrix and the adjacency matrix:

$$
\mathcal{L}=D-A .
$$

In other words, for an undirected unweighted simple graph, $\mathcal{L}=\left[\ell_{i j}\right]$ is given by

$$
\ell_{i j}= \begin{cases}-1, & \text { if } i \neq j \text { and } v_{i} v_{j} \in E \\ d_{i}, & \text { if } i=j, \\ 0, & \text { otherwise }\end{cases}
$$

where $d_{i}=\operatorname{deg}\left(v_{i}\right)$ is the degree of vertex v_{i}.
Sage allows you to compute the Laplacian matrix of a graph:

```
sage: G = Graph ({1:[2,4], 2:[1,4], 3:[2,6], 4:[1,3], 5:[4, 2], 6:[3,1]})
sage: G.laplacian_matrix()
[ 3-1 
[-1
[ [rrrrrrrr-1]
[\begin{array}{lllllll}{-1}&{-1}&{-1}&{4}&{-1}&{0}\end{array}]
```



```
[-1
```

There are many remarkable properties of the Laplacian matrix. It shall be discussed further in Chapter 5.

1.3.4 Distance matrix

Recall that the distance (or geodesic distance) $d(v, w)$ between two vertices $v, w \in V$ in a connected graph $G=(V, E)$ is the number of edges in a shortest path connecting them. The $n \times n$ matrix $\left[d\left(v_{i}, v_{j}\right)\right]$ is the distance matrix of G. Sage helps you to compute the distance matrix of a graph:

```
sage: G = Graph({1:[2,4], 2:[1,4], 3:[2,6], 4:[1,3], 5:[4,2], 6:[3,1]})
sage: d = [[G.distance(i,j) for i in range(1,7)] for j in range(1,7)]
sage: matrix(d)
[0
[1 [10 11 1 1 1 2]
[2 11 0
[1 1}10\mp@code{1
[2
[1
```

The distance matrix is an important quantity which allows one to better understand the "connectivity" of a graph. Distance and connectivity will be discussed in more detail in Chapters 5 and 11.

1.4 Graph transformations

1.5 Isomorphic graphs

Determining whether or not two graphs are, in some sense, the "same" is a hard but important problem. Two graphs G and H are isomorphic if there is a bijection f : $V(G) \rightarrow V(H)$ such that whenever $u v \in E(G)$ then $f(u) f(v) \in E(H)$. The function f is an isomorphism between G and H. Otherwise, G and H are non-isomorphic. If G and H are isomorphic, we write $G \cong H$.

A graph G is isomorphic to a graph H if these two graphs can be labelled in such a way that if u and v are adjacent in G, then their counterparts in $V(H)$ are also adjacent in H. To determine whether or not two graphs are isomorphic is to determine if they are structurally equivalent. Graphs G and H may be drawn differently so that they seem different. However, if $G \cong H$ then the isomorphism $f: V(G) \rightarrow V(H)$ shows that both of these graphs are fundamentally the same. In particular, the order and size of G are equal to those of H, the isomorphism f preserves adjacencies, and $\operatorname{deg}(v)=\operatorname{deg}(f(v))$ for all $v \in G$. Since f preserves adjacencies, then adjacencies along a given geodesic path are preserved as well. That is, if $v_{1}, v_{2}, v_{3}, \ldots, v_{k}$ is a shortest path between $v_{1}, v_{k} \in V(G)$, then $f\left(v_{1}\right), f\left(v_{2}\right), f\left(v_{3}\right), \ldots, f\left(v_{k}\right)$ is a geodesic path between $f\left(v_{1}\right), f\left(v_{k}\right) \in V(H)$. For example, the two graphs in Figure 1.23 are isomorphic to each other.

Figure 1.23: Two representations of the Franklin graph.

Figure 1.24: Isomorphic and nonisomorphic graphs.

Example 1.29. Consider the graphs in Figure 1.24. Which pair of graphs are isomorphic, and which two graphs are non-isomorphic?

Solution. If G is a Sage graph, one can use the method G.is_isomorphic() to determine whether or not the graph G is isomorphic to another graph. The following Sage session illustrates how to use G.is_isomorphic().

```
sage: C6 = Graph({"a":["b","c"], "b":["a","d"], "c":["a","e"], \
... "d":["b","f"], "e":["c","f"], "f":["d","e"]})
sage: G1 = Graph({1:[2,4], 2:[1,3], 3:[2,6], 4:[1,5], \
... 5:[4,6], 6:[3,5]})
sage: G2 = Graph({"a":["d","e"], "b":["c","f"], "c":["b","f"], \
... "d":["a","e"], "e":["a","d"], "f":["b","c"]})
sage: C6.is_isomorphic(G1)
True
sage: C6.is_isomorphic(G2)
False
sage: G1.is_isomorphic(G2)
False
```

Thus, for the graphs C_{6}, G_{1} and G_{2} in Figure 1.24, C_{6} and G_{1} are isomorphic, but G_{1} and G_{2} are not isomorphic.

An important notion in graph theory is the idea of an "invariant". An invariant is an object $f=f(G)$ associated to a graph G which has the property

$$
G \cong H \Longrightarrow f(G)=f(H)
$$

For example, the number of vertices of a graph, $f(G)=|V(G)|$, is an invariant.

1.5.1 Adjacency matrices

Two $n \times n$ matrices A_{1} and A_{2} are permutation equivalent if there is a permutation matrix P such that $A_{1}=P A_{2} P^{-1}$. In other words, A_{1} is the same as A_{2} after a suitable re-ordering of the rows and a corresponding re-ordering of the columns. This notion of permutation equivalence is an equivalence relation.

To show that two undirected graphs are isomorphic depends on the following result.
Theorem 1.30. Consider two directed or undirected graphs G_{1} and G_{2} with respective adjacency matrices A_{1} and A_{2}. Then G_{1} and G_{2} are isomorphic if and only if A_{1} is permutation equivalent to A_{2}.

This says that the permutation equivalence class of the adjacency matrix is an invariant.

Define an ordering on the set of $n \times n(0,1)$-matrices as follows: we say $A_{1}<A_{2}$ if the list of entries of A_{1} is less than or equal to the list of entries of A_{2} in the lexicographical ordering. Here, the list of entries of a $(0,1)$-matrix is obtained by concatenating the entries of the matrix, row-by-row. For example,

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]<\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

Algorithm 1.1 is an immediate consequence of Theorem 1.30. The lexicographically maximal element of the permutation equivalence class of the adjacency matrix of G is called the canonical label of G. Thus, to check if two undirected graphs are isomorphic, we simply check if their canonical labels are equal. This idea for graph isomorphism checking is presented in Algorithm 1.1.

```
Algorithm 1.1 Computing graph isomorphism using canonical labels.
Input Two undirected simple graphs \(G_{1}\) and \(G_{2}\), each having \(n\) vertices.
Output true if \(G_{1} \cong G_{2}\); false otherwise.
    for \(i \leftarrow 1,2\) do
        \(A_{i} \leftarrow\) adjacency matrix of \(G_{i}\)
        \(p_{i} \leftarrow\) permutation equivalence class of \(A_{i}\)
        \(A_{i}^{\prime} \leftarrow\) lexicographically maximal element of \(p_{i}\)
    if \(A_{1}^{\prime}=A_{2}^{\prime}\) then
        return true
    return false
```


1.5.2 Degree sequence

Let G be a graph with n vertices. The degree sequence of G is the ordered n-tuple of the vertex degrees of G arranged in non-increasing order.

The degree sequence of G may contain the same degrees, repeated as often as they occur. For example, the degree sequence of C_{6} is $2,2,2,2,2,2$ and the degree sequence of the house graph in Figure 1.3 is $3,3,2,2,2$. If $n \geq 3$ then the cycle graph C_{n} has the degree sequence

$$
\underbrace{2,2,2, \ldots, 2}_{n \text { copies of } 2} .
$$

The path P_{n}, for $n \geq 3$, has the degree sequence

$$
\underbrace{2,2,2, \ldots, 2,1,1}_{n-2 \text { copies of } 2}
$$

For positive integer values of n and m, the complete graph K_{n} has the degree sequence

$$
\underbrace{n-1, n-1, n-1, \ldots, n-1}_{n \text { copies of } n-1}
$$

and the complete bipartite graph $K_{m, n}$ has the degree sequence

$$
\underbrace{n, n, n, \ldots, n}_{m \text { copies of } n} \underbrace{m, m, m, \ldots, m}_{n \text { copies of } m}
$$

Let S be a non-increasing sequence of non-negative integers. Then S is said to be graphical if it is the degree sequence of some graph. If G is a graph with degree sequence S, we say that G realizes S.

Let $S=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a graphical sequence, i.e. $d_{i} \geq d_{j}$ for all $i \leq j$ such that $1 \leq i, j \leq n$. From Corollary 1.11 we see that $\sum_{d_{i} \in S} d_{i}=2 k$ for some integer $k \geq 0$. In other words, the sum of a graphical sequence is nonnegative and even. In 1961, Erdős and Gallai [71] used this observation as part of a theorem that provides necessary and sufficient conditions for a sequence to be realized by a simple graph. The result is stated in Theorem 1.31, but the original paper of Erdős and Gallai [71] does not provide an algorithm to construct a simple graph with a given degree sequence. For a simple graph that has a degree sequence with repeated elements, e.g. the degree sequences of C_{n}, P_{n}, K_{n}, and $K_{m, n}$, it is redundant to verify inequality (1.11) for repeated elements of that sequence. In 2003, Tripathi and Vijay [184] showed that one only needs to verify inequality (1.11) for as many times as there are distinct terms in S.
Theorem 1.31. Erdös \mathfrak{G} Gallai 1961 [71]. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a sequence of positive integers such that $d_{i} \geq d_{i+1}$. Then d is realized by a simple graph if and only if $\sum_{i} d_{i}$ is even and

$$
\begin{equation*}
\sum_{i=1}^{k} d_{i} \leq k(k+1)+\sum_{j=k+1}^{n} \min \left\{k, d_{i}\right\} \tag{1.11}
\end{equation*}
$$

for all $1 \leq k \leq n-1$.
As noted above, Theorem 1.31 is an existence result showing that something exists without providing a construction of the object under consideration. Havel [98] and Hakimi [95,96] independently provided an algorithmic approach that allows for constructing a simple graph with a given degree sequence. See Sierksma and Hoogeveen [175] for a coverage of seven criteria for a sequence of integers to be graphic. See Erdős et al. [74] for an extension of the Havel-Hakimi theorem to digraphs.

Theorem 1.32. Havel 1955 [98] G3 Hakimi 1962-3 [95, 96]. Consider the nonincreasing sequence $S_{1}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ of nonnegative integers, where $n \geq 2$ and $d_{1} \geq 1$. Then S_{1} is graphical if and only if the sequence

$$
S_{2}=\left(d_{2}-1, d_{3}-1, \ldots, d_{d_{1}+1}-1, d_{d_{1}+2}, \ldots, d_{n}\right)
$$

is graphical.

Proof. Suppose S_{2} is graphical. Let $G_{2}=\left(V_{2}, E_{2}\right)$ be a graph of order $n-1$ with vertex set $V_{2}=\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}$ such that

$$
\operatorname{deg}\left(v_{i}\right)= \begin{cases}d_{i}-1, & \text { if } 2 \leq i \leq d_{1}+1 \\ d_{i}, & \text { if } d_{1}+2 \leq i \leq n\end{cases}
$$

Construct a new graph G_{1} with degree sequence S_{1} as follows. Add another vertex v_{1} to V_{2} and add to E_{2} the edges $v_{1} v_{i}$ for $2 \leq i \leq d_{1}+1$. It is clear that $\operatorname{deg}\left(v_{1}\right)=d_{1}$ and $\operatorname{deg}\left(v_{i}\right)=d_{i}$ for $2 \leq i \leq n$. Thus G_{1} has the degree sequence S_{1}.

On the other hand, suppose S_{1} is graphical and let G_{1} be a graph with degree sequence S_{1} such that
(i) The graph G_{1} has the vertex set $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\operatorname{deg}\left(v_{i}\right)=d_{i}$ for $i=1, \ldots, n$.
(ii) The degree sum of all vertices adjacent to v_{1} is a maximum.

To obtain a contradiction, suppose v_{1} is not adjacent to vertices having degrees

$$
d_{2}, d_{3}, \ldots, d_{d_{1}+1}
$$

Then there exist vertices v_{i} and v_{j} with $d_{j}>d_{i}$ such that $v_{1} v_{i} \in E\left(G_{1}\right)$ but $v_{1} v_{j} \notin E\left(G_{1}\right)$. As $d_{j}>d_{i}$, there is a vertex v_{k} such that $v_{j} v_{k} \in E\left(G_{1}\right)$ but $v_{i} v_{k} \notin E\left(G_{1}\right)$. Replacing the edges $v_{1} v_{i}$ and $v_{j} v_{k}$ with $v_{1} v_{j}$ and $v_{i} v_{k}$, respectively, results in a new graph H whose degree sequence is S_{1}. However, the graph H is such that the degree sum of vertices adjacent to v_{1} is greater than the corresponding degree sum in G_{1}, contradicting property (ii) in our choice of G_{1}. Consequently, v_{1} is adjacent to d_{1} other vertices of largest degree. Then S_{2} is graphical because $G_{1}-v_{1}$ has degree sequence S_{2}.

The proof of Theorem 1.32 can be adapted into an algorithm to determine whether or not a sequence of nonnegative integers can be realized by a simple graph. If G is a simple graph, the degree of any vertex in $V(G)$ cannot exceed the order of G. By the handshaking lemma (Theorem 1.9), the sum of all terms in the sequence cannot be odd. Once the sequence passes these two preliminary tests, we then adapt the proof of Theorem 1.32 to successively reduce the original sequence to a smaller sequence. These ideas are summarized in Algorithm 1.2.

We now show that Algorithm 1.2 determines whether or not a sequence of integers is realizable by a simple graph. Our input is a sequence $S=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ arranged in non-increasing order, where each $d_{i} \geq 0$. The first test as contained in the if block, otherwise known as a conditional, on line 1 uses the handshaking lemma (Theorem 1.9). During the first run of the while loop, the conditional on line 4 ensures that the sequence S only consists of nonnegative integers. At the conditional on line 6 , we know that S is arranged in non-increasing order and has nonnegative integers. If this conditional holds true, then S is a sequence of zeros and it is realizable by a graph with only isolated vertices. Such a graph is simple by definition. The conditional on line 8 uses the following property of simple graphs: If G is a simple graph, then the degree of each vertex of G is less than the order of G. By the time we reach line 10 , we know that S has n terms, $\max (S)>0$, and $0 \leq d_{i} \leq n-1$ for all $i=1,2, \ldots, n$. After applying line $10, S$ is now a sequence of $n-1$ terms with $\max (S)>0$ and $0 \leq d_{i} \leq n-2$ for all $i=1,2, \ldots, n-1$. In general, after k rounds of the while loop, S is a sequence of $n-k$ terms with $\max (S)>0$

```
Algorithm 1.2 Havel-Hakimi test for sequences realizable by simple graphs.
Input A nonincreasing sequence \(S=\left(d_{1}, d_{2}, \ldots, d_{n}\right)\) of nonnegative integers, where
    \(n \geq 2\).
Output true if \(S\) is realizable by a simple graph; false otherwise.
    if \(\sum_{i} d_{i}\) is odd then
        return false
    while true do
        if \(\min (S)<0\) then
            return false
        if \(\max (S)=0\) then
            return true
        if \(\max (S)>\operatorname{length}(S)-1\) then
            return false
        \(S \leftarrow\left(d_{2}-1, d_{3}-1, \ldots, d_{d_{1}+1}-1, d_{d_{1}+2}, \ldots, d_{\operatorname{length}(S)}\right)\)
        sort \(S\) in nonincreasing order
```

and $0 \leq d_{i} \leq n-k-1$ for all $i=1,2, \ldots, n-k$. And after $n-1$ rounds of the while loop, the resulting sequence has one term whose value is zero. In other words, eventually Algorithm 1.2 produces a sequence with a negative term or a sequence of zeros.

1.5.3 Invariants revisited

In some cases, one can distinguish non-isomorphic graphs by considering graph invariants. For instance, the graphs C_{6} and G_{1} in Figure 1.24 are isomorphic so they have the same number of vertices and edges. Also, G_{1} and G_{2} in Figure 1.24 are non-isomorphic because the former is connected, while the latter is not connected. To prove that two graphs are non-isomorphic, one could show that they have different values for a given graph invariant. The following list contains some items to check off when showing that two graphs are non-isomorphic:

1. the number of vertices,
2. the number of edges,
3. the degree sequence,
4. the length of a geodesic path,
5. the length of the longest path,
6. the number of connected components of a graph.

1.6 New graphs from old

This section provides a brief survey of operations on graphs to obtain new graphs from old graphs. Such graph operations include unions, products, edge addition, edge deletion, vertex addition, and vertex deletion. Several of these are briefly described below.

1.6.1 Union, intersection, and join

The disjoint union of graphs is defined as follows. For two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ with disjoint vertex sets, their disjoint union is the graph

$$
G_{1} \cup G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)
$$

For example, Figure 1.25 shows the vertex disjoint union of the complete bipartite graph $K_{1,5}$ with the wheel graph W_{4}. The adjacency matrix A of the disjoint union of two graphs G_{1} and G_{2} is the diagonal block matrix obtained from the adjacency matrices A_{1} and A_{2}, respectively. Namely,

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right] .
$$

Sage can compute graph unions, as the following example shows.

```
sage: G1 = Graph({1:[2,4], 2:[1,3], 3:[2,6], 4:[1,5], 5:[4,6], 6:[3,5]})
sage: G2 = Graph({7:[8,10], 8:[7,10], 9:[8,12], 10:[7,9], 11:[10,8], 12:[9,7]})
sage: G1u2 = G1.union(G2)
sage: G1u2.adjacency_matrix()
[0}10010[\mp@code{0
[1 0 1 0 0 0 0 0 0 0 0 0)
[00 1-1 0 0 0 1 0 0 0 0 0 0 0
[1 0 00 0 1 0 0 0 0 0 0 0]
[0 0 0 1 1 0 1 0 0 0 0 0 0
```



```
[0 0 0 0 0 0 0 1 0 1 0 1]
[0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0]
[0 00 0 0 0 0 0 0 1 0 1 1 0 1]
[0 0 0 0 0 0 0 1 1 1 1 0 1 0
[0 0
[0}00~000 0 0 1 1 0 1 1 0 0 0] [
```

In the case where $V_{1}=V_{2}$, then $G_{1} \cup G_{2}$ is simply the graph consisting of all edges in G_{1} or in G_{2}. In general, the union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is defined as

$$
G_{1} \cup G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)
$$

where $V_{1} \subseteq V_{2}, V_{2} \subseteq V_{1}, V_{1}=V_{2}$, or $V_{1} \cap V_{2}=\emptyset$. Figure 1.26(c) illustrates the graph union where one vertex set is a proper subset of the other. If $G_{1}, G_{2}, \ldots, G_{n}$ are the components of a graph G, then G is obtained by the disjoint union of its components, i.e. $G=\bigcup G_{i}$.

Figure 1.25: The vertex disjoint union $K_{1,5} \cup W_{4}$.
The intersection of graphs is defined as follows. For two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, their intersection is the graph

$$
G_{1} \cap G_{2}=\left(V_{1} \cap V_{2}, E_{1} \cap E_{2}\right) .
$$

Figure 1.26(d) illustrates the intersection of two graphs whose vertex sets overlap.

(a) G_{1}

(b) G_{2}

(c) $G_{1} \cup G_{2}$

(d) $G_{1} \cap G_{2}$

Figure 1.26: The union and intersection of graphs with overlapping vertex sets.

The symmetric difference of graphs is defined as follows. For two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, their symmetric difference is the graph

$$
G_{1} \Delta G_{2}=(V, E)
$$

where $V=V_{1} \Delta V_{2}$ and the edge set is given by

$$
E=\left(E_{1} \Delta E_{2}\right) \backslash\left\{u v \mid u \in V_{1} \cap V_{2} \quad \text { or } \quad v \in V_{1} \cap V_{2}\right\} .
$$

Recall that the symmetric difference of two sets S_{1} and S_{2} is defined by

$$
S_{1} \Delta S_{2}=\left\{x \in S_{1} \cup S_{2} \mid x \notin S_{1} \cap S_{2}\right\} .
$$

In the case where $V_{1}=V_{2}$, then $G_{1} \Delta G_{2}$ is simply the empty graph. See Figure 1.27 for an illustration of the symmetric difference of two graphs.

Figure 1.27: The symmetric difference of graphs.
The join of two disjoint graphs G_{1} and G_{2}, denoted $G_{1}+G_{2}$, is their graph union, with each vertex of one graph connecting to each vertex of the other graph. For example, the join of the cycle graph C_{n-1} with a single vertex graph is the wheel graph W_{n}. Figure 1.28 shows various wheel graphs.

1.6.2 Edge or vertex deletion/insertion

Vertex deletion subgraph

If $G=(V, E)$ is any graph with at least 2 vertices, then the vertex deletion subgraph is the subgraph obtained from G by deleting a vertex $v \in V$ and also all the edges incident to that vertex. The vertex deletion subgraph of G is sometimes denoted $G-\{v\}$. Sage can compute vertex deletions, as the following example shows.

Figure 1.28: The wheel graphs W_{n} for $n=4, \ldots, 9$.

```
sage: G = Graph({1:[2,4], 2:[1,4], 3:[2,6], 4:[1,3], 5:[4,2], 6:[3,1]})
sage: G.vertices()
[1, 2, 3, 4, 5, 6]
sage: E1 = Set(G.edges(labels=False)); E1
{(1, 2), (4, 5), (1, 4), (2, 3), (3, 6), (1, 6), (2, 5), (3, 4), (2, 4)}
sage: E4 = Set(G.edges_incident(vertices=[4], labels=False)); E4
{(4, 5), (3, 4), (2, 4), (1, 4)}
sage: G.delete_vertex(4)
sage: G.vertices()
[1, 2, 3, 5, 6]
sage: E2 = Set(G.edges(labels=False)); E2
{(1, 2), (1, 6), (2, 5), (2, 3), (3, 6)}
sage: E1.difference(E2)'== E4
True
```

Figure 1.29 presents a sequence of subgraphs obtained by repeatedly deleting vertices. As the figure shows, when a vertex is deleted from a graph, all edges incident on that vertex are deleted as well.

Edge deletion subgraph

If $G=(V, E)$ is any graph with at least 1 edge, then the edge deletion subgraph is the subgraph obtained from G by deleting an edge $e \in E$, but not the vertices incident to that edge. The edge deletion subgraph of G is sometimes denoted $G-\{e\}$. Sage can compute edge deletions, as the following example shows.

```
sage: G = Graph({1:[2,4], 2:[1,4], 3:[2,6], 4:[1,3], 5:[4, 2], 6:[3,1]})
sage: E1 = Set(G.edges(labels=False)); E1
{(1, 2), (4, 5), (1, 4), (2, 3), (3, 6), (1, 6), (2, 5), (3, 4), (2, 4)}
sage: V1 = G.vertices(); V1
[1, 2, 3, 4, 5, 6]
sage: E14 = Set ([(1,4)]); E14
{(1, 4)}
sage: G.delete_edge([1,4])
sage: E2 = Set(G.edges(labels=False)); E2
```


(a) G

(c) $G-\{a, b\}$

(b) $G-\{b\}$

(d) $G-\{a, b, e\}$

(e) $G-\{a, b, c, d, e\}$

Figure 1.29: Obtaining subgraphs via repeated vertex deletion.

```
{(1, 2), (4, 5), (2, 3), (3, 6), (1, 6), (2, 5), (3, 4), (2, 4)}
sage: E1.difference(E2) == E14
True
```

Figure 1.30 shows a sequence of graphs resulting from edge deletion. Unlike vertex deletion, when an edge is deleted the vertices incident on that edge are left intact.

Figure 1.30: Obtaining subgraphs via repeated edge deletion.

Vertex cut, cut vertex, or cutpoint

A vertex cut (or separating set) of a connected graph $G=(V, E)$ is a subset $W \subseteq V$ such that the vertex deletion subgraph $G-W$ is disconnected. In fact, if $v_{1}, v_{2} \in V$ are two non-adjacent vertices, then you can ask for a vertex cut W for which v_{1}, v_{2} belong to different components of $G-W$. Sage's vertex_cut method allows you to compute a minimal cut having this property. For many connected graphs, the removal of a single vertex is sufficient for the graph to be disconnected (see Figure 1.30(c)).

Edge cut, cut edge, or bridge

If deleting a single, specific edge would disconnect a graph G, that edge is called a bridge. More generally, the edge cut (or disconnecting set or seg) of a connected graph $G=(V, E)$ is a set of edges $F \subseteq E$ whose removal yields an edge deletion subgraph $G-F$ that is disconnected. A minimal edge cut is called a cut set or a bond. In fact, if $v_{1}, v_{2} \in V$ are two vertices, then you can ask for an edge cut F for which v_{1}, v_{2} belong to different components of $G-F$. Sage's edge_cut method allows you to compute a minimal cut having this property. For example, any of the three edges in Figure 1.30(c) qualifies as a bridge and those three edges form an edge cut for the graph in question.

Theorem 1.33. Let G be a connected graph. An edge $e \in E(G)$ is a bridge of G if and only if e does not lie on a cycle of G.

Proof. First, assume that $e=u v$ is a bridge of G. Suppose for contradiction that e lies on a cycle

$$
C: u, v, w_{1}, w_{2}, \ldots, w_{k}, u .
$$

Then $G-e$ contains a $u-v$ path $u, w_{k}, \ldots, w_{2}, w_{1}, v$. Let u_{1}, v_{1} be any two vertices in $G-e$. By hypothesis, G is connected so there is a $u_{1}-v_{1}$ path P in G. If e does not lie on P, then P is also a path in $G-e$ so that u_{1}, v_{1} are connected, which contradicts our assumption of e being a bridge. On the other hand, if e lies on P, then express P as

$$
u_{1}, \ldots, u, v, \ldots, v_{1} \quad \text { or } \quad u_{1}, \ldots, v, u, \ldots, v_{1}
$$

Now

$$
u_{1}, \ldots, u, w_{k}, \ldots, w_{2}, w_{1}, v, \ldots, v_{1} \quad \text { or } \quad u_{1}, \ldots, v, w_{1}, w_{2}, \ldots, w_{k}, u, \ldots, v_{1}
$$

respectively is a $u_{1}-v_{1}$ walk in $G-e$. By Theorem 1.15, $G-e$ contains a $u_{1}-v_{1}$ path, which contradicts our assumption about e being a bridge.

Conversely, let $e=u v$ be an edge that does not lie on any cycles of G. If $G-e$ has no $u-v$ paths, then we are done. Otherwise, assume for contradiction that $G-e$ has a $u-v$ path P. Then P with $u v$ produces a cycle in G. This cycle contains e, in contradiction of our assumption that e does not lie on any cycles of G.

Edge contraction

An edge contraction is an operation which, like edge deletion, removes an edge from a graph. However, unlike edge deletion, edge contraction also merges together the two vertices the edge used to connect. For a graph $G=(V, E)$ and an edge $u v=e \in E$, the edge contraction G / e is the graph obtained as follows:

1. Delete the vertices u, v from G.
2. In place of u, v is a new vertex v_{e}.
3. The vertex v_{e} is adjacent to vertices that were adjacent to u, v, or both u and v.

The vertex set of $G / e=\left(V^{\prime}, E^{\prime}\right)$ is defined as $V^{\prime}=(V \backslash\{u, v\}) \cup\left\{v_{e}\right\}$ and its edge set is

$$
E^{\prime}=\{w x \in E \mid\{w, x\} \cap\{u, v\}=\emptyset\} \cup\left\{v_{e} w \mid u w \in E \backslash\{e\} \text { or } v w \in E \backslash\{e\}\right\}
$$

Make the substitutions

$$
\begin{aligned}
& E_{1}=\{w x \in E \mid\{w, x\} \cap\{u, v\}=\emptyset\} \\
& E_{2}=\left\{v_{e} w \mid u w \in E \backslash\{e\} \text { or } v w \in E \backslash\{e\}\right\} .
\end{aligned}
$$

Let G be the wheel graph W_{6} in Figure 1.31(a) and consider the edge contraction $G / a b$, where $a b$ is the gray colored edge in that figure. Then the edge set E_{1} denotes all those edges in G each of which is not incident on a, b, or both a and b. These are precisely those edges that are colored red. The edge set E_{2} means that we consider those edges in G each of which is incident on exactly one of a or b, but not both. The blue colored edges in Figure 1.31(a) are precisely those edges that E_{2} suggests for consideration. The result of the edge contraction $G / a b$ is the wheel graph W_{5} in Figure 1.31(b). Figures 1.31(a) to $1.31(\mathrm{f})$ present a sequence of edge contractions that starts with W_{6} and repeatedly contracts it to the trivial graph K_{1}.

1.6.3 Complements

The complement of a simple graph has the same vertices, but exactly those edges that are not in the original graph. In other words, if $G^{c}=\left(V, E^{c}\right)$ is the complement of $G=(V, E)$, then two distinct vertices $v, w \in V$ are adjacent in G^{c} if and only if they are not adjacent in G. We also write the complement of G as \bar{G}. The sum of the adjacency matrix of G and that of G^{c} is the matrix with 1's everywhere, except for 0's on the main diagonal. A simple graph that is isomorphic to its complement is called a selfcomplementary graph. Let H be a subgraph of G. The relative complement of G and H is the edge deletion subgraph $G-E(H)$. That is, we delete from G all edges in H. Sage can compute edge complements, as the following example shows.

Figure 1.31: Contracting the wheel graph W_{6} to the trivial graph K_{1}.

```
sage: G = Graph({1:[2,4], 2:[1,4], 3:[2,6], 4:[1,3], 5:[4,2], 6:[3,1]})
sage: Gc = G.complement()
sage: EG = Set(G.edges(labels=False)); EG
{(1, 2), (4, 5), (1, 4), (2, 3), (3, 6), (1, 6), (2, 5), (3, 4), (2, 4)}
sage: EGc = Set(Gc.edges(labels=False)); EGc
{(1, 5), (2, 6), (4, 6), (1, 3), (5, 6), (3, 5)}
sage: EG.difference(EGc) == EG
True
sage: EGc.difference(EG) == EGc
True
sage: EG.intersection(EGc)
{}
```

Theorem 1.34. If $G=(V, E)$ is self-complementary, then the order of G is $|V|=4 k$ or $|V|=4 k+1$ for some nonnegative integer k. Furthermore, if $n=|V|$ is the order of G, then the size of G is $|E|=n(n-1) / 4$.

Proof. Let G be a self-complementary graph of order n. Each of G and G^{c} contains half the number of edges in K_{n}. From (1.6), we have

$$
|E(G)|=\left|E\left(G^{c}\right)\right|=\frac{1}{2} \cdot \frac{n(n-1)}{2}=\frac{n(n-1)}{4} .
$$

Then $n \mid n(n-1)$, with one of n and $n-1$ being even and the other odd. If n is even, $n-1$ is odd so $\operatorname{gcd}(4, n-1)=1$, hence by [174, Theorem 1.9] we have $4 \mid n$ and so $n=4 k$ for some nonnegative $k \in \mathbf{Z}$. If $n-1$ is even, use a similar argument to conclude that $n=4 k+1$ for some nonnegative $k \in \mathbf{Z}$.

Theorem 1.35. A graph and its complement cannot be both disconnected.
Proof. If G is connected, then we are done. Without loss of generality, assume that G is disconnected and let \bar{G} be the complement of G. Let u, v be vertices in \bar{G}. If u, v are in different components of G, then they are adjacent in \bar{G}. If both u, v belong to
some component C_{i} of G, let w be a vertex in a different component C_{j} of G. Then u, w are adjacent in \bar{G}, and similarly for v and w. That is, u and v are connected in \bar{G} and therefore \bar{G} is connected.

1.6.4 Cartesian product

The Cartesian product $G \square H$ of graphs G and H is a graph such that the vertex set of $G \square H$ is the Cartesian product

$$
V(G \square H)=V(G) \times V(H)
$$

Any two vertices $\left(u, u^{\prime}\right)$ and $\left(v, v^{\prime}\right)$ are adjacent in $G \square H$ if and only if either

1. $u=v$ and u^{\prime} is adjacent with v^{\prime} in H; or
2. $u^{\prime}=v^{\prime}$ and u is adjacent with v in G.

The vertex set of $G \square H$ is $V(G \square H)$ and the edge set of $G \square H$ is

$$
E(G \square H)=(V(G) \times E(H)) \cup(E(G) \times V(H)) .
$$

Sage can compute Cartesian products, as the following example shows.

```
sage: Z = graphs.CompleteGraph(2); len(Z.vertices()); len(Z.edges())
2
1
sage: C = graphs.CycleGraph(5); len(C.vertices()); len(C.edges())
5
sage: P = C.cartesian_product(Z); len(P.vertices()); len(P.edges())
10
15
```

The path graph P_{n} is a tree with n vertices $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edges $E=$ $\left\{\left(v_{i}, v_{i+1}\right) \mid 1 \leq i \leq n-1\right\}$. In this case, $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{n}\right)=1$ and $\operatorname{deg}\left(v_{i}\right)=2$ for $1<i<n$. The path graph P_{n} can be obtained from the cycle graph C_{n} by deleting one edge of C_{n}. The ladder graph L_{n} is the Cartesian product of path graphs, i.e. $L_{n}=P_{n} \square P_{1}$.

The Cartesian product of two graphs G_{1} and G_{2} can be visualized as follows. Let $V_{1}=$ $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex sets of G_{1} and G_{2}, respectively. Let $H_{1}, H_{2}, \ldots, H_{n}$ be n copies of G_{1}. Place each H_{i} at the location of v_{i} in G_{2}. Then $u_{i} \in V\left(H_{j}\right)$ is adjacent to $u_{i} \in V\left(H_{k}\right)$ if and only if $v_{j k} \in E\left(G_{2}\right)$. See Figure 1.32 for an illustration of obtaining the Cartesian product of K_{3} and P_{3}.

(a) K_{3}

(b) P_{3}

(c) $K_{3} \square P_{3}$

Figure 1.32: The Cartesian product of K_{3} and P_{3}.

The hypercube graph Q_{n} is the n-regular graph having vertex set

$$
V=\left\{\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \mid \epsilon_{i} \in\{0,1\}\right\}
$$

of cardinality 2^{n}. That is, each vertex of Q_{n} is a bit string of length n. Two vertices $v, w \in V$ are connected by an edge if and only if v and w differ in exactly one coordinate. ${ }^{5}$ The Cartesian product of n edge graphs K_{2} is a hypercube:

$$
\left(K_{2}\right)^{\square n}=Q_{n} .
$$

Figure 1.33 illustrates the hypercube graphs Q_{n} for $n=1, \ldots, 4$.

Figure 1.33: Hypercube graphs Q_{n} for $n=1, \ldots, 4$.

Example 1.36. The Cartesian product of two hypercube graphs is another hypercube, i.e. $Q_{i} \square Q_{j}=Q_{i+j}$.

Another family of graphs that can be constructed via Cartesian product is the mesh. Such a graph is also referred to as grid or lattice. The 2-mesh is denoted $M(m, n)$ and is defined as the Cartesian product $M(m, n)=P_{m} \square P_{n}$. Similarly, the 3-mesh is defined as $M(k, m, n)=P_{k} \square P_{m} \square P_{n}$. In general, for a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of $n>0$ positive integers, the n-mesh is given by

$$
M\left(a_{1}, a_{2}, \ldots, a_{n}\right)=P_{a_{1}} \square P_{a_{2}} \square \cdots \square P_{a_{n}}
$$

where the 1-mesh is simply the path graph $M(k)=P_{k}$ for some positive integer k. Figure $1.34(\mathrm{a})$ illustrates the 2-mesh $M(3,4)=P_{3} \square P_{4}$, while the 3-mesh $M(3,2,3)=$ $P_{3} \square P_{2} \square P_{3}$ is presented in Figure 1.34(b).

[^4]
(a) $M(3,4)$

(b) $M(3,2,3)$

Figure 1.34: The 2-mesh $M(3,4)$ and the 3 -mesh $M(3,2,3)$.

1.6.5 Graph minors

A graph H is called a minor of a graph G if H is isomorphic to a graph obtained by a sequence of edge contractions on a subgraph of G. The order in which a sequence of such contractions is performed on G does not affect the resulting graph H. A graph minor is not in general a subgraph. However, if G_{1} is a minor of G_{2} and G_{2} is a minor of G_{3}, then G_{1} is a minor of G_{3}. Therefore, the relation "being a minor of" is a partial ordering on the set of graphs. For example, the graph in Figure 1.31(c) is a minor of the graph in Figure 1.31(a).

The following non-intuitive fact about graph minors was proven by Neil Robertson and Paul Seymour in a series of 20 papers spanning 1983 to 2004 . This result is known by various names including the Robertson-Seymour theorem, the graph minor theorem, or Wagner's conjecture (named after Klaus Wagner).
 of finite graphs is given, then there always exist two indices $i<j$ such that G_{i} is a minor of G_{j}.

Many classes of graphs can be characterized by forbidden minors: a graph belongs to the class if and only if it does not have a minor from a certain specified list. We shall see examples of this in Chapter ??.

1.7 Problems

A problem left to itself dries up or goes rotten. But fertilize a problem with a solutionyou'll hatch out dozens.

- N. F. Simpson, A Resounding Tinkle, 1958
1.1. For each graph in Figure 1.7, do the following:
(a) Construct the graph using Sage.
(b) Find its adjacency matrix.
(c) Find its node and edge sets.
(d) How many nodes and edges are in the graph?

Figure 1.35: Graph representation of a social network.
(e) If applicable, find all of each node's in-coming and out-going edges. Hence find the node's indegree and outdegree.
1.2. In the friendship network of Figure 1.35, Carol is a mutual friend of Alice and Bob. How many possible ways are there to remove exactly one edge such that, in the resulting network, Carol is no longer a mutual friend of Alice and Bob?

Figure 1.36: Graph representation of a routing network.
1.3. The routing network of German cities in Figure 1.36 shows that each pair of distinct
cities are connected by a flight path. The weight of each edge is the flight distance in kilometers between the two corresponding cities. In particular, there is a flight path connecting Karlsruhe and Stuttgart. What is the shortest route between Karlsruhe and Stuttgart? Suppose we can remove at least one edge from this network. How many possible ways are there to remove edges such that, in the resulting network, Karlsruhe is no longer connected to Stuttgart via a flight path?
1.4. Let $D=(V, E)$ be a digraph of size q. Show that

$$
\sum_{v \in V} \operatorname{id}(v)=\sum_{v \in V} \operatorname{od}(v)=q
$$

1.5. If G is a simple graph of order $n>0$, show that $\operatorname{deg}(v)<n$ for all $v \in V(G)$.
1.6. Let G be a graph of order n and size m. Then G is called an overfull graph if $m>\Delta(G) \cdot\lfloor n / 2\rfloor$. If $m=\Delta(G) \cdot\lfloor n / 2\rfloor+1$, then G is said to be just overfull. It can be shown that overfull graphs have odd order. Equivalently, let G be of odd order. We can define G to be overfull if $m>\Delta(G) \cdot(n-1) / 2$, and G is just overfull if $m=\Delta(G) \cdot(n-1) / 2+1$. Find an overfull graph and a graph that is just overfull. Some basic results on overfull graphs are presented in [52].
1.7. Fix a positive integer n and denote by $\Gamma(n)$ the number of simple graphs on n vertices. Show that

$$
\Gamma(n)=2^{\binom{n}{2}}=2^{n(n-1) / 2} .
$$

1.8. Let G be an undirected graph whose unoriented incidence matrix is M_{u} and whose oriented incidence matrix is M_{o}.
(a) Show that the sum of the entries in any row of M_{u} is the degree of the corresponding vertex.
(b) Show that the sum of the entries in any column of M_{u} is equal to 2 .
(c) If G has no self-loops, show that each column of M_{o} sums to zero.
1.9. Let G be a loopless digraph and let M be its incidence matrix.
(a) If r is a row of M, show that the number of occurrences of -1 in r counts the outdegree of the vertex corresponding to r. Show that the number of occurrences of 1 in r counts the indegree of the vertex corresponding to r.
(b) Show that each column of M sums to 0 .
1.10. Let G be a digraph and let M be its incidence matrix. For any row r of M, let m be the frequency of -1 in r, let p be the frequency of 1 in r, and let t be twice the frequency of 2 in r. If v is the vertex corresponding to r, show that the degree of v is $\operatorname{deg}(v)=m+p+t$.
1.11. Let G be an undirected graph without self-loops and let M and its oriented incidence matrix. Show that the Laplacian matrix \mathcal{L} of G satisfies $\mathcal{L}=M \times M^{T}$, where M^{T} is the transpose of M.
1.12. Let J_{1} denote the incidence matrix of G_{1} and let J_{2} denote the incidence matrix of G_{2}. Find matrix theoretic criteria on J_{1} and J_{2} which hold if and only if $G_{1} \cong G_{2}$. In other words, find the analog of Theorem 1.30 for incidence matrices.
1.13. Show that the complement of an edgeless graph is a complete graph.
1.14. Let $G \square H$ be the Cartesian product of two graphs G and H. Show that $|E(G \square H)|=$ $|V(G)| \cdot|E(H)|+|E(G)| \cdot|V(H)|$.

Figure 1.37: Euler's polygon division problem for the hexagon.
1.15. In 1751, Leonhard Euler posed a problem to Christian Goldbach, a problem that now bears the name "Euler's polygon division problem". Given a plane convex polygon having n sides, how many ways are there to divide the polygon into triangles using only diagonals? For our purposes, we consider only regular polygons having n sides for $n \geq 3$ and any two diagonals must not cross each other. For example, the triangle is a regular 3 -gon, the square a regular 4 -gon, the pentagon a regular 5-gon, etc. In the case of the hexagon considered as the cycle graph C_{6}, there are 14 ways to divide it into triangles, as shown in Figure 1.37, resulting in 14 graphs. However, of those 14 graphs only 3 are nonisomorphic to each other.
(a) What is the number of ways to divide a pentagon into triangles using only diagonals? List all such divisions. If each of the resulting so divided pentagons is considered a graph, how many of those graphs are nonisomorphic to each other?
(b) Repeat the above exercise for the heptagon.
(c) Let E_{n} be the number of ways to divide an n-gon into triangles using only diagonals. For $n \geq 1$, the Catalan numbers C_{n} are defined as

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} .
$$

Dörrie $\left[64\right.$, pp.21-27] showed that E_{n} is related to the Catalan numbers via the equation $E_{n}=C_{n-1}$. Show that

$$
C_{n}=\frac{1}{4 n+2}\binom{2 n+2}{n+1} .
$$

For $k \geq 2$, show that the Catalan numbers satisfy the recurrence relation

$$
C_{k}=\frac{4 k-2}{k+1} C_{k-1} .
$$

1.16. A graph is said to be planar if it can be drawn on the plane in such a way that no two edges cross each other. For example, the complete graph K_{n} is planar for $n=1,2,3,4$, but K_{5} is not planar (see Figure 1.13). Draw a planar version of K_{4} as presented in Figure 1.13(b). Is the graph in Figure 1.9 planar? For $n=1,2, \ldots, 5$, enumerate all simple nonisomorphic graphs on n vertices that are planar; only work with undirected graphs.
1.17. If $n \geq 3$, show that the join of C_{n} and K_{1} is the wheel graph W_{n+1}. In other words, show that $C_{n}+K_{1}=W_{n+1}$.
1.18. A common technique for generating "random" numbers is the linear congruential method, a generalization of the Lehmer generator [132] introduced in 1949. First, we choose four integers:

$$
\begin{array}{lll}
m, & \text { modulus, } & 0<m \\
a, & \text { multiplier, } & 0 \leq a<m \\
c, & \text { increment, } & 0 \leq c<m \\
X_{0}, & \text { seed, } & 0 \leq X_{0}<m
\end{array}
$$

where the value X_{0} is also referred to as the starting value. Then iterate the relation

$$
X_{n+1}=\left(a X_{n}+c\right) \bmod m, \quad n \geq 0
$$

and halt when the relation produces the seed X_{0} or when it produces an integer X_{k} such that $X_{k}=X_{i}$ for some $0 \leq i<k$. The resulting sequence

$$
S=\left(X_{0}, X_{1}, \ldots, X_{n}\right)
$$

is called a linear congruential sequence. Define a graph theoretic representation of S as follows: let the vertex set be $V=\left\{X_{0}, X_{1}, \ldots, X_{n}\right\}$ and let the edge set be $E=\left\{X_{i} X_{i+1} \mid 0 \leq i<n\right\}$. The resulting graph $G=(V, E)$ is called the linear congruential graph of the linear congruential sequence S. See chapter 3 of [122] for other techniques for generating "random" numbers.
(a) Compute the linear congruential sequences S_{i} with the following parameters:
(i) $S_{1}: m=10, a=c=X_{0}=7$
(ii) $S_{2}: m=10, a=5, c=7, X_{0}=0$
(iii) $S_{3}: m=10, a=3, c=7, X_{0}=2$
(iv) $S_{4}: m=10, a=2, c=5, X_{0}=3$
(b) Let G_{i} be the linear congruential graph of S_{i}. Draw each of the graphs G_{i}. Draw the graph resulting from the union

$$
\bigcup_{i} G_{i}
$$

(c) Let m, a, c, and X_{0} be the parameters of a linear congruential sequence where (i) c is relatively prime to m;
(ii) $b=a-1$ is a multiple of p for each prime p that divides m; and
(iii) 4 divides b if 4 divides m.

Show that the corresponding linear congruential graph is the wheel graph W_{m} on m vertices.
1.19. We want to generate a random bipartite graph whose first and second partitions have n_{1} and n_{2} vertices, respectively. Describe and present pseudocode to generate the required random bipartite graph. What is the worst-case runtime of your algorithm? Modify your algorithm to account for a third parameter m that specifies the number of edges in the resulting bipartite graph.
1.20. Describe and present pseudocode to generate a random regular graph. What is the worst-case runtime of your algorithm?
1.21. The Cantor-Schröder-Bernstein theorem states that if A, B are sets and we have an injection $f: A \rightarrow B$ and an injection $g: B \rightarrow A$, then there is a bijection between A and B, thus proving that A and B have the same cardinality. Here we use bipartite graphs and other graph theoretic concepts to prove the Cantor-Schröder-Bernstein theorem. The full proof can be found in [201].
(a) Is it possible for A and B to be bipartitions of V and yet satisfy $A \cap B \neq \emptyset$?
(b) Now assume that $A \cap B=\emptyset$ and define a bipartite graph $G=(V, E)$ with A and B being the two partitions of V, where for any $x \in A$ and $y \in B$ we have $x y \in E$ if and only if either $f(x)=y$ or $g(y)=x$. Show that $\operatorname{deg}(v)=1$ or $\operatorname{deg}(v)=2$ for each $v \in V$.
(c) Let C be a component of G and let $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ contain all vertices in the component C. Show that $\left|A^{\prime}\right|=\left|B^{\prime}\right|$.
1.22. Fermat's little theorem states that if p is prime and a is an integer not divisible by p, then p divides $a^{p}-a$. Here we cast the problem within the context of graph theory and prove it using graph theoretic concepts. The full proof can be found in [99, 201].
(a) Let $G=(V, E)$ be a graph with V being the set of all sequences $\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ of integers $1 \leq a_{i} \leq a$ and $a_{j} \neq a_{k}$ for some $j \neq k$. Show that G has $a^{p}-a$ vertices.
(b) Define the edge set of G as follows. If $u, v \in V$ such that $u=\left(u_{1}, u_{2}, \ldots, u_{p}\right)$ and $v=\left(u_{p}, u_{1}, \ldots, u_{p-1}\right)$, then $u v \in E$. Show that each component of G is a cycle of length p.
(c) Show that G has $\left(a^{p}-a\right) / p$ components.
1.23. For the finite automaton in Figure ??, identify the following:
(a) The states set Q.
(b) The alphabet set Σ.
(c) The transition function $\delta: Q \times \Sigma \rightarrow Q$.
(d) The initial state $q_{0} \in Q$.
(e) The set of final states $F \subseteq Q$.

(a)

(b)

(c)

Figure 1.38: Various 3-regular graphs on 10 vertices.

Figure 1.39: Various k-circulant graphs for $k=4,6,8$.
1.24. The cycle graph C_{n} is a 2-regular graph. If $2<r<n / 2$, unlike the cycle graph there are various realizations of an r-regular graph; see Figure 1.38 for the case of $r=3$ and $n=10$. The k-circulant graph on n vertices can be considered as an intermediate graph between C_{n} and a k-regular graph. Let k and n be positive integers satisfying $k<n / 2$ with k being even. Suppose $G=(V, E)$ is a simple undirected graph with vertex set $V=\{0,1, \ldots, n-1\}$. Define the edge set of G as follows. Each $i \in V$ is incident with each of $i+j \bmod n$ and $i-j \bmod n$ for $j \in\{1,2, \ldots, k / 2\}$. With the latter edge set, G is said to be a k-circulant graph, a type of graphs used in constructing small-world networks (see section 11.4). Refer to Figure 1.39 for examples of k-circulant graphs.
(a) Describe and provide pseudocode of an algorithm to construct a k-circulant graph on n vertices.
(b) Show that the cycle graph C_{n} is 2-circulant.
(c) Show that the sum of all degrees of a k-circulant graph on n vertices is $n k$.
(d) Show that a k-circulant graph is k-regular.
(e) Let \mathcal{C} be the collection of all k-regular graphs on n vertices. If each k-regular graph from \mathcal{C} is equally likely to be chosen, what is the probability that a k-circulant graph be chosen from \mathcal{C} ?

Chapter 2

Trees and forests

- Randall Munroe, xkcd, http://xkcd.com/71/

In section 1.2.1, we briefly touched upon trees and provided examples of how trees could be used to model hierarchical structures. This chapter provides an in-depth study of trees, their properties, and various applications. After defining trees and related concepts in section 2.1, we then present various basic properties of trees in section 2.2. Each connected graph G has an underlying subgraph called a spanning tree that contains all the vertices of G. Spanning trees are discussed in section 2.3 together with various common algorithms for finding spanning trees. We then discuss binary trees in section 2.4, followed by an application of binary trees to coding theory in section 2.5. Whereas breadth- and depth-first searches are general methods for traversing a graph, trees require specialized techniques in order to visit their vertices, a topic that is taken up in section 2.6.

2.1 Definitions and examples

I think that I shall never see
A poem lovely as a tree.

- Joyce Kilmer, Trees and Other Poems, 1914, "Trees"

Recall that a path in a graph $G=(V, E)$ whose start and end vertices are the same is called a cycle. We say G is acyclic, or a forest, if it has no cycles. In a forest, a vertex of degree one is called an endpoint or a leaf. Any vertex that is not a leaf is called an
internal vertex. A connected forest is a tree. In other words, a tree is a graph without cycles and each edge is a bridge. A forest can also be considered as a collection of trees.

A rooted tree T is a tree with a specified root vertex v_{0}, i.e. exactly one vertex has been specially designated as the root of T. However, if G is a rooted tree with root vertex v_{0} having degree one, then by convention we do not call v_{0} an endpoint or a leaf. The depth $\operatorname{depth}(v)$ of a vertex v in T is its distance from the root. The height height (T) of T is the length of a longest path starting from the root vertex, i.e. the height is the maximum depth among all vertices of T. It follows by definition that depth $(v)=0$ if and only if v is the root of T, height $(T)=0$ if and only if T is the trivial graph, $\operatorname{depth}(v) \geq 0$ for all $v \in V(T)$, and $\operatorname{height}(T) \leq \operatorname{diam}(T)$.

The Unix, in particular Linux, filesystem hierarchy can be viewed as a tree (see Figure 2.1). As shown in Figure 2.1, the root vertex is designated with the forward slash, which is also referred to as the root directory. Other examples of trees include the organism classification tree in Figure 2.2, the family tree in Figure 2.3, and the expression tree in Figure 2.4.

A directed tree is a digraph which would be a tree if the directions on the edges were ignored. A rooted tree can be regarded as a directed tree since we can imagine an edge $u v$ for $u, v \in V$ being directed from u to v if and only if v is further away from v_{0} than u is. If $u v$ is an edge in a rooted tree, then we call v a child vertex with parent u. Directed trees are pervasive in theoretical computer science, as they are useful structures for describing algorithms and relationships between objects in certain datasets.

Figure 2.1: The Linux filesystem hierarchy.
An ordered tree is a rooted tree for which an ordering is specified for the children of each vertex. An n-ary tree is a rooted tree for which each vertex that is not a leaf has at most n children. The case $n=2$ are called binary trees. An n-ary tree is said to be complete if each of its internal vertices has exactly n children and all leaves have the same depth. A spanning tree of a connected, undirected graph G is a subgraph that is a tree and containing all vertices of G.

Example 2.1. Consider the 4×4 grid graph with 16 vertices and 24 edges. Two examples of a spanning tree are given in Figure 2.5 by using a darker line shading for its edges.

Example 2.2. For $n=1, \ldots, 6$, how many distinct (nonisomorphic) trees are there of order n ? Construct all such trees for each n.

Figure 2.2: Classification tree of organisms.

Figure 2.3: Bernoulli family tree of mathematicians.

Figure 2.4: Expression tree for the perfect square $a^{2}+2 a b+b^{2}$.

Figure 2.5: Two spanning trees for the 4×4 grid graph.
Solution. For $n=1$, there is only one tree of order 1, i.e. K_{1}. The same is true for $n=2$ and $n=3$, where the required trees are P_{2} and P_{3}, respectively (see Figure 2.6). We have two trees of order $n=4$ (see Figure 2.7), three of order $n=5$ (see Figure 2.8), and six of order $n=6$ (see Figure 2.9).

(a) $n=1$
(a) $n=1$
(b) $n=2$
(c) $n=3$

Figure 2.6: All distinct trees of order $n=1,2,3$.

Figure 2.7: All distinct trees of order $n=4$.

Example 2.3. Let $T=(V, E)$ be a tree with vertex set

$$
V=\{a, b, c, d, e, f, v, w, x, y, z\}
$$

edge set

$$
E=\{v a, v w, w x, w y, x b, x c, y d, y z, z e, z f\}
$$

and root vertex v. Verify that T is a binary tree. Suppose that x is the root of the branch we want to remove from T. Find all children of x and cut off the branch rooted at x from T. Is the resulting graph also a binary tree?

Figure 2.8: All distinct trees of order $n=5$.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.9: All distinct trees of order $n=6$.

Solution. We construct the tree T in Sage as follows:

```
sage: T = DiGraph({
... "v":["a","w"], "w":["x","y"],
... "x":["c","b"], "y":["z","d"],
... "z":["f","e"]})
sage: for v in T.vertex_iterator():
... print(v),
a c b e d f w v y x z
sage: for e in T.edge_iterator():
    print("%s%s" % (e[0], e[1])),
wy wx va vw yd yz xc xb ze zf
```

Each vertex in a binary tree has at most 2 children. Use this definition to test whether or not a graph is a binary tree.

```
sage: T.is_tree()
True
sage: def is_bintree1(G):
... for v in G.vertex_iterator():
... if len(G.neighbors_out(v)) > 2:
... return False
... return True
sage: is_bintree1(T)
True
```

Here's another way to test for binary trees. Let T be an undirected rooted tree. Each vertex in a binary tree has a maximum degree of 3 . If the root vertex is the only vertex with degree 2 , then T is a binary tree. (Problem 2.5 asks you to prove this result.) We can use this test because the root vertex v of T is the only vertex with two children.

```
sage: def is_bintree2(G):
... if G.is_tree() and max(G.degree()) == 3 and G.degree().count(2) == 1:
... return True
... return False
sage: is_bintree2(T.to_undirected())
True
```

As x is the root vertex of the branch we want to cut off from T, we could use breadthor depth-first search to determine all the children of x. We then delete x and its children from T.

```
sage: T2 = copy(T)
sage: # using breadth-first search
sage: V = list(T.breadth_first_search("x")); V
['x', 'c', 'b']
sage: T.delete_vertices(V)
sage: for v in T.vertex_iterator():
... print(v),
a e d f w v y z
sage: for e in T.edge_iterator():
    print("%s%s" % (e[0], e[1])),
wy va vw yd yz ze zf
sage: # using depth-first search
sage: V = list(T2.depth_first_search("x")); V
['x', 'b', 'c']
sage: T2.delete_vertices(V)
sage: for v in T2.vertex_iterator():
... print(v),
a e d f w v y z
sage: for e in T2.edge_iterator():
... print("%s%s" % (e[0], e[1])),
wy va vw yd yz ze zf
```

The resulting graph T is a binary tree because each vertex has at most two children.

```
sage: T
Digraph on 8 vertices
sage: is_bintree1(T)
True
```

Notice that the test defined in the function is_bintree 2 can no longer be used to test whether or not T is a binary tree, because T now has two vertices, i.e. v and w, each of
which has degree 2 .
Consider again the organism classification tree in Figure 2.2. We can view the vertex "organism" as the root of the tree and having two children. The first branch of "organism" is the subtree rooted at "plant" and its second branch is the subtree rooted at "animal". We form the complete tree by joining an edge between "organism" and "plant", and an edge between "organism" and "animal". The subtree rooted at "plant" can be constructed in the same manner. The first branch of this subtree is the subtree rooted at "tree" and the second branch is the subtree rooted at "flower". To construct the subtree rooted at "plant", we join an edge between "plant" and "tree", and an edge between "plant" and "flower". The other subtrees of the tree in Figure 2.2 can be constructed using the above recursive procedure.

In general, the recursive construction in Theorem 2.4 provides an alternative way to define trees. We say construction because it provides an algorithm to construct a tree, as opposed to the nonconstructive definition presented earlier in this section, where we defined the conditions under which a graph qualifies as a tree without presenting a procedure to construct a tree. Furthermore, we say recursive since a larger tree can be viewed as being constructed from smaller trees, i.e. join up existing trees to obtain a new tree. The recursive construction of trees as presented in Theorem 2.4 is illustrated in Figure 2.10.
Theorem 2.4. Recursive construction of trees. An isolated vertex is a tree. That single vertex is the root of the tree. Given a collection $T_{1}, T_{2}, \ldots, T_{n}$ of $n>0$ trees, construct a new tree as follows:

1. Let T be a tree having exactly the one vertex v, which is the root of T.
2. Let v_{i} be the root of the tree T_{i}.
3. For $i=1,2, \ldots, n$, add the edge $v v_{i}$ to T and add T_{i} to T. That is, each v_{i} is now a child of v.

The result is the tree T rooted at v with vertex set

$$
V(T)=\{v\} \cup\left(\bigcup_{i} V\left(T_{i}\right)\right)
$$

and edge set

$$
E(T)=\bigcup_{i}\left(\left\{v v_{i}\right\} \cup E\left(T_{i}\right)\right) .
$$

The following game is a variant of the Shannon switching game, due to Edmonds and Lehman. We follow the description in Oxley's survey [158]. Recall that a minimal edge cut of a graph is also called a bond of the graph. The following two-person game is played on a connected graph $G=(V, E)$. Two players Alice and Bob alternately tag elements of E. Alice's goal is to tag the edges of a spanning tree, while Bob's goal is to tag the edges of a bond. If we think of this game in terms of a communication network, then Bob's goal is to separate the network into pieces that are no longer connected to each other, while Alice is aiming to reinforce edges of the network to prevent their destruction. Each move for Bob consists of destroying one edge, while each move for Alice involves securing an edge against destruction. The next result characterizes winning strategies on G. The full proof can be found in Oxley [158]. See Rasmussen [164] for optimization algorithms for solving similar games.

Figure 2.10: Recursive construction of a tree.

Theorem 2.5. The following statements are equivalent for a connected graph $G=$ (V, E).

1. Bob plays first and Alice can win against all possible strategies of Bob.
2. The graph G has 2 edge-disjoint spanning trees.
3. For all partitions P of the vertex set V, the number of edges of G that join vertices in different classes of the partition is at least $2(|P|-1)$.

2.2 Properties of trees

All theory, dear friend, is grey, but the golden tree of actual life springs ever green.

- Johann Wolfgang von Goethe, Faust, part 1, 1808

By Theorem 1.33, each edge of a tree is a bridge. Removing any edge of a tree partitions the tree into two components, each of which is a subtree of the original tree. The following results provide further basic characterizations of trees.

Theorem 2.6. Any tree $T=(V, E)$ has size $|E|=|V|-1$.
Proof. This follows by induction on the number of vertices. By definition, a tree has no cycles. We need to show that any tree $T=(V, E)$ has size $|E|=|V|-1$. For the base case $|V|=1$, there are no edges. Assume for induction that the result holds for all integers less than or equal to $k \geq 2$. Let $T=(V, E)$ be a tree having $k+1$ vertices. Remove an edge from T, but not the vertices it is incident to. This disconnects T into two components $T_{1}=\left(V_{1}, E_{1}\right)$ and $T_{2}=\left(V_{2}, E_{2}\right)$, where $|E|=\left|E_{1}\right|+\left|E_{2}\right|+1$ and $|V|=\left|V_{1}\right|+\left|V_{2}\right|$ (and possibly one of the E_{i} is empty). Each T_{i} is a tree satisfying the conditions of the induction hypothesis. Therefore,

$$
\begin{aligned}
|E| & =\left|E_{1}\right|+\left|E_{2}\right|+1 \\
& =\left|V_{1}\right|-1+\left|V_{2}\right|-1+1 \\
& =|V|-1 .
\end{aligned}
$$

as required.

Corollary 2.7. If $T=(V, E)$ is a graph of order $|V|=n$, then the following are equivalent:

1. T is a tree.
2. T contains no cycles and has $n-1$ edges.
3. T is connected and has $n-1$ edges.
4. Every edge of T is a cut set.

Proof. (1) $\Longrightarrow(2)$: This holds by definition of trees and Theorem 2.6.
$(2) \Longrightarrow$ (3): If $T=(V, E)$ has k connected components then it is a disjoint union of trees $T_{i}=\left(V_{i}, E_{i}\right), i=1,2, \ldots, k$, for some k. By part (2), each of these satisfy

$$
\left|E_{i}\right|=\left|V_{i}\right|-1
$$

so

$$
\begin{aligned}
|E| & =\sum_{i=1}^{k}\left|E_{i}\right| \\
& =\sum_{i=1}^{k}\left|V_{i}\right|-k \\
& =|V|-k .
\end{aligned}
$$

This contradicts part (2) unless $k=1$. Therefore, T is connected.
$(3) \Longrightarrow$ (4): If removing an edge $e \in E$ leaves $T=(V, E)$ connected then $T^{\prime}=$ $\left(V, E^{\prime}\right)$ is a tree, where $E^{\prime}=E-e$. However, this means that $\left|E^{\prime}\right|=|E|-1=|V|-1-1=$ $|V|-2$, which contradicts part (3). Therefore e is a cut set.
(4) \Longrightarrow (1): From part (2) we know that T has no cycles and from part (3) we know that T is connected. Conclude by the definition of trees that T is a tree.

Theorem 2.8. Let $T=(V, E)$ be a tree and let $u, v \in V$ be distinct vertices. Then T has exactly one u-v path.

Proof. Suppose for contradiction that

$$
P: v_{0}=u, v_{1}, v_{2}, \ldots, v_{k}=v
$$

and

$$
Q: w_{0}=u, w_{1}, w_{2}, \ldots, w_{\ell}=v
$$

are two distinct $u-v$ paths. Then P and Q has a common vertex x, which is possibly $x=u$. For some $i \geq 0$ and some $j \geq 0$ we have $v_{i}=x=w_{j}$, but $v_{i+1} \neq w_{j+1}$. Let y be the first vertex after x such that y belongs to both P and Q. (It is possible that $y=v$.) We now have two distinct $x-y$ paths that have only x and y in common. Taken together, these two $x-y$ paths result in a cycle, contradicting our hypothesis that T is a tree. Therefore T has only one $u-v$ path.

Theorem 2.9. If $T=(V, E)$ is a graph then the following are equivalent:

1. T is a tree.
2. For any new edge e, the join $T+e$ has exactly one cycle.

Proof. (1) $\Longrightarrow(2)$: Let $e=u v$ be a new edge connecting $u, v \in V$. Suppose that

$$
P: v_{0}=w, v_{1}, v_{2}, \ldots, v_{k}=w
$$

and

$$
P^{\prime}: v_{0}^{\prime}=w, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{\ell}^{\prime}=w
$$

are two cycles in $T+e$. If either P or P^{\prime} does not contain e, say P does not contain e, then P is a cycle in T. Let $u=v_{0}$ and let $v=v_{1}$. The edge $\left(v_{0}=w, v_{1}\right)$ is a $u-v$ path and the sequence $v=v_{1}, v_{2}, \ldots, v_{k}=w=u$ taken in reverse order is another $u-v$ path. This contradicts Theorem 2.8.

We may now suppose that P and P^{\prime} both contain e. Then P contains a subpath $P_{0}=P-e$ (which is not closed) that is the same as P except it lacks the edge from u to v. Likewise, P^{\prime} contains a subpath $P_{0}^{\prime}=P^{\prime}-e($ which is not closed) that is the same as P^{\prime} except it lacks the edge from u to v. By Theorem 2.8, these $u-v$ paths P_{0} and P_{0}^{\prime} must be the same. This forces P and P^{\prime} to be the same, which proves part (2).
$(2) \Longrightarrow(1)$: Part (2) implies that T is acyclic. (Otherwise, it is trivial to make two cycles by adding an extra edge.) We must show T is connected. Suppose T is disconnected. Let u be a vertex in one component, T_{1} say, of T and v a vertex in another component, T_{2} say, of T. Adding the edge $e=u v$ does not create a cycle (if it did then T_{1} and T_{2} would not be disjoint), which contradicts part (2).

Taking together the results in this section, we have the following characterizations of trees.

Theorem 2.10. Basic characterizations of trees. If $T=(V, E)$ is a graph with n vertices, then the following statements are equivalent:

1. T is a tree.
2. T contains no cycles and has $n-1$ edges.
3. T is connected and has $n-1$ edges.
4. Every edge of T is a cut set.
5. For any pair of distinct vertices $u, v \in V$, there is exactly one $u-v$ path.
6. For any new edge e, the join $T+e$ has exactly one cycle.

Let $G=\left(V_{1}, E_{1}\right)$ be a graph and $T=\left(V_{2}, E_{2}\right)$ a subgraph of G that is a tree. As in part (6) of Theorem 2.10, we see that adding just one edge in $E_{1}-E_{2}$ to T will create a unique cycle in G. Such a cycle is called a fundamental cycle of G. The set of such fundamental cycles of G depends on T.

The following result essentially says that if a tree has at least one edge, then the tree has at least two vertices each of which has degree one. In other words, each tree of order ≥ 2 has at least two pendants.

Theorem 2.11. Every nontrivial tree has at least two leaves.

Proof. Let T be a nontrivial tree of order m and size n. Consider the degree sequence $d_{1}, d_{2}, \ldots, d_{m}$ of T where $d_{1} \leq d_{2} \leq \cdots \leq d_{m}$. As T is nontrivial and connected, then $m \geq 2$ and $d_{i} \geq 1$ for $i=1,2, \ldots, m$. If T has less than two leaves, then $d_{1} \geq 1$ and $d_{i} \geq 2$ for $2 \leq i \leq m$, hence

$$
\begin{equation*}
\sum_{i=1}^{m} d_{i} \geq 1+2(m-1)=2 m-1 \tag{2.1}
\end{equation*}
$$

But by Theorems 1.9 and 2.6, we have

$$
\sum_{i=1}^{m} d_{i}=2 n=2(m-1)=2 m-2
$$

which contradicts inequality (2.1). Conclude that T has at least two leaves.
Theorem 2.12. If T is a tree of order m and G is a graph with minimum degree $\delta(G) \geq m-1$, then T is isomorphic to a subgraph of G.

Proof. Use an inductive argument on the number of vertices. The result holds for $m=1$ because K_{1} is a subgraph of every nontrivial graph. The result also holds for $m=2$ since K_{2} is a subgraph of any graph with at least one edge.

Let $m \geq 3$, let T_{1} be a tree of order $m-1$, and let H be a graph with $\delta(H) \geq m-2$. Assume for induction that T_{1} is isomorphic to a subgraph of H. We need to show that if T is a tree of order m and G is a graph with $\delta(G) \geq m-1$, then T is isomorphic to a subgraph of G. Towards that end, consider a leaf v of T and let u be a vertex of T such that u is adjacent to v. Then $T-v$ is a tree of order $m-1$ and $\delta(G) \geq m-1>m-2$. Apply the inductive hypothesis to see that $T-v$ is isomorphic to a subgraph T^{\prime} of G. Let u^{\prime} be the vertex of T^{\prime} that corresponds to the vertex u of T under an isomorphism. Since $\operatorname{deg}\left(u^{\prime}\right) \geq m-1$ and T^{\prime} has $m-2$ vertices distinct from u^{\prime}, it follows that u^{\prime} is adjacent to some $w \in V(G)$ such that $w \notin V\left(T^{\prime}\right)$. Therefore T is isomorphic to the graph obtained by adding the edge $u^{\prime} w$ to T^{\prime}.

Example 2.13. Consider a positive integer n. The Euler phi function $\varphi(n)$ counts the number of integers a, with $1 \leq a \leq n$, such that $\operatorname{gcd}(a, n)=1$. The Euler phi sequence of n is obtained by repeatedly iterating $\varphi(n)$ with initial iteration value n. Continue on iterating and stop when the output of $\varphi\left(\alpha_{k}\right)$ is 1 , for some positive integer α_{k}. The number of terms generated by the iteration, including the initial iteration value n and the final value of 1 , is the length of $\varphi(n)$.
(a) Let $s_{0}=n, s_{1}, s_{2}, \ldots, s_{k}=1$ be the Euler phi sequence of n and produce a digraph G of this sequence as follows. The vertex set of G is $V=\left\{s_{0}=n, s_{1}, s_{2}, \ldots, s_{k}=1\right\}$ and the edge set of G is $E=\left\{s_{i} s_{i+1} \mid 0 \leq i<k\right\}$. Produce the digraphs of the Euler phi sequences of $15,22,33,35,69$, and 72 . Construct the union of all such digraphs and describe the resulting graph structure.
(b) For each $n=1,2, \ldots, 1000$, compute the length of $\varphi(n)$ and plot the pairs $(n, \varphi(n))$ on one set of axes.

Solution. The Euler phi sequence of 15 is

$$
15, \quad \varphi(15)=8, \quad \varphi(8)=4, \quad \varphi(4)=2, \quad \varphi(2)=1 .
$$

The Euler phi sequences of $22,33,35,69$, and 72 can be similarly computed to obtain their respective digraph representations. The union of all such digraphs is a directed tree rooted at 1, as shown in Figure 2.11(a). Figure 2.11(b) shows a scatterplot of n versus the length of $\varphi(n)$.

Figure 2.11: Union of digraphs of Euler phi sequences and scatterplot.

2.3 Minimum spanning trees

Suppose we want to design an electronic circuit connecting several components. If these components represent the vertices of a graph and a wire connecting two components represents an edge of the graph, then for economical reasons we will want to connect the components together using the least amount of wire. The problem essentially amounts to finding a minimum spanning tree in the graph containing these vertices.

But what is a spanning tree? We can characterize a spanning tree in several ways, each leading to an algorithm for constructing a spanning tree. Let G be a connected graph and let T be a subgraph of G. If T is a tree that contains all the vertices of G, then T is called a spanning tree of G. We can think of T as a tree that is also an edge-deletion subgraph of G. That is, we start with a connected graph G and delete an edge from G such that the resulting edge-deletion subgraph T_{1} is still connected. If T_{1} is a tree, then we have obtained a spanning tree of G. Otherwise, we delete an edge from T_{1} to obtain an edge-deletion subgraph T_{2} that is still connected. If T_{2} is a tree, then we are done. Otherwise, we repeat the above procedure until we obtain an edge-deletion subgraph T_{k} of G such that T_{k} is connected, T_{k} is a tree, and it contains all vertices of G. Each edge removal does not decrease the number of vertices and must also leave
the resulting edge-deletion subgraph connected. Thus eventually the above procedure results in a spanning tree of G. Our discussion is summarized in Algorithm 2.1.

```
Algorithm 2.1 Randomized spanning tree construction.
Input A connected graph \(G\).
Output A spanning tree of \(G\).
    \(T \leftarrow G\)
    while \(T\) is not a tree do
        \(e \leftarrow\) random edge of \(T\)
        if \(T-e\) is connected then
            \(T \leftarrow T-e\)
    return \(T\)
```

Another characterization of a spanning tree T of a connected graph G is that T is a maximal set of edges of G that contains no cycle. Kruskal's algorithm (see section 2.3.1) exploits this condition to construct a minimum spanning tree (MST). A minimum spanning tree is a spanning tree of a weighted graph having lowest total weight among all possible spanning trees of the graph. A third characterization of a spanning tree is that it is a minimal set of edges that connect all vertices, a characterization that results in yet another algorithm called Prim's algorithm (see section 2.3.2) for constructing minimum spanning trees. The task of determining a minimum spanning tree in a connected weighted graph is called the minimum spanning tree problem. As early as 1926, Otakar Borůvka stated $[34,35]$ this problem and offered a solution now known as Borůvka's algorithm (see section 2.3.3). See $[88,139]$ for a history of the minimum spanning tree problem.

2.3.1 Kruskal's algorithm

In 1956, Joseph B. Kruskal published [125] a procedure for constructing a minimum spanning tree of a connected weighted graph $G=(V, E)$. Now known as Kruskal's algorithm, with a suitable implementation the procedure runs in $O(|E| \cdot \log |E|)$ time. Variants of Kruskal's algorithm include the algorithm by Prim [163] and that by Loberman and Weinberger [137].

Kruskal's algorithm belongs to the class of greedy algorithms. As will be explained below, when constructing a minimum spanning tree Kruskal's algorithm considers only the edge having minimum weight among all available edges. Given a weighted nontrivial graph $G=(V, E)$ that is connected, let $w: E \rightarrow \mathbf{R}$ be the weight function of G. The first stage is creating a "skeleton" of the tree T that is initially set to be a graph without edges, i.e. $T=(V, \emptyset)$. The next stage involves sorting the edges of G by weights in nondecreasing order. In other words, we label the edges of G as follows:

$$
E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
$$

where $n=|E|$ and $w\left(e_{1}\right) \leq w\left(e_{2}\right) \leq \cdots \leq w\left(e_{n}\right)$. Now consider each edge e_{i} for $i=1,2, \ldots, n$. We add e_{i} to the edge set of T provided that e_{i} does not result in T having a cycle. The only way adding $e_{i}=u_{i} v_{i}$ to T would create a cycle is if both u_{i} and v_{i} were endpoints of edges (not necessarily distinct) in the same connected component of T. As long as the acyclic condition holds with the addition of a new edge to T, we add that new edge. Following the acyclic test, we also test that the (updated) graph
T is a tree of G. As G is a graph of order $|V|$, apply Theorem 2.10 to see that if T has size $|V|-1$, then it is a spanning tree of G. Algorithm 2.2 provides pseudocode of our discussion of Kruskal's algorithm. When the algorithm halts, it returns a minimum spanning tree of G. The correctness of Algorithm 2.2 is proven in Theorem 2.14.

```
Algorithm 2.2 Kruskal's algorithm.
Input A connected weighted graph \(G=(V, E)\) with weight function \(w\).
Output A minimum spanning tree of \(G\).
    \(m \leftarrow|V|\)
    \(T \leftarrow \emptyset\)
    sort \(E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}\) by weights so that \(w\left(e_{1}\right) \leq w\left(w_{2}\right) \leq \cdots \leq w\left(e_{n}\right)\)
    for \(i \leftarrow 1,2, \ldots, n\) do
        if \(e_{i} \notin E(T)\) and \(T \cup\left\{e_{i}\right\}\) is acyclic then
            \(T \leftarrow T \cup\left\{e_{i}\right\}\)
        if \(|T|=m-1\) then
            return \(T\)
```

Theorem 2.14. Correctness of Algorithm 2.2. If G is a nontrivial connected weighted graph, then Algorithm 2.2 outputs a minimum spanning tree of G.

Proof. Let G be a nontrivial connected graph of order m and having weight function w. Let T be a subgraph of G produced by Kruskal's algorithm 2.2. By construction, T is a spanning tree of G with

$$
E(T)=\left\{e_{1}, e_{2}, \ldots, e_{m-1}\right\}
$$

where $w\left(e_{1}\right) \leq w\left(e_{2}\right) \leq \cdots \leq w\left(e_{m-1}\right)$ so that the total weight of T is

$$
w(T)=\sum_{i=1}^{m-1} w\left(e_{i}\right) .
$$

Suppose for contradiction that T is not a minimum spanning tree of G. Among all the minimum spanning trees of G, let H be a minimum spanning tree of G such that H has the most number of edges in common with T. As T and H are distinct subgraphs of G, then T has at least an edge not belonging to H. Let $e_{i} \in E(T)$ be the first edge not in H. Construct the graph $G_{0}=H+e_{i}$ obtained by adding the edge e_{i} to H. Note that G_{0} has exactly one cycle C. Since T is acyclic, there exists an edge $e_{0} \in E(C)$ such that e_{0} is not in T. Construct the graph $T_{0}=G_{0}-e_{0}$ obtained by deleting the edge e_{0} from G_{0}. Then T_{0} is a spanning tree of G with

$$
w\left(T_{0}\right)=w(H)+w\left(e_{i}\right)-w\left(e_{0}\right)
$$

and $w(H) \leq w\left(T_{0}\right)$ and hence $w\left(e_{0}\right) \leq w\left(e_{i}\right)$. By Kruskal's algorithm 2.2, e_{i} is an edge of minimum weight such that $\left\{e_{1}, e_{2}, \ldots, e_{i-1}\right\} \cup\left\{e_{i}\right\}$ is acyclic. Furthermore, the subgraph $\left\{e_{1}, e_{2}, \ldots, e_{i-1}, e_{0}\right\}$ of H is acyclic. Thus we have $w\left(e_{i}\right)=w\left(e_{0}\right)$ and $w\left(T_{0}\right)=w(H)$ and so T is a minimum spanning tree of G. By construction, T_{0} has more edges in common with T than H has with T, in contradiction of our hypothesis.

```
def kruskal(G):
    """
    Implements Kruskal's algorithm to compute a MST of a graph.
    INPUT:
        G - a connected edge-weighted graph or digraph
                whose vertices are assumed to be 0, 1, ...., n-1.
    OUTPUT :
        T - a minimum weight spanning tree.
    If G is not explicitly edge-weighted then the algorithm
    assumes all edge weights are 1. The tree T returned is
    a weighted graph, even if G is not.
    EXAMPLES:
        sage: A = matrix([[0,1,2,3],[0,0,2,1],[0,0,0,3],[0,0,0,0]])
        sage: G = DiGraph(A, format = "adjacency_matrix", weighted = True)
        sage: TE = kruskal(G); TE.edges()
        [(0, 1, 1), (0, 2, 2), (1, 3, 1)]
        sage: G.edges()
        [(0, 1, 1), (0, 2, 2), (0, 3, 3), (1, 2, 2), (1, 3, 1), (2, 3, 3)]
        sage: G = graphs.PetersenGraph()
        sage: TE = kruskal(G); TE.edges()
        [(0, 1, 1), (0, 4, 1), (0, 5, 1), (1, 2, 1), (1, 6, 1), (2, 3, 1),
            (2, 7, 1), (3, 8, 1), (4, 9, 1)]
TODO:
        Add ''verbose'' option to make steps more transparent.
    "|"(Useful for teachers and students.)
    T_vertices = G.vertices() # a list of the form range(n)
    T_edges = []
    E = G.edges() # a list of triples
    # start ugly hack
    Er = [list(x) for x in E]
    EO = []
    for x in Er:
        x.reverse()
        E0.append(x)
    E0.sort()
    E = []
for x in EO:
    x.reverse()
    E.append (tuple(x))
    # end ugly hack to get E is sorted by weight
    for x in E: # find edges of T
    TV = flatten(T_edges)
    u = x[0]
    v = x[1]
    if not(u in TV and v in TV):
                T_edges.append([u,v])
    # find adj mat of T
if G.weighted():
    AG = G.weighted_adjacency_matrix()
    else:
    AG = G.adjacency_matrix()
    GV = G.vertices()
    n = len(GV)
    AT = []
    for i in GV:
    rw = [0]*n
    for j in GV:
        if [i,j] in T_edges:
            rw[j] = AG[i][j]
        AT. append (rw)
    AT = matrix(AT)
    return Graph(AT, format = "adjacency_matrix", weighted = True)
```

Here is an example. We start with the grid graph. This is implemented in Sage such that the vertices are given by the coordinates of the grid the graph lies on, as opposed to $0,1, \ldots, n-1$. Since the above implementation of Kruskal's algorithm assumes that the vertices are $V=\{0,1, \ldots, n-1\}$, we first redefine the graph suitable for running Kruskal's algorithm on it.

```
sage: G = graphs.GridGraph([4,4])
```

```
sage: A = G.adjacency_matrix()
sage: G = Graph(A, format="adjacency_matrix", weighted=True)
sage: T = kruskal(G); T.edges()
[(0, 1, 1), (0, 4, 1), (1, 2, 1), (1, 5, 1), (2, 3, 1), (2, 6, 1), (3,7, 1),
    (4, 8, 1), (5, 9, 1), (6, 10, 1), (7, 11, 1), (8, 12, 1), (9, 13, 1),
    (10, 14, 1), (11, 15, 1)]
```

An illustration of this graph is given in Figure 2.12.

Figure 2.12: Kruskal's algorithm for the 4×4 grid graph.

2.3.2 Prim's algorithm

Like Kruskal's algorithm, Prim's algorithm uses a greedy approach to computing a minimum spanning tree of a connected weighted graph $G=(V, E)$, where $n=|V|$ and $m=|E|$. The algorithm was developed in 1930 by Czech mathematician V. Jarník [107] and later independently by R. C. Prim [163] and E. W. Dijkstra [61]. However, Prim was the first to present an implementation that runs in time $O\left(n^{2}\right)$. Using 2-heaps, the runtime can be reduced [118] to $O(m \log n)$. With a Fibonacci heap implementation [82], the runtime can be reduced even further to $O(m+n \log n)$.

Pseudocode of Prim's algorithm is given in Algorithm 2.3. For each $v \in V$, $\operatorname{cost}[v]$ denotes the minimum weight among all edges connecting v to a vertex in the tree T, and parent $[v]$ denotes the parent of v in T. During the algorithm's execution, vertices v that are not in T are organized in the minimum-priority queue Q, prioritized according to $\operatorname{cost}[v]$. Lines 1 to 3 set each $\operatorname{cost}[v]$ to a number that is larger than any weight in the graph G, usually written ∞. The parent of each vertex is set to NULL because we have not yet started constructing the MST T. In lines 4 to 6 , we choose an arbitrary vertex r from V and mark that vertex as the root of T. The minimum-priority queue is set to be all vertices from V. We set cost $[r]$ to zero, making r the only vertex so far with a cost that is $<\infty$. During the first execution of the while loop from lines 7 to 12 , r is the first vertex to be extracted from Q and processed. Line 8 extracts a vertex u from Q based on the key cost, thus moving u to the vertex set of T. Line 9 considers all vertices adjacent to u. In an undirected graph, these are simply the neighbors of u. (In a digraph, one could try to replace $\operatorname{adj}(u)$ with the out-neighbors oadj (u). Unfortunately, in the digraph case the Prim algorithm in general fails to find a minimum spanning tree with the same orientation as the original digraph.) The while loop updates the cost and parent fields of each vertex v adjacent to u that is not in T. If parent $[v] \neq$ NULL, then $\operatorname{cost}[v]<\infty$ and $\operatorname{cost}[v]$ is the weight of an edge connecting v to some vertex already in T. Lines 13 to 14 construct the edge set of the minimum spanning tree and return this edge set. The proof of correctness of Algorithm 2.3 is similar to the proof of Theorem 2.14.

Figure 2.13 shows the minimum spanning tree rooted at vertex 1 as a result of running Prim's algorithm over a digraph; Figure 2.14 shows the corresponding tree rooted at vertex 5 of an undirected graph.

```
Algorithm 2.3 Prim's algorithm.
Input A weighted connected graph \(G=(V, E)\) with weight function \(w\).
Output A minimum spanning tree \(T\) of \(G\).
    for each \(v \in V\) do
        \(\operatorname{cost}[v] \leftarrow \infty\)
        parent \([v] \leftarrow\) Null
    \(r \leftarrow\) arbitrary vertex of \(V\)
    \(\operatorname{cost}[r] \leftarrow 0\)
    \(Q \leftarrow V\)
    while \(Q \neq \emptyset\) do
        \(u \leftarrow \operatorname{extractMin}(Q)\)
        for each \(v \in \operatorname{adj}(u)\) do
            if \(v \in Q\) and \(w(u, v)<\operatorname{cost}[v]\) then
                parent \([v] \leftarrow u\)
                \(\operatorname{cost}[v] \leftarrow w(u, v)\)
    \(T \leftarrow\{(v, \operatorname{parent}[v]) \mid v \in V-\{r\}\}\)
    return \(T\)
```

```
def prim(G):
    Implements Prim's algorithm to compute a MST of a graph.
    INPUT:
        G - a connected graph.
    OUTPUT:
        T - a minimum weight spanning tree.
    REFERENCES:
        http://en.wikipedia.org/wiki/Prim's_algorithm
    """
    T_vertices = [0] # assumes G.vertices = range(n)
    T_edges = []
    E = G.edges() # a list of triples
    V = G.vertices()
    # start ugly hack to sort E
    Er = [list(x) for x in E]
    EO = []
    for x in Er:
        x.reverse()
        E0.append (x)
    E0.sort()
    E = []
    for x in EO:
        x.reverse()
        E.append(tuple(x))
    # end ugly hack to get E is sorted by weight
    for x in E:
        u = x[0]
        v = x[1]
        if u in T_vertices and not(v in T_vertices):
                T_edges.append([u,v])
                T_vertices.append(v)
    # found T_vertices, T_edges
    # find adj mat of T
    if G.weighted():
        AG = G.weighted_adjacency_matrix()
    else:
    AG = G.adjacency_matrix()
    GV = G.vertices()
```

```
n}=1\textrm{len}(GV
AT = []
for i in GV:
    rw = [0]*n (
    for j in GV: if [i,j] in T_edges:
                                    rw[j] = AG[i][j]
    AT.append (rw)
AT = matrix(AT)
return Graph(AT, format = "adjacency_matrix", weighted = True)
sage: A = matrix([[0,1,2,3], [3,0,2,1], [2,1,0,3], [1,1,1,0]])
sage: G = DiGraph(A, format="adjacency_matrix", weighted=True)
sage: E = G.edges(); E
[(0, 1, 1), (0, 2, 2), (0, 3, 3), (1, 0, 3), (1, 2, 2), (1, 3, 1), (2, 0, 2),
(2, 1, 1), (2, 3, 3), (3, 0, 1), (3, 1, 1), (3, 2, 1)]
sage: prim(G)
Multi-graph on 4 vertices
sage: prim(G).edges()
[(0, 1, 1), (0, 2, 2), (1, 3, 1)]
```


(a) Original digraph.

(c) 2nd iteration of while loop.

(b) 1st iteration of while loop.

(d) Final MST.

Figure 2.13: Running Prim's algorithm over a digraph.

```
sage: A = matrix([[0,7,0,5,0,0,0], [0,0,8,9,7,0,0], [0,0,0,0,5,0,0], \
\cdots [0,0,0,0,15,6,0], [0,0,0,0,0,8,9], [0,0,0,0,0,0,11], [0,0,0,0,0,0,0]])
```

```
sage: G = Graph(A, format="adjacency_matrix", weighted=True)
sage: E = G.edges(); E
[(0, 1, 7), (0, 3, 5), (1, 2, 8), (1, 3, 9), (1, 4, 7), (2, 4, 5),
(3, 4, 15), (3, 5, 6), (4, 5, 8), (4, 6, 9), (5, 6, 11)]
sage: prim(G).edges()
[(0, 1, 7), (0, 3, 5), (1, 2, 8), (1, 4, 7), (3, 5, 6), (4, 6, 9)]
```


2.3.3 Borůvka's algorithm

Borůvka's algorithm $[34,35]$ is a procedure for finding a minimum spanning tree in a weighted connected graph $G=(V, E)$ for which all edge weights are distinct. It was first published in 1926 by Otakar Borůvka but subsequently rediscovered by many others, including Choquet [53] and Florek et al. [77]. If G has order $n=|V|$ and size $m=|E|$, it can be shown that Borůvka's algorithm runs in time $O(m \log n)$.

```
Algorithm 2.4 Borůvka's algorithm.
Input A weighted connected graph \(G=(V, E)\) with weight function \(w\). All the edge
    weights of \(G\) are distinct.
Output A minimum spanning tree \(T\) of \(G\).
    \(n \leftarrow \frac{|V|}{\bar{K}}\)
    while \(|E(T)|<n-1\) do
        for each component \(T^{\prime}\) of \(T\) do
            \(e^{\prime} \leftarrow\) edge of minimum weight that leaves \(T^{\prime}\)
            \(E(T) \leftarrow E(T) \cup e^{\prime}\)
    return \(T\)
```

Algorithm 2.4 provides pseudocode of Borůvka's algorithm. Given a weighted connected graph $G=(V, E)$ all of whose edge weights are distinct, the initialization steps in lines 1 and 2 construct a spanning forest T of G, i.e. the subgraph of G containing all of the latter's vertices and no edges. The initial forest has n components, each being the trivial graph K_{1}. The while loop from lines 3 to 6 constructs a spanning tree of G via a recursive procedure similar to Theorem 2.4. For each component T^{\prime} of T, we consider all the out-going edges of T^{\prime} and choose an edge e^{\prime} that has minimum weight among all such edges. This edge is then added to the edge set of T. In this way, two distinct components, each of which is a tree, are joined together by a bridge. At the end of the while loop, our final graph is a minimum spanning tree of G. Note that the forest-merging steps in the for loop from lines 4 to 6 are amenable to parallelization, hence the alternative name to Borůvka's algorithm: the parallel forest-merging method.

Example 2.15. Figure 2.15 illustrates the gradual construction of a minimum spanning tree for the undirected graph given in Figure 2.15(a). In this case, we require two iterations of the while loop in Borůvka's algorithm in order to obtain the final minimum spanning tree in Figure 2.15(d).

```
def which_index(x,L):
    L is a list of sublists (or tuple of sets or list
    of tuples, etc).
    Returns the index of the first sublist which x belongs
    to, or None if x is not in flatten(L).
```


(a) Original undirected graph.

(b) 1st iteration of while loop.
(d) 3rd iteration of while loop.

(f) Final MST.

Figure 2.14: Running Prim's algorithm over an undirected graph.

(a) Original undirected graph.

(c) 1st iteration of while loop.

(5)
(b) 0th iteration of while loop.

(d) 2nd iteration of while loop.

Figure 2.15: Recursive construction of MST via Borůvka's algorithm.

```
The 0-th element in
Lx = [L.index(S) for S in L if x in S]
almost works, but if the list is empty then Lx[0]
throws an exception.
EXAMPLES:
    sage: L = [[1, 2, 3],[4,5],[6,7,8]]
    sage: which_index(3,L)
    0
    sage: which_index(4,L)
    1
    sage: which_index(7,L)
    2
    sage: which_index(9,L)
    sage: which_index (9,L) == None
    True
for S in L:
    if x in S:
            return L.index(S)
return None
def boruvka(G):
"""
Implements Boruvka's algorithm to compute a MST of a graph.
INPUT:
    G - a connected edge-weighted graph with distinct weights.
OUTPUT:
    T - a minimum weight spanning tree.
REFERENCES:
    http://en.wikipedia.org/wiki/Boruvka's_algorithm
"""
T_vertices = [] # assumes G.vertices = range(n)
T_edges = []
T = Graph()
E = G.edges() # a list of triples
V = G.vertices()
# start ugly hack to sort E
Er = [list(x) for x in E]
EO = []
for x in Er:
    x.reverse()
    E0.append(x)
E0.sort()
E = []
for x in EO:
    x.reverse()
    E.append(tuple(x))
# end ugly hack to get E is sorted by weight
for e in E:
    # create about |V|/2 edges of T "cheaply"
    TV = T.vertices()
    if not(e[0] in TV) or not(e[1] in TV):
                T.add_edge(e)
for e in E:
    # connect the "cheapest" components to get T
    C = T.connected_components_subgraphs()
    VC = [S.vertices() for S in C]
    if not(e in T.edges()) and (which_index(e[0],VC) != which_index(e[1],VC)):
            if T.is_connected():
                    break
            T.add_edge(e)
return T
```

Some examples using Sage:

```
sage: A = matrix ([[0,1,2,3], [4,0,5,6], [7, 8,0,9], [10, 11, 12,0]])
sage: G = DiGraph(A, format="adjacency_matrix", weighted=True)
sage: boruvka(G)
Multi-graph on 4 vertices
sage: boruvka(G).edges()
[(0, 1, 1), (0, 2, 2), (0, 3, 3)]
sage: A = matrix ([[0,2,0,5,0,0,0], [0,0,8,9,7,0,0], [0,0,0,0,1,0,0],\
... [0,0,0,0,15,6,0], [0,0,0,0,0,3,4], [0,0,0,0,0,0,11], [0,0,0,0,0,0,0]])
sage: G = Graph(A, format="adjacency_matrix", weighted=True)
```

```
sage: E = G.edges(); E
[(0, 1, 2), (0, 3, 5), (1, 2, 8), (1, 3, 9), (1, 4, 7),
(2, 4, 1), (3, 4, 15), (3, 5, 6), (4, 5, 3), (4,6, 4), (5, 6, 11)]
sage: boruvka(G)
Multi-graph on 7 vertices
sage: boruvka(G).edges()
[(0, 1, 2), (0, 3, 5), (2, 4, 1), (3, 5, 6), (4, 5, 3), (4, 6, 4)]
sage: A = matrix([[0,1,2,5], [0,0,3,6], [0,0,0,4], [0,0,0,0]])
sage: G = Graph(A, format="adjacency_matrix", weighted=True)
sage: boruvka(G).edges()
[(0, 1, 1), (0, 2, 2), (2, 3, 4)]
sage: A = matrix([[0,1,5,0,4], [0,0,0,0,3], [0,0,0,2,0], [0,0,0,0,0], [0,0,0,0,0]])
sage: G = Graph(A, format="adjacency_matrix", weighted=True)
sage: boruvka(G).edges()
[(0, 1, 1), (0, 2, 5), (1, 4, 3), (2, 3, 2)]
```


2.3.4 Circuit matrix

Recall, the term cycle refers to a closed path. If G is a digraph then a cycle refers to a sequence of edges which form a path in the associated undirected graph. If repeated vertices are allowed, it is more often called a closed walk. If the path is a simple path, with no repeated vertices or edges other than the starting and ending vertices, it may also be called a simple cycle or circuit. A cycle in a directed graph is called a directed cycle.

Let Z_{1}, \ldots, Z_{M} denote an enumeration of the cycles (simple closed paths) of G. The cycle matrix or circuit matrix is a $M \times m$ matrix $C=\left(c_{i j}\right)$ whose rows are parameterized by the cycles and whose columns are parameterized by the edges $E=\left\{e_{1}, \ldots, e_{m}\right\}$, where

$$
c_{i j}= \begin{cases}1, & e_{i} \in Z_{i}, \\ 0, & \text { otherwise }\end{cases}
$$

Recall the incidence matrix was defined in §1.3.2.
Theorem 2.16. If G is a directed graph then the rows of the incidence matrix $D(G)$ are orthogonal to the rows of $C(G)$.

Proof. We first show that $C \cdot D^{t}=0$. Consider the i th row of C and j th column of D^{t}. There are non-zero entries in the corresponding entries of these vectors if and only if the j th vertex of G is incident to an edge which occurs in the i th cycle of G. Assume this entry is non-zero. Since G is a directed graph, there is another vertex (the other vertex defining this edge) for which the associated entry is the same but with opposite sign. Therefore the dot product of the i th row of Q and j th column of D^{t} is zero.

The theorem above implies that the column space of the matrix C^{t} (namely, the image of the associated linear transformation) is contained in the kernel of the incidence matrix D.

Let F be a field. There is a general result called Sylvester's Law of Nullity which says that if K is an $r \times s$ matrix over F and L is an $s \times t$ matrix over F (so $K L$ is defined), and if

$$
K L=0,
$$

then

$$
\operatorname{rank}_{F}(K)+\operatorname{rank}_{F}(L) \leq s
$$

(This is an immediate corollary of the rank plus nullity theorem from linear algebra.) It follows from this fact that

$$
\operatorname{rank}_{\mathbb{Q}}(D)+\operatorname{rank}_{\mathbb{Q}}(C) \leq m
$$

As a corollary to Theorem 1.28, we see that

$$
\operatorname{rank}_{\mathbb{Q}}(D) \leq m-n+1
$$

Theorem 2.17. If G is a directed graph then

$$
\operatorname{rank}_{\mathbb{Q}}(C)=m-n+1
$$

Proof. To show that equality is attained, we exhibit $m-n+1$ linearly independent rows of C. Let $T=(V(T), E(T))$ be a spanning tree for G. This tree has $n-1$ edges and so G has $m-n+1$ edges not in T. Let $e \notin E(T)$ be such an edge. The graph $T+e$ is a cycle. Recall such a cycle is called a fundamental cycle (associated to T). There are exactly $m-n+1$ such cycles. Note that no other fundamental cycle "supports" edge e. Suppose that e is the i th edge in $E(G)$. The row of C associated to the cycle $T+e$ has a 1 in the i th coordinate. Every other row of C associated to a fundamental cycle has a 0 in the i th coordinate. Therefore, the rows of C associated to these $m-n+1$ fundamental cycles are linearly independent.

2.3.5 Cutset matrix

The term cutset (or edge cutset) refers to a sequence of edges in a connected graph $G=(V, E)$ which, when removed from G, creates a disconnected graph and, furthermore, that no proper subset of these edges has this property. When a graph can be disconnected by removing only one edge, that edge is called a bridge.

A cutset can be associated to each vertex $v \in V$ as follows.
Lemma 2.18. The subset $S_{v} \subset E$ of all the edges incident to v forms forms a cutset.
This uses only the definitions and is left to the interested reader as an exercise.
Let S_{1}, \ldots, S_{N} denote the cutsets of G. The cutset matrix $N \times m$ matrix $Q=\left(q_{i j}\right)$ whose rows are parameterized by the cutsets and whose columns are parameterized by the edges $E=\left\{e_{1}, \ldots, e_{m}\right\}$, where

$$
q_{i j}= \begin{cases}1, & e_{i} \in S_{i}, \\ 0, & \text { otherwise }\end{cases}
$$

Theorem 2.19. If G is a connected digraph then

$$
\operatorname{rank}_{\mathbb{Q}}(Q)=n-1
$$

The analog of this theorem for undirected graphs is false (as the examples below show). However, the undirected analog does work if you use the rank over $G F(2)$.

Proof. Let G be any connected graph (directed or not). By Lemma 2.18 above, for each $v \in V$ there is a cut-set S_{v} consisting of all edges incident to v. The characteristic vector $q_{v}=\left(q_{1}, \ldots, q_{m}\right)$ of this set ($q_{i}=1$ if $e_{i} \in S_{v}$ and $q_{i}=0$ otherwise) gives us a row
vector in the incidence matrix and in the cut-set matrix. Moreover, all such rows in the incidence matrix are of this form, so

$$
\operatorname{rank}_{\mathbb{Q}}(Q) \geq \operatorname{rank}_{\mathbb{Q}}(C)=n-1
$$

Suppose now G is a directed graph. We show equality must hold. Let S be any edge cutset in G and, for each $v \in V$, let S_{v} denote the associated cutset as above. If S defined a partitioning

$$
V=V_{1} \cup V_{2}
$$

then

$$
S=\sum_{v \in V_{1}} S_{v}=\sum_{v \in V_{2}} S_{v},
$$

where the sum of two cutsets is simply the formal sum as oriented edges in the free abelian group $\mathbb{Z}[E]$. From this it is clear that the dimension of the row-span of Q is equal to the dimension of the row-span of the submatrix of Q given by the S_{v} 's.

Example 2.20. To construct the example, we will make use of the following Python function.

```
def edge_cutset_matrix(G):
Returns the edge cutset matrix of the connected graph $G$.
" " "
V = G.vertices()
E = G.edges()
rows = []
for v1 in V:
    for v2 in V
        if v1 != v2:
            S = G.edge_cut(v1, v2, value_only=False) [1]
            char_S = lambda e: int(bool(e in S))
            rows.append([char_S(e) for e in E])
Q = matrix(rows)
return Q
```

We use the function above in the examples below.
For the cube graph in three dimensions (see Figure 2.16) and for the Desargues graph (see Figure 2.17), the undirected analog of Theorem 2.19 does hold.

```
sage: G = graphs.CubeGraph(3)
sage: G
3-Cube: Graph on 8 vertices
sage: Q = edge_cutset_matrix(G)
sage: rank(Q)
7
sage: G = graphs.DesarguesGraph()
sage: G
Desargues Graph: Graph on 20 vertices
sage: edge_cutset_matrix(G).rank()
19
```

On the other hand, for the Frucht graph (see Figure 2.18):

```
sage: G = graphs.FruchtGraph()
sage: G
Frucht graph: Graph on 12 vertices
sage: edge_cutset_matrix(G).rank()
12
```

These shall be discussed further in §9.1.

Figure 2.16: The 3-dimensional cube graph.

Figure 2.17: The Desargues graph.

Figure 2.18: The Frucht graph.

2.4 Binary trees

A binary tree is a rooted tree with at most two children per parent. Each child is designated as either a left-child or a right-child. Thus binary trees are also 2-ary trees. Some examples of binary trees are illustrated in Figure 2.19. Given a vertex v in a binary tree T of height h, the left subtree of v is comprised of the subtree that spans the left-child of v and all of this child's descendants. The notion of a right-subtree of a binary tree is similarly defined. Each of the left and right subtrees of v is itself a binary tree with height $\leq h-1$. If v is the root vertex, then each of its left and right subtrees has height $\leq h-1$, and at least one of these subtrees has height equal to $h-1$.

Figure 2.19: Examples of binary trees.

Theorem 2.21. If T is a complete binary tree of height h, then T has $2^{h+1}-1$ vertices.

Proof. Argue by induction on h. The assertion of the theorem is trivially true in the base case $h=0$. Let $k \geq 0$ and assume for induction that any complete binary tree of height k has order $2^{k+1}-1$. Suppose T is a complete binary tree of height $k+1$ and denote the left and right subtrees of T by T_{1} and T_{2}, respectively. Each T_{i} (for $i=1,2$) is a complete binary tree of height k and by our induction hypothesis T_{i} has $2^{k+1}-1$ vertices. Thus T has order

$$
1+\left(2^{k+1}-1\right)+\left(2^{k+1}-1\right)=2^{k+2}-1
$$

as required.
Theorem 2.21 provides a useful upper bound on the order of a binary tree of a given height. This upper bound is stated in the following corollary.
Corollary 2.22. A binary tree of height h has at most $2^{h+1}-1$ vertices.
We now count the number of possible binary trees on n vertices. Let b_{n} be the number of binary trees of order n. For $n=0$, we set $b_{0}=1$. The trivial graph is the only binary tree with one vertex, hence $b_{1}=1$. Suppose $n>1$ and let T be a binary tree on n vertices. Then the left subtree of T has order $0 \leq i \leq n-1$ and the right subtree has $n-1-i$ vertices. As there are b_{i} possible left subtrees and b_{n-1-i} possible right subtrees, T has a total of $b_{i} b_{n-1-i}$ different combinations of left and right subtrees. Summing from $i=0$ to $i=n-1$ and we have

$$
\begin{equation*}
b_{n}=\sum_{i=0}^{n-1} b_{i} b_{n-1-i} . \tag{2.2}
\end{equation*}
$$

Expression (2.2) is known as the Catalan recursion and the number b_{n} is the n-th Catalan number, which we know from problem 1.15 can be expressed in the closed form

$$
\begin{equation*}
b_{n}=\frac{1}{n+1}\binom{2 n}{n} \tag{2.3}
\end{equation*}
$$

Figures 2.20 to 2.22 enumerate all the different binary trees on 2, 3, and 4 vertices, respectively.

Figure 2.20: The $b_{2}=2$ binary trees on 2 vertices.
The first few values of (2.3) are

$$
b_{0}=1, \quad b_{1}=1, \quad b_{2}=2, \quad b_{3}=5, \quad b_{4}=14
$$

which are rather small and of manageable size if we want to explicitly enumerate all different binary trees with the above orders. However, from $n=4$ onwards the value of b_{n} increases very fast. Instead of enumerating all the b_{n} different binary trees of a specified order n, a related problem is generating a random binary tree of order n. That is, we consider the set B as a sample space of b_{n} different binary trees on n vertices, and choose a random element from B. Such a random element can be generated using Algorithm 2.5. The list parent holds all vertices with less than two children, each vertex can be considered as a candidate parent to which we can add a child. An element of parent is a two-tuple (v, k) where the vertex v currently has k children.

(a)

(b)

(c)

(d)

(e)

Figure 2.21: The $b_{3}=5$ binary trees on 3 vertices.

(a)

(b)

(c)

(d)

(e)

(i)

(g)

(h)

(j)

(k)

(1)

(m)

(n)

Figure 2.22: The $b_{4}=14$ binary trees on 4 vertices.

```
Algorithm 2.5 Random binary tree.
Input Positive integer \(n\).
Output A random binary tree on \(n\) vertices.
    if \(n=1\) then
        return \(K_{1}\)
    \(v \leftarrow 0\)
    \(T \leftarrow\) null graph
    : add \(v\) to \(T\)
    6: parent \(\leftarrow[(v, 0)]\)
    : for \(i \leftarrow 1,2, \ldots, n-1\) do
        \((v, k) \leftarrow\) remove random element from parent
        if \(k<1\) then
            add \((v, k+1)\) to parent
        add edge \((v, i)\) to \(T\)
        add \((i, 0)\) to parent
    return \(T\)
```


2.4.1 Binary codes

What is a code?

A code is a rule for converting data in one format, or well-defined tangible representation, into sequences of symbols in another format. The finite set of symbols used is called the alphabet. We shall identify a code as a finite set of symbols which are the image of the alphabet under this conversion rule. The elements of this set are referred to as codewords. For example, using the ASCII code, the letters in the English alphabet get converted into numbers in the set $\{0,1, \ldots, 255\}$. If these numbers are written in binary, then each codeword of a letter has length 8 , i.e. eight bits. In this way, we can reformat or encode a "string" into a sequence of binary symbols, i.e. 0's and 1's. Encoding is the conversion process one way. Decoding is the reverse process, converting these sequences of code-symbols back into information in the original format.

Codes are used for:

- Economy. Sometimes this is called entropy encoding since there is an entropy function which describes how much information a channel (with a given error rate) can carry and such codes are designed to maximize entropy as best as possible. In this case, in addition to simply being given an alphabet \mathcal{A}, one might be given a weighted alphabet, i.e. an alphabet for which each symbol $a \in \mathcal{A}$ is associated with a nonnegative number $w_{a} \geq 0$ (in practice, this number represents the probability that the symbol a occurs in a typical word).
- Reliability. Such codes are called error-correcting codes, since such codes are designed to communicate information over a noisy channel in such a way that the errors in transmission are likely to be correctable.
- Security. Such codes are called cryptosystems. In this case, the inverse of the coding function $c: \mathcal{A} \rightarrow B^{*}$ is designed to be computationally infeasible. In other words, the coding function c is designed to be a trapdoor function.
Other codes are merely simpler ways to communicate information (e.g. flag semaphores, color codes, genetic codes, braille codes, musical scores, chess notation, football diagrams, and so on) and have little or no mathematical structure. We shall not study them.

Basic definitions

If every word in the code has the same length, the code is called a block code. If a code is not a block code, then it is called a variable-length code. A prefix-free code is a code (typically one of variable-length) with the property that there is no valid codeword in the code that is a prefix or start of any other codeword. ${ }^{1}$ This is the prefix-free condition.

One example of a prefix-free code is the ASCII code. Another example is

$$
00,01,100 .
$$

On the other hand, a non-example is the code

$$
00,01,010,100
$$

[^5]since the second codeword is a prefix of the third one. Another non-example is Morse code recalled in Table 2.1, where we use 0 for "." ("dit") and 1 for "-" ("dah"). For example, consider the Morse code for aand the Morse code for w. These codewords violate the prefix-free condition.

A	01	N	10
B	1000	O	111
C	1010	P	0110
D	100	Q	1101
E	0	R	010
F	0010	S	000
G	110	T	1
H	0000	U	001
I	00	V	0001
J	0111	W	011
K	101	X	1001
L	0100	Y	1011
M	11	Z	1100

Table 2.1: Morse code

Gray codes

We begin with some history. ${ }^{2}$ Frank Gray (1887-1969) wrote about the so-called Gray codes in a 1951 paper published in the Bell System Technical Journal and then in 1953 patented a device (used for television sets) based on his paper. However, the idea of a binary Gray code appeared earlier. In fact, it appeared in an earlier patent (one by Stibitz in 1943). It was also used in the French engineer E. Baudot's telegraph machine of 1878 and in a French booklet by L. Gros on the solution published in 1872 to the Chinese ring puzzle.

The term "Gray code" is ambiguous. It is actually a large family of sequences of n-tuples. Let $\mathbf{Z}_{m}=\{0,1, \ldots, m-1\}$. More precisely, an m-ary Gray code of length n (called a binary Gray code when $m=2$) is a sequence of all possible (i.e. $N=m^{n}$) n-tuples

$$
g_{1}, g_{2}, \ldots, g_{N}
$$

where

- each $g_{i} \in \mathbf{Z}_{m}^{n}$,
- g_{i} and g_{i+1} differ by 1 in exactly one coordinate.

In other words, an m-ary Gray code of length n is a particular way to order the set of all $m^{n} n$-tuples whose coordinates are taken from \mathbf{Z}_{m}. From the transmission/communication perspective, this sequence has two advantages:

- It is easy and fast to produce the sequence, since successive entries differ in only one coordinate.

[^6]- An error is relatively easy to detect, since we can compare an n-tuple with the previous one. If they differ in more than one coordinate, we conclude that an error was made.

Example 2.23. Here is a 3 -ary Gray code of length 2 :

$$
[0,0],[1,0],[2,0],[2,1],[1,1],[0,1],[0,2],[1,2],[2,2]
$$

and the sequence

$$
[0,0,0],[1,0,0],[1,1,0],[0,1,0],[0,1,1],[1,1,1],[1,0,1],[0,0,1]
$$

is a binary Gray code of length 3 .
Gray codes have applications to engineering, recreational mathematics (solving the Tower of Hanoi puzzle, The Brain puzzle, the Chinese ring puzzle, etc.), and to mathematics (e.g. aspects of combinatorics, computational group theory, and the computational aspects of linear codes).

Binary Gray codes

Consider the so-called n-hypercube graph Q_{n}, whose first few instances are illustrated in Figure 1.33. This can be envisioned as the graph whose vertices are the vertices of a cube in n-space

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \mid 0 \leq x_{i} \leq 1\right\}
$$

and whose edges are those line segments in \mathbf{R}^{n} connecting two neighboring vertices, i.e. two vertices that differ in exactly one coordinate. A binary Gray code of length n can be regarded as a path on the hypercube graph Q_{n} that visits each vertex of the cube exactly once. In other words, a binary Gray code of length n may be identified with a Hamiltonian path on the graph Q_{n}. For example, Figure 2.23 illustrates a Hamiltonian path on Q_{3}.

Figure 2.23: Viewing Γ_{3} as a Hamiltonian path on Q_{3}.
How do we efficiently compute a Gray code? Perhaps the simplest way to state the idea of quickly constructing the reflected binary Gray code Γ_{n} of length n is as follows:

$$
\begin{aligned}
\Gamma_{0} & =[], \\
\Gamma_{n} & =\left[\left[0, \Gamma_{n-1}\right],\left[1, \Gamma_{n-1}^{\mathrm{rev}}\right]\right]
\end{aligned}
$$

where $\Gamma_{m}^{\text {rev }}$ means the Gray code in reverse order. For instance, we have

$$
\begin{aligned}
& \Gamma_{0}=[] \\
& \Gamma_{1}=[[0],[1]] \\
& \Gamma_{2}=[[0,0],[0,1],[1,1],[1,0]]
\end{aligned}
$$

and so on. This is a nice procedure for creating the entire list at once, which gets very long very fast. An implementation of the reflected Gray code using Python is given below.

```
def graycode(length,modulus):
Returns the n-tuple reflected Gray code mod m.
EXAMPLES:
        sage: graycode(2,4)
        [[0, 0],
            [1, 0],
            [3, 0],
            [3, 1],
            [1, 1],
            [0, 1],
            [1, 2],
            [2, 2],
            [3, 3],
            [1, 3],
    """
    n,m = length,modulus
    F = range(m)
    if n == 1:
        return [[i] for i in F]
    L = graycode(n-1, m)
    M = []
    for j
        M = M+[ll+[j] for ll in L]
    k = len(M)
Mr = [0]*m
for i in range(m-1):
    i1 = i*int(k/m) # this requires Python 3.0 or Sage
    i2 = (i+1)*int (k/m)
    Mr[i] = M[i1:i2]
Mr[m-1] = M[(m-1)*int(k/m):]
for i in range(m):
    if is_odd(i):
            Mr[i].reverse()
MO = []
for i in range(m):
    MO = MO+Mr[i]
return MO
```

Consider the reflected binary code of length 8 , i.e. Γ_{8}. This has $2^{8}=256$ codewords. Sage can easily create the list plot of the coordinates (x, y), where x is an integer $j \in \mathbf{Z}_{256}$ that indexes the codewords in Γ_{8} and the corresponding y is the j-th codeword in Γ_{8} converted to decimal. This will give us some idea of how the Gray code "looks" in some sense. The plot is given in Figure 2.24.

What if we only want to compute the i-th Gray codeword in the Gray code of length n ? Can it be computed quickly without computing the entire list? At least in the case of the reflected binary Gray code, there is a very simple way to do this. The k-th element in

Figure 2.24: Scatterplot of Γ_{8}.
the above-described reflected binary Gray code of length n is obtained by simply adding the binary representation of k to the binary representation of the integer part of $k / 2$. An example using Sage is given below.

```
def int2binary(m, n):
    returns GF(2) vector of length n obtained
    from the binary repr of m, padded by 0's
    (on the left) to length n.
    EXAMPLES:
        sage: for j in range(8):
            print int2binary(j,3)+int2binary(int(j/2),3)
        (0, 0, 0)
        (0, 0, 1)
        (0, 1, 1)
        (0, 1, 0)
        (1, 1, 0)
        (1, 1, 1)
        (1, 0, 1)
        (1, 0, 0)
    s = bin(m)
    k = len(s)
    F = GF(2)
b = [F(0)]*n
for i in range(2,k):
    b[n-k+i] = F(int(s[i]))
return vector(b)
def graycodeword(m, n):
returns the k-th codeword in the reflected binary Gray code
of length n.
EXAMPLES:
    sage: graycodeword (3, 3)
    (0, 1, 0)
,'
return map(int, int2binary(m,n)+int2binary(int(m/2),n))
```


2.5 Huffman codes

An alphabet \mathcal{A} is a finite set whose elements are referred to as symbols. A word (or string or message) over \mathcal{A} is a finite sequence of symbols in \mathcal{A} and the length of the word is
the number of symbols it contains. A word is usually written by concatenating symbols together, e.g. $a_{1} a_{2} \cdots a_{k}\left(a_{i} \in \mathcal{A}\right)$ is a word of length k.

A commonly occurring alphabet in practice is the binary alphabet $\mathbb{B}=\{0,1\}$. A word over the binary alphabet is a finite sequence of 0 's and 1 's. If \mathcal{A} is an alphabet, let \mathcal{A}^{*} denote the set of all words in \mathcal{A}. The length of a word is denoted by vertical bars. That is, if $w=a_{1} \cdots a_{k}$ is a word over \mathcal{A}, then define $|w|: \mathcal{A}^{*} \rightarrow \mathbf{Z}$ by

$$
|w|=\left|a_{1} \cdots a_{k}\right|=k .
$$

Let \mathcal{A} and \mathcal{B} be two alphabets. A code for \mathcal{A} using \mathcal{B} is an injection $c: \mathcal{A} \rightarrow \mathcal{B}^{*}$. By abuse of notation, we often denote the code simply by the set

$$
C=c(A)=\{c(a) \mid a \in \mathcal{A}\}
$$

The elements of C are called codewords. If \mathcal{B} is the binary alphabet, then C is called a binary code.

2.5.1 Tree representation

Any binary code can be represented by a tree, as Example 2.24 shows.
Example 2.24. Let \mathbb{B}_{ℓ} be the binary code of length $\leq \ell$. Represent codewords of \mathbb{B}_{ℓ} using trees.

Solution. Here is how to represent the code \mathbb{B}_{ℓ} consisting of all binary strings of length $\leq \ell$. Start with the root node ε being the empty string. The two children of this node, v_{0} and v_{1}, correspond to the two strings of length 1 . Label v_{0} with a " 0 " and v_{1} with a " 1 ". The two children of v_{0}, i.e. v_{00} and v_{01}, correspond to the strings of length 2 which start with a 0 . Similarly, the two children of v_{1}, i.e. v_{10} and v_{11}, correspond to the strings of length 2 that each starts with a 1 . Continue creating child nodes until we reach length ℓ, at which point we stop. There are a total of $2^{\ell+1}-1$ nodes in this tree and 2^{ℓ} of them are leaves (vertices of a tree with degree 1, i.e. childless nodes). Note that the parent of any node is a prefix to that node. Label each node v_{s} with the string " s ", where s is a binary sequence of length $\leq \ell$. See Figure 2.25 for an example when $\ell=2$.

Figure 2.25: Tree representation of the binary code \mathbb{B}_{2}.
In general, if C is a code contained in \mathbb{B}_{ℓ}, then to create the tree for C, start with the tree for \mathbb{B}_{ℓ}. First, remove all nodes associated to a binary string for which it and
all of its descendants are not in C. Next, remove all labels which do not correspond to codewords in C. The resulting labeled graph is the tree associated to the binary code C.

For visualizing the construction of Huffman codes later, it is important to see that we can reverse this construction to start from such a binary tree and recover a binary code from it. The codewords are determined by the following rules:

- The root node gets the empty codeword.
- Each left-ward branch gets a 0 appended to the end of its parent. Each right-ward branch gets a 1 appended to the end.

2.5.2 Uniquely decodable codes

If $c: \mathcal{A} \rightarrow \mathcal{B}^{*}$ is a code, then we can extend c to \mathcal{A}^{*} by concatenation:

$$
c\left(a_{1} a_{2} \cdots a_{k}\right)=c\left(a_{1}\right) c\left(a_{2}\right) \cdots c\left(a_{k}\right)
$$

If the extension $c: \mathcal{A}^{*} \rightarrow \mathcal{T}^{*}$ is also an injection, then c is called uniquely decodable. The property of unique decodability or decipherability informally means that any given sequence of symbols has at most one interpretation as a sequence of codewords.

Example 2.25. Is the Morse code in Table 2.1 uniquely decodable? Why or why not?
Solution. Note that these Morse codewords all have lengths less than or equal to 4 . Other commonly occurring symbols used (the digits 0 through 9 , punctuation symbols, and some others) are also encodable in Morse code, but they use longer codewords.

Let \mathcal{A} denote the English alphabet, $\mathbb{B}=\{0,1\}$ the binary alphabet, and $c: \mathcal{A} \rightarrow \mathbb{B}^{*}$ the Morse code. Since $c(E T)=01=c(A)$, it is clear that the Morse code is not uniquely decodable.

In fact, prefix-free implies uniquely decodable.
Theorem 2.26. If a code $c: \mathcal{A} \rightarrow \mathcal{B}^{*}$ is prefix-free, then it is uniquely decodable.
Proof. We use induction on the length of a message. We want to show that if $x_{1} \cdots x_{k}$ and $y_{1} \cdots y_{\ell}$ are messages with $c\left(x_{1}\right) \cdots c\left(x_{k}\right)=c\left(y_{1}\right) \cdots c\left(y_{\ell}\right)$, then $x_{1} \cdots x_{k}=y_{1} \cdots y_{\ell}$. This in turn implies $k=\ell$ and $x_{i}=y_{i}$ for all i.

The case of length 1 follows from the fact that $c: \mathcal{A} \rightarrow \mathcal{B}^{*}$ is injective (by the definition of code).

Suppose that the statement of the theorem holds for all codes of length $<m$. We must show that the length m case is true. Suppose $c\left(x_{1}\right) \cdots c\left(x_{k}\right)=c\left(y_{1}\right) \cdots c\left(y_{\ell}\right)$, where $m=\max (k, \ell)$. These strings are equal, so the substring $c\left(x_{1}\right)$ of the left-hand side and the substring $c\left(y_{1}\right)$ of the right-hand side are either equal or one is contained in the other. If, say, $c\left(x_{1}\right)$ is properly contained in $c\left(y_{1}\right)$, then c is not prefix-free. Likewise if $c\left(y_{1}\right)$ is properly contained in $c\left(x_{1}\right)$. Therefore, $c\left(x_{1}\right)=c\left(y_{1}\right)$, which implies $x_{1}=y_{1}$. Now remove this codeword from both sides, so $c\left(x_{2}\right) \cdots c\left(x_{k}\right)=c\left(y_{2}\right) \cdots c\left(y_{\ell}\right)$. By the induction hypothesis, $x_{2} \cdots x_{k}=y_{2} \cdots y_{\ell}$. These facts together imply $k=\ell$ and $x_{i}=y_{i}$ for all i.

Consider now a weighted alphabet (\mathcal{A}, p), where $p: \mathcal{A} \rightarrow[0,1]$ satisfies $\sum_{a \in \mathcal{A}} p(a)=$ 1 , and a code $c: \mathcal{A} \rightarrow \mathcal{B}^{*}$. In other words, p is a probability distribution on \mathcal{A}. Think of $p(a)$ as the probability that the symbol a arises in a typical message. The average word length $L(c)$ is ${ }^{3}$

$$
L(c)=\sum_{a \in \mathcal{A}} p(a) \cdot|c(a)|
$$

where $|\cdot|$ is the length of a codeword. Given a weighted alphabet (\mathcal{A}, p) as above, a code $c: \mathcal{A} \rightarrow \mathcal{B}^{*}$ is called optimal if there is no such code with a smaller average word length. Optimal codes satisfy the following amazing property. For a proof, which is very easy and highly recommended for anyone who is curious to see more, refer to section 3.6 of Biggs [28].

Lemma 2.27. Suppose $c: \mathcal{A} \rightarrow \mathbb{B}^{*}$ is a binary optimal prefix-free code and let $\ell=$ $\max _{a \in \mathcal{A}}(|c(a)|)$ denote the maximum length of a codeword. The following statements hold.

1. If $\left|c\left(a^{\prime}\right)\right|>|c(a)|$, then $p\left(a^{\prime}\right) \leq p(a)$.
2. The subset of codewords of length ℓ, i.e.

$$
C_{\ell}=\{c \in c(\mathcal{A})|\ell=|c(a)|\}
$$

contains two codewords of the form $b 0$ and $b 1$ for some $b \in \mathbb{B}^{*}$.

2.5.3 Huffman coding

The Huffman code construction is based on the second property in Lemma 2.27. Using this property, in 1952 David Huffman [104] presented an optimal prefix-free binary code, which has since been named Huffman code.

Here is the recursive/inductive construction of a Huffman code. We shall regard the binary Huffman code as a tree, as described above. Suppose that the weighted alphabet (\mathcal{A}, p) has n symbols. We assume inductively that there is an optimal prefix-free binary code for any weighted alphabet $\left(\mathcal{A}^{\prime}, p^{\prime}\right)$ having $<n$ symbols.

Huffman's rule 1 Let $a, a^{\prime} \in \mathcal{A}$ be symbols with the smallest weights. Construct a new weighted alphabet with a, a^{\prime} replaced by the single symbol $a^{*}=a a^{\prime}$ and having weight $p\left(a^{*}\right)=p(a)+p\left(a^{\prime}\right)$. All other symbols and weights remain unchanged.

Huffman's rule 2 For the code $\left(\mathcal{A}^{\prime}, p^{\prime}\right)$ above, if a^{*} is encoded as the binary string s, then the encoded binary string for a is $s 0$ and the encoded binary string for a^{\prime} is $s 1$.

The above two rules tell us how to inductively build the tree representation for the Huffman code of (\mathcal{A}, p) up from its leaves (associated to the low weight symbols).

- Find two different symbols of lowest weight, a and a^{\prime}. If two such symbols do not exist, stop. Replace the weighted alphabet with the new weighted alphabet as in Huffman's rule 1.

[^7]- Add two nodes (labeled with a and a^{\prime}, respectively) to the tree, with parent a^{*} (see Huffman's rule 1).
- If there are no remaining symbols in \mathcal{A}, label the parent a^{*} with the empty set and stop. Otherwise, go to the first step.

These ideas are captured in Algorithm 2.6, which outlines steps to construct a binary tree corresponding to the Huffman code of an alphabet. Line 2 initializes a minimumpriority queue Q with the symbols in the alphabet A. Line 3 creates an empty binary tree that will be used to represent the Huffman code corresponding to A. The for loop from lines 4 to 10 repeatedly extracts from Q two elements a and b of minimum weights. We then create a new vertex z for the tree T and also let a and b be vertices of T. The weight $W[z]$ of z is the sum of the weights of a and b. We let z be the parent of a and b, and insert the new edges $z a$ and $z b$ into T. The newly created vertex z is now inserted into Q with priority $W[z]$. After $n-1$ rounds of the for loop, the priority queue has only one element in it, namely the root r of the binary tree T. We extract r from Q (line 11) and return it together with T (line 12).

```
Algorithm 2.6 Binary tree representation of Huffman codes.
Input An alphabet \(A\) of \(n\) symbols. A weight list \(W\) of size \(n\) such that \(W[i]\) is the
    weight of \(a_{i} \in A\).
Output A binary tree \(T\) representing the Huffman code of \(A\) and the root \(r\) of \(T\).
    \(n \leftarrow|A|\)
    \(Q \leftarrow A \quad \triangleright\) minimum priority queue
    \(T \leftarrow\) empty tree
    for \(i \leftarrow 1,2, \ldots, n-1\) do
        \(a \leftarrow \operatorname{extractMin}(Q)\)
        \(b \leftarrow \operatorname{extractMin}(Q)\)
        \(z \leftarrow\) node with left child \(a\) and right child \(b\)
        add the edges \(z a\) and \(z b\) to \(T\)
        \(W[z] \leftarrow W[a]+W[b]\)
        insert \(z\) into priority queue \(Q\)
    \(r \leftarrow \operatorname{extractMin}(Q)\)
    return ( \(T, r\) )
```

The runtime analysis of Algorithm 2.6 depends on the implementation of the priority queue Q. Suppose Q is a simple unsorted list. The initialization on line 2 requires $O(n)$ time. The for loop from line 4 to 10 is executed exactly $n-1$ times. Searching Q to determine the element of minimum weight requires time at most $O(n)$. Determining two elements of minimum weights requires time $O(2 n)$. The for loop requires time $O\left(2 n^{2}\right)$, which is also the time requirement for the algorithm. An efficient implementation of the priority queue Q, e.g. as a binary minimum heap, can lower the running time of Algorithm 2.6 down to $O\left(n \log _{2}(n)\right)$.

Algorithm 2.6 represents the Huffman code of an alphabet as a binary tree T rooted at r. For an illustration of the process of constructing a Huffman tree, see Figure 2.26. To determine the actual encoding of each symbol in the alphabet, we feed T and r to Algorithm 2.7 to obtain the encoding of each symbol. Starting from the root r whose designated label is the empty string ε, the algorithm traverses the vertices of T in a
 (a)

(b)
(c)

(e)

(d)

(f)

(h)

(j)

Figure 2.26: Constructing a Huffman tree.
breadth-first search fashion. If v is an internal vertex with label e , the label of its leftchild is the concatenation e 0 and for the right-child of v we assign the label e1. If v happens to be a leaf vertex, we take its label to be its Huffman encoding. Any Huffman encoding assigned to a symbol of an alphabet is not unique. Either of the two children of an internal vertex can be designated as the left- (respectively, right-) child. The runtime of Algorithm 2.7 is $O(|V|)$, where V is the vertex set of T.

```
Algorithm 2.7 Huffman encoding of an alphabet.
Input A binary tree \(T\) representing the Huffman code of an alphabet \(A\). The root \(r\) of
    \(T\).
Output A list \(H\) representing a Huffman code of \(A\), where \(H\left[a_{i}\right]\) corresponds to a
    Huffman encoding of \(a_{i} \in A\).
    \(H \leftarrow[] \quad \triangleright\) list of Huffman encodings
    \(Q \leftarrow[r] \quad \triangleright\) queue of vertices
    while length \((Q)>0\) do
        root \(\leftarrow\) dequeue \((Q)\)
        if root is a leaf then
            \(H[\) root \(] \leftarrow\) label of root
        else
            \(a \leftarrow\) left child of root
            \(b \leftarrow\) right child of root
            enqueue \((Q, a)\)
            enqueue \((Q, b)\)
            label of \(a \leftarrow\) label of root +0
            label of \(b \leftarrow\) label of root +1
    return \(H\)
```

Example 2.28. Consider the alphabet $\mathcal{A}=\{a, b, c, d, e, f\}$ with corresponding weights $w(a)=19, w(b)=2, w(c)=40, w(d)=25, w(e)=31$, and $w(f)=3$. Construct a binary tree representation of the Huffman code of \mathcal{A} and determine the encoding of each symbol of \mathcal{A}.

Solution. Use Algorithm 2.6 to construct a binary tree representation of the weighted alphabet \mathcal{A}. The resulting binary tree T is shown in Figure 2.27(a), where $a_{i}: w_{i}$ is an abbreviation for "vertex a_{i} has weight w_{i} ". The binary tree is rooted at k. To encode each alphabetic symbol, input T and k into Algorithm 2.7 to get the encodings shown in Figure 2.27(b).

2.6 Tree traversals

In computer science, tree traversal refers to the process of examining each vertex in a tree data structure. Starting at the root of an ordered tree T, we can traverse the vertices of T in one of various ways.

A level-order traversal of an ordered tree T examines the vertices in increasing order of depth, with vertices of equal depth being examined according to their prescribed order. One way to think about level-order traversal is to consider vertices of T having the same depth as being ordered from left to right in decreasing order of importance.

Figure 2.27: Binary tree representation of an alphabet and its Huffman encodings.

If $\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ lists the vertices from left to right at depth k, a decreasing order of importance can be realized by assigning each vertex a numeric label using a labelling function $L: V(T) \rightarrow \mathbf{R}$ such that $L\left(v_{1}\right)<L\left(v_{2}\right)<\cdots<L\left(v_{n}\right)$. In this way, a vertex with a lower numeric label is examined prior to a vertex with a higher numeric label. A level-order traversal of T, whose vertices of equal depth are prioritized according to L, is an examination of the vertices of T from top to bottom, left to right. As an example, the level-order traversal of the tree in Figure 2.28 is

$$
42,4,15,2,3,5,7,10,11,12,13,14
$$

Our discussion is formalized in Algorithm 2.8, whose general structure mimics that of breadth-first search. For this reason, level-order traversal is also known as breadth-first traversal. Each vertex is enqueued and dequeued exactly once. The while loop is executed n times, hence we have a runtime of $O(n)$. Another name for level-order traversal is topdown traversal because we first visit the root node and then work our way down the tree, increasing the depth as we move downward.

```
Algorithm 2.8 Level-order traversal.
Input An ordered tree \(T\) on \(n>0\) vertices.
Output A list of the vertices of \(T\) in level-order.
    \(L \leftarrow[]\)
    \(Q \leftarrow\) empty queue
    \(r \leftarrow \operatorname{root}\) of \(T\)
    enqueue \((Q, r)\)
    while length \((Q)>0\) do
        \(v \leftarrow\) dequeue \((Q)\)
        \(\operatorname{append}(L, v)\)
        \(\left[u_{1}, u_{2}, \ldots, u_{k}\right] \leftarrow\) ordering of children of \(v\)
        for \(i \leftarrow 1,2, \ldots, k\) do
            enqueue \(\left(Q, u_{i}\right)\)
    return \(L\)
```


Figure 2.28: Traversing a tree.

Pre-order traversal is a traversal of an ordered tree using a general strategy similar to depth-first search. For this reason, pre-order traversal is also referred to as depth-first traversal. Parents are visited prior to their respective children and siblings are visited according to their prescribed order. The pseudocode for pre-order traversal is presented in Algorithm 2.9. Note the close resemblance to Algorithm 2.8; the only significant change is to use a stack instead of a queue. Each vertex is pushed and popped exactly once, so the while loop is executed n times, resulting in a runtime of $O(n)$. Using Algorithm 2.9, a pre-order traversal of the tree in Figure 2.28 is

$$
42,4,2,3,10,11,14,5,12,13,15,7 .
$$

```
Algorithm 2.9 Pre-order traversal.
Input An ordered tree \(T\) on \(n>0\) vertices.
Output A list of the vertices of \(T\) in pre-order.
    \(L \leftarrow[]\)
    \(S \leftarrow\) empty stack
    \(r \leftarrow \operatorname{root}\) of \(T\)
    push \((S, r)\)
    while length \((S)>0\) do
        \(v \leftarrow \operatorname{pop}(S)\)
        \(\operatorname{append}(L, v)\)
        \(\left[u_{1}, u_{2}, \ldots, u_{k}\right] \leftarrow\) ordering of children of \(v\)
        for \(i \leftarrow k, k-1, \ldots, 1\) do
            \(\operatorname{push}\left(S, u_{i}\right)\)
    return \(L\)
```

Whereas pre-order traversal lists a vertex v the first time we visit it, post-order traversal lists v the last time we visit it. In other words, children are visited prior to their respective parents, with siblings being visited in their prescribed order. The prefix "pre" in "pre-order traversal" means "before", i.e. visit parents before visiting children. On the other hand, the prefix "post" in "post-order traversal" means "after", i.e. visit parents after having visited their children. The pseudocode for post-order traversal is presented
in Algorithm 2.10, whose general structure bears close resemblance to Algorithm 2.9. The while loop of the former is executed n times because each vertex is pushed and popped exactly once, resulting in a runtime of $O(n)$. The post-order traversal of the tree in Figure 2.28 is

$$
2,10,14,11,3,12,13,5,4,7,15,42
$$

```
Algorithm 2.10 Post-order traversal.
Input An ordered tree \(T\) on \(n>0\) vertices.
Output A list of the vertices of \(T\) in post-order.
    \(L \leftarrow[]\)
    \(S \leftarrow\) empty stack
    \(r \leftarrow\) root of \(T\)
    \(\operatorname{push}(S, r)\)
    while length \((S)>0\) do
        if \(\operatorname{top}(S)\) is unmarked then
            mark top \((S)\)
            \(\left[u_{1}, u_{2}, \ldots, u_{k}\right] \leftarrow\) ordering of children of \(\operatorname{top}(S)\)
            for \(i \leftarrow k, k-1, \ldots, 1\) do
                \(\operatorname{push}\left(S, u_{i}\right)\)
        else
            \(v \leftarrow \operatorname{pop}(S)\)
            \(\operatorname{append}(L, v)\)
    return \(L\)
```

Instead of traversing a tree T from top to bottom as is the case with level-order traversal, we can reverse the direction of our traversal by traversing a tree from bottom to top. Called bottom-up traversal, we first visit all the leaves of T and consider the subtree T_{1} obtained by vertex deletion of those leaves. We then recursively perform bottom-up traversal of T_{1} by visiting all of its leaves and obtain the subtree T_{2} resulting from vertex deletion of those leaves of T_{1}. Apply bottom-up traversal to T_{2} and its vertex deletion subtrees until we have visited all vertices, including the root vertex. The result is a procedure for bottom-up traversal as presented in Algorithm 2.11. In lines 3 to 5, we initialize the list C to contain the number of children of vertex i. This takes $O(m)$ time, where $m=|E(T)|$. Lines 6 to 14 extract all the leaves of T and add them to the queue Q. From lines 15 to 23 , we repeatedly apply bottom-up traversal to subtrees of T. As each vertex is enqueued and dequeued exactly once, the two loops together run in time $O(n)$ and therefore Algorithm 2.11 has a runtime of $O(n+m)$. As an example, a bottom-up traversal of the tree in Figure 2.28 is

$$
2,7,10,12,13,14,15,5,11,3,4,42 .
$$

Yet another common tree traversal technique is called in-order traversal. However, inorder traversal is only applicable to binary trees, whereas the other traversal techniques we considered above can be applied to any tree with at least one vertex. Given a binary tree T having at least one vertex, in-order traversal first visits the root of T and consider its left- and right-children. We then recursively apply in-order traversal to the left and right subtrees of the root vertex. Notice the symmetry in our description of in-order traversal: start at the root, then traverse the left and right subtrees in in-order. For this

```
Algorithm 2.11 Bottom-up traversal.
Input An ordered tree \(T\) on \(n>0\) vertices.
Output A list of the vertices of \(T\) in bottom-up order.
    \(Q \leftarrow\) empty queue
    \(r \leftarrow\) root of \(T\)
    \(C \leftarrow[0,0, \ldots, 0] \quad \triangleright n\) copies of 0
    for each edge \((u, v) \in E(T)\) do
        \(C[u] \leftarrow C[u]+1\)
    \(R \leftarrow\) empty queue
    enqueue \((R, r)\)
    while length \((R)>0\) do
        \(v \leftarrow\) dequeue \((R)\)
        for each \(w \in \operatorname{children}(v)\) do
        if \(C[w]=0\) then
                enqueue \((Q, w)\)
            else
                enqueue \((R, w)\)
    \(L \leftarrow[]\)
    while length \((Q)>0\) do
        \(v \leftarrow\) dequeue \((Q)\)
        \(\operatorname{append}(L, v)\)
        if \(v \neq r\) then
        \(C[\) parent \((v)] \leftarrow C[\operatorname{parent}(v)]-1\)
        if \(C[\) parent \((v)]=0\) then
            \(u \leftarrow \operatorname{parent}(v)\)
            enqueue \((Q, u)\)
    return \(L\)
```

```
Algorithm 2.12 In-order traversal.
Input A binary tree \(T\) on \(n>0\) vertices.
Output A list of the vertices of \(T\) in in-order.
    \(L \leftarrow[]\)
    \(S \leftarrow\) empty stack
    \(v \leftarrow \operatorname{root}\) of \(T\)
    while true do
        if \(v \neq\) Null then
            \(\operatorname{push}(S, v)\)
            \(v \leftarrow\) left-child of \(v\)
        else
            if length \((S)=0\) then
                    exit the loop
            \(v \leftarrow \operatorname{pop}(S)\)
            \(\operatorname{append}(L, v)\)
            \(v \leftarrow\) right-child of \(v\)
    return \(L\)
```

reason, in-order traversal is sometimes referred to as symmetric traversal. Our discussion is summarized in Algorithm 2.12. In the latter algorithm, if a vertex does not have a left-child, then the operation of finding its left-child returns NULL. The same holds when the vertex does not have a right-child. Since each vertex is pushed and popped exactly once, it follows that in-order traversal runs in time $O(n)$. Using Algorithm 2.12, an in-order traversal of the tree in Figure 2.27(b) is

$$
0000,000,0001,00,001,0,01, \varepsilon, 10,1,11 .
$$

2.7 Problems

When solving problems, dig at the roots instead of just hacking at the leaves. - Anthony J. D'Angelo, The College Blue Book
2.1. Construct all nonisomorphic trees of order 7 .
2.2. Let G be a weighted connected graph and let T be a subgraph of G. Then T is a maximum spanning tree of G provided that the following conditions are satisfied:
(a) T is a spanning tree of G.
(b) The total weight of T is maximum among all spanning trees of G.

Modify Kruskal's, Prim's, and Borůvka's algorithms to return a maximum spanning tree of G.
2.3. Describe and present pseudocode of an algorithm to construct all spanning trees of a connected graph. What is the worst-case runtime of your algorithm? How many of the constructed spanning trees are nonisomorphic to each other? Repeat the exercise for minimum and maximum spanning trees.
2.4. Consider an undirected, connected simple graph $G=(V, E)$ of order n and size m and having an integer weight function $w: E \rightarrow \mathbf{Z}$ given by $w(e)>0$ for all $e \in E$. Suppose that G has N minimum spanning trees. Yamada et al. [198] provide an $O(N m \ln n)$ algorithm to construct all the N minimum spanning trees of G. Describe and provide pseudocode of the Yamada-Kataoka-Watanabe algorithm. Provide runtime analysis and prove the correctness of this algorithm.
2.5. The solution of Example 2.3 relied on the following result: Let $T=(V, E)$ be a tree rooted at v_{0} and suppose v_{0} has exactly two children. If $\max _{v \in V} \operatorname{deg}(v)=3$ and v_{0} is the only vertex with degree 2 , then T is a binary tree. Prove this statement. Give examples of graphs that are binary trees but do not satisfy the conditions of the result. Under which conditions would the above test return an incorrect answer?
2.6. What is the worst-case runtime of Algorithm 2.1?
2.7. Figure 2.5 shows two nonisomorphic spanning trees of the 4×4 grid graph.
(a) For each $n=1,2, \ldots, 7$, construct all nonisomorphic spanning trees of the $n \times n$ grid graph.
(b) Explain and provide pseudocode of an algorithm for constructing all spanning trees of the $n \times n$ grid graph, where $n>0$.
(c) In general, if n is a positive integer, how many nonisomorphic spanning trees are there in the $n \times n$ grid graph?
(d) Describe and provide pseudocode of an algorithm to generate a random spanning tree of the $n \times n$ grid graph. What is the worst-case runtime of your algorithm?
2.8. Theorem 2.4 shows how to recursively construct a new tree from a given collection of trees, hence it can be considered as a recursive definition of trees. To prove theorems based upon recursive definitions, we use a proof technique called structural induction. Let $S(C)$ be a statement about the collection of structures C, each of which is defined by a recursive definition. In the base case, prove $S(C)$ for the basis structure(s) C. For the inductive case, let X be a structure formed using the recursive definition from the structures $Y_{1}, Y_{2}, \ldots, Y_{k}$. Assume for induction that the statements $S\left(Y_{1}\right), S\left(Y_{2}\right), \ldots, S\left(Y_{k}\right)$ hold and use the inductive hypotheses $S\left(Y_{i}\right)$ to prove $S(X)$. Hence conclude that $S(X)$ is true for all X. Apply structural induction to show that any graph constructed using Theorem 2.4 is indeed a tree.
2.9. In Kruskal's Algorithm 2.2, line 5 requires that the addition of a new edge to T does not result in T having a cycle. A tree by definition has no cycles. Suppose line 5 is changed to:

$$
\text { if } e_{i} \notin E(T) \text { and } T \cup\left\{e_{i}\right\} \text { is a tree then }
$$

With this change, explain why Algorithm 2.2 would return a minimum spanning tree or why the algorithm would fail to do so.
2.10. This problem is concerned with improving the runtime of Kruskal's Algorithm 2.2. Explain how to use a priority queue to obviate the need for sorting the edges by weight. Investigate the union-find data structure. Explain how to use union-find to ensure that the addition of each edge results in an acyclic graph.
2.11. Figure 2.29 shows a weighted version of the Chvátal graph, which has 12 vertices and 24 edges. Use this graph as input to Kruskal's, Prim's, and Borůvka's algorithms and compare the resulting minimum spanning trees.
2.12. Algorithm 2.1 presents a randomized procedure to construct a spanning tree of a given connected graph via repeated edge deletion.
(a) Describe and present pseudocode of a randomized algorithm to grow a spanning tree via edge addition.
(b) Would Algorithm 2.1 still work if the input graph G has self-loops or multiple edges? Explain why or why not. If not, modify Algorithm 2.1 to handle the case where G has self-loops and multiple edges.
(c) Repeat the previous exercise for Kruskal's, Prim's, and Borůvka's algorithms.
2.13. Algorithm 2.13 constructs a random spanning tree of the complete graph K_{n} on $n>0$ vertices. Its runtime is dependent on efficient algorithms for obtaining a random permutation of a set of objects, and choosing a random element from a given set.

Figure 2.29: Weighted Chvátal graph.

```
Algorithm 2.13 Random spanning tree of \(K_{n}\).
    \(\{0,1, \ldots, n-1\}\).
Output A random spanning tree of \(K_{n}\).
    if \(n=1\) then
        return \(K_{1}\)
    \(P \leftarrow\) random permutation of \(V\)
    \(T \leftarrow\) null tree
    for \(i \leftarrow 1,2, \ldots, n-1\) do
        \(j \leftarrow\) random element from \(\{0,1, \ldots, i-1\}\)
        add edge \((P[j], P[i])\) to \(T\)
    return \(T\)
```

Input A positive integer n representing the order of K_{n}, with vertex set $V=$
(a) Describe and analyze the runtime of a procedure to construct a random permutation of a set of nonnegative integers.
(b) Describe an algorithm for randomly choosing an element of a set of nonnegative integers. Analyze the runtime of this algorithm.
(c) Taking into consideration the previous two algorithms, what is the runtime of Algorithm 2.13?
2.14. We want to generate a random undirected, connected simple graph on n vertices and having m edges. Start by generating a random spanning tree T of K_{n}. Then add random edges to T until the requirements are satisfied.
(a) Present pseudocode to realize the above procedure. What is the worst-case runtime of your algorithm?
(b) Modify your algorithm to handle the case where $m<n-1$. Why must $m \geq n-1$?
(c) Modify your algorithm to handle the case where each edge has a weight within the closed interval $[\alpha, \beta]$.
2.15. Enumerate all the different binary trees on 5 vertices.
2.16. Algorithm 2.5 generates a random binary tree on $n>0$ vertices. Modify this algorithm so that it generates a random k-ary tree of order $n>0$, where $k \geq 3$.
2.17. Show by giving an example that the Morse code is not prefix-free.
2.18. Consider the alphabet $\mathcal{A}=\{a, b, c\}$ with corresponding probabilities (or weights) $p(a)=0.5, p(b)=0.3$, and $p(c)=0.2$. Generate two different Huffman codes for \mathcal{A} and illustrate the tree representations of those codes.
2.19. Find the Huffman code for the letters of the English alphabet weighted by the frequency of common American usage. ${ }^{4}$
2.20. Let $G=\left(V_{1}, E_{2}\right)$ be a graph and $T=\left(V_{2}, E_{2}\right)$ a spanning tree of G. Show that there is a one-to-one correspondence between fundamental cycles in G and edges not in T.
2.21. Let $G=(V, E)$ be the 3×3 grid graph and $T_{1}=\left(V_{1}, E_{1}\right), T_{2}=\left(V_{2}, E_{2}\right)$ be spanning trees of G in Example 2.1. Find a fundamental cycle in G for T_{1} that is not a fundamental cycle in G for T_{2}.
2.22. Usually there exist many spanning trees of a graph. Classify those graphs for which there is only one spanning tree. In other words, find necessary and sufficient conditions for a graph G such that if T is a spanning tree of G then T is unique.
2.23. Convert the function graycodeword into a pure Python function.
2.24. Example 2.13 verifies that for any positive integer $n>1$, repeated iteration of the Euler phi function $\varphi(n)$ eventually produces 1 . Show that this is the case or provide an explanation why it is in general false.

[^8]2.25. The Collatz conjecture [126] asserts that for any integer $n>0$, repeated iteration of the function
\[

T(n)= $$
\begin{cases}\frac{3 n+1}{2}, & \text { if } n \text { is odd } \\ \frac{n}{2}, & \text { if } n \text { is even }\end{cases}
$$
\]

eventually produces the value 1 . For example, repeated iteration of $T(n)$ starting from $n=22$ results in the sequence

$$
\begin{equation*}
22,11,17,26,13,20,10,5,8,4,2,1 \tag{2.4}
\end{equation*}
$$

One way to think about the Collatz conjecture is to consider the digraph G produced by considering $\left(a_{i}, T\left(a_{i}\right)\right)$ as a directed edge of G. Then the Collatz conjecture can be rephrased to say that there is some integer $k>0$ such that $\left(a_{k}, T\left(a_{k}\right)\right)=(2,1)$ is a directed edge of G. The graph obtained in this manner is called the Collatz graph of $T(n)$. Given a collection of positive integers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$, let $G_{\alpha_{i}}$ be the Collatz graph of the function $T\left(\alpha_{i}\right)$ with initial iteration value α_{i}. Then the union of the $G_{\alpha_{i}}$ is the directed tree

$$
\bigcup_{i} G_{\alpha_{i}}
$$

rooted at 1, called the Collatz tree of $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$. Figure 2.30 shows such a tree for the collection of initial iteration values 1024, 336, 340, 320, 106, 104, and 96. See Lagarias [127,128] for a comprehensive survey of the Collatz conjecture.
(a) The Collatz sequence of a positive integer $n>1$ is the integer sequence produced by repeated iteration of $T(n)$ with initial iteration value n. For example, the Collatz sequence of $n=22$ is the sequence (2.4). Write a Sage function to produce the Collatz sequence of an integer $n>1$.
(b) The Collatz length of $n>1$ is the number of terms in the Collatz sequence of n, inclusive of the starting iteration value and the final integer 1 . For instance, the Collatz length of 22 is 12 , that of 106 is 11 , and that of 51 is 18 . Write a Sage function to compute the Collatz length of a positive integer $n>1$. If $n>1$ is a vertex in a Collatz tree, verify that the Collatz length of n is the distance $d(n, 1)$.
(c) Describe the Collatz graph produced by the function $T(n)$ with initial iteration value $n=1$.
(d) Fix a positive integer $n>1$ and let L_{i} be the Collatz length of the integer $1 \leq i \leq n$. Plot the pairs $\left(i, L_{i}\right)$ on one set of axes.
2.26. The following result was first published in Wiener [196]. Let $T=(V, E)$ be a tree of order $n>0$. For each edge $e \in E$, let $n_{1}(e)$ and $n_{2}(e)=n-n_{1}(e)$ be the orders of the two components of the edge-deletion subgraph $T-e$. Show that the Wiener number of T is

$$
W(T)=\sum_{e \in E} n_{1}(e) \cdot n_{2}(e) .
$$

2.27. The following result [147] was independently discovered in the late 1980s by Merris and McKay, and is known as the Merris-McKay theorem. Let T be a tree of order

Figure 2.30: The union of Collatz graphs is a tree.
n and let \mathcal{L} be its Laplacian matrix having eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Show that the Wiener number of T is

$$
W(T)=n \sum_{i=1}^{n-1} \frac{1}{\lambda_{i}} .
$$

2.28. For each of the algorithms below: (i) justify whether or not it can be applied to multigraphs or multidigraphs; (ii) if not, modify the algorithm so that it is applicable to multigraphs or multidigraphs.
(a) Randomized spanning tree construction Algorithm 2.1.
(b) Kruskal's Algorithm 2.2.
(c) Prim's Algorithm 2.3.
(d) Borůvka's Algorithm 2.4.
2.29. Section 2.6 provides iterative algorithms for the following tree traversal techniques:
(a) Level-order traversal: Algorithm 2.8.
(b) Pre-order traversal: Algorithm 2.9.
(c) Post-order traversal: Algorithm 2.10.
(d) Bottom-up traversal: Algorithm 2.11.
(e) In-order traversal: Algorithm 2.12.

Rewrite each of the above as recursive algorithms.
2.30. In cryptography, the Merkle signature scheme [145] was introduced in 1987 as an alternative to traditional digital signature schemes such as the Digital Signature Algorithm or RSA. Buchmann et al. [43] and Szydlo [178] provide efficient algorithms for speeding up the Merkle signature scheme. Investigate this scheme and how it uses binary trees to generate digital signatures.
2.31. Consider the finite alphabet $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$. If C is a subset of \mathcal{A}^{*}, then we say that C is an r-ary code and call r the radix of the code. McMillan's theorem [143], first published in 1956, relates codeword lengths to unique decipherability. In particular, let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be an r-ary code where each c_{i} has length ℓ_{i}. If C is uniquely decipherable, McMillan's theorem states that the codeword lengths ℓ_{i} must satisfy Kraft's inequality

$$
\sum_{i=1}^{n} \frac{1}{r^{r_{i}}} \leq 1
$$

Prove McMillan's theorem.
2.32. A code $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ is said to be instantaneous if each codeword c_{i} can be interpreted as soon as it is received. For example, given the the code $\{01,010\}$ and the string 01010, upon receiving the first 0 we are unable to decide whether that element belong to 01 or 010 . However, the code $\{1,01\}$ is instantaneous because given the string 1101 and the first 1, we can interpret the latter as the codeword 1. Prove that a code is instantaneous if and only if it is prefix-free.
2.33. Kraft's inequality and the accompanying Kraft's theorem were first published [124] in 1949 in the Master's thesis of Leon Gordon Kraft. Kraft's theorem relates the inequality to instantaneous codes. Let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be an r-ary code where each codeword c_{i} has length ℓ_{i}. Kraft's theorem states that C is an instantaneous code if and only if the codeword lengths satisfy

$$
\sum_{i=1}^{n} \frac{1}{r^{r_{i}}} \leq 1
$$

Prove Kraft's theorem.
2.34. Let T be a nontrivial tree and let n_{i} count the number of vertices of T that have degree i. Show that T has $2+\sum_{i=3}^{\infty}(i-2) n_{i}$ leaves.
2.35. If a forest F has k trees totalling n vertices altogether, how many edges does F contain?
2.36. The Lucas number L_{n}, named after Édouard Lucas, has the following recursive definition:

$$
L_{n}= \begin{cases}2, & \text { if } n=0 \\ 1, & \text { if } n=1, \\ L_{n-1}+L_{n-2}, & \text { if } n>1\end{cases}
$$

(a) If $\varphi=(1+\sqrt{5}) / 2$ is the golden ratio, show that

$$
L_{n}=\varphi^{n}+(-\varphi)^{-n} .
$$

(b) Let $\tau\left(W_{n}\right)$ be the number of spanning trees of the wheel graph. Benjamin and Yerger [22] provide a combinatorial proof that $\tau\left(W_{n}\right)=L_{2 n}-2$. Present the Benjamin-Yerger combinatorial proof.
(c) Let G be the Dodecahedral graph, implemented in Sage as G = graphs.DodecahedralGraph Does its cutset matrix satisfy the undirected analog of Theorem 2.19?

Chapter 3

Shortest paths algorithms

- Randall Munroe, xkcd, http://xkcd.com/518/

Graph algorithms have many applications. Suppose you are a salesman with a product you would like to sell in several cities. To determine the cheapest travel route from city-to-city, you must effectively search a graph having weighted edges for the "cheapest" route visiting each city once. Each vertex denotes a city you must visit and each edge has a weight indicating either the distance from one city to another or the cost to travel from one city to another.

Shortest path algorithms are some of the most important algorithms in algorithmic graph theory. In this chapter, we first examine several common graph traversal algorithms and some basic data structures underlying these algorithms. A data structure is a combination of methods for structuring a collection of data (e.g. vertices and edges) and protocols for accessing the data. We then consider a number of common shortest path algorithms, which rely in one way or another on graph traversal techniques and basic data structures for organizing and managing vertices and edges.

3.1 Representing graphs in a computer

To err is human but to really foul things up requires a computer.

- Anonymous, Farmers' Almanac for 1978, "Capsules of Wisdom"

In section 1.3, we discussed how to use matrices for representing graphs and digraphs. If $A=\left[a_{i j}\right]$ is an $m \times n$ matrix, the adjacency matrix representation of a graph would require representing all the $m n$ entries of A. Alternative graph representations exist that are much more efficient than representing all entries of a matrix. The graph representation used can be influenced by the size of a graph or the purpose of the representation. Section 3.1.1 discusses the adjacency list representation that can result in less storage space requirement than the adjacency matrix representation. The graph6 format discussed in section 3.1.3 provides a compact means of storing graphs for archival purposes.

3.1.1 Adjacency lists

A list is a sequence of objects. Unlike sets, a list may contain multiple copies of the same object. Each object in a list is referred to as an element of the list. A list L of $n \geq 0$ elements is written as $L=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$, where the i-th element a_{i} can be indexed as $L[i]$. In case $n=0$, the list $L=[]$ is referred to as the empty list. Two lists are equivalent if they both contain the same elements at exactly the same positions.

Define the adjacency lists of a graph as follows. Let G be a graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Assign to each vertex v_{i} a list L_{i} containing all the vertices that are adjacent to v_{i}. The list L_{i} associated with v_{i} is referred to as the adjacency list of v_{i}. Then $L_{i}=[]$ if and only if v_{i} is an isolated vertex. We say that L_{i} is the adjacency list of v_{i} because any permutation of the elements of L_{i} results in a list that contains the same vertices adjacent to v_{i}. We are mainly concerned with the neighbors of v_{i}, but disregard the position where each neighbor is located in L_{i}. If each adjacency list L_{i} contains s_{i} elements where $0 \leq s_{i} \leq n$, we say that L_{i} has length s_{i}. The adjacency list representation of the graph G requires that we represent $\sum_{i} s_{i}=2 \cdot|E(G)| \leq n^{2}$ elements in a computer's memory, since each edge appears twice in the adjacency list representation. An adjacency list is explicit about which vertices are adjacent to a vertex and implicit about which vertices are not adjacent to that same vertex. Without knowing the graph G, given the adjacency lists $L_{1}, L_{2}, \ldots, L_{n}$, we can reconstruct G. For example, Figure 3.1 shows a graph and its adjacency list representation.

Figure 3.1: A graph and its adjacency lists.

Example 3.1. The Kneser graph with parameters (n, k), also known as the (n, k)-Kneser graph, is the graph whose vertices are all the k-subsets of $\{1,2, \ldots, n\}$. Furthermore, two
vertices are adjacent if their corresponding sets are disjoint. Draw the (5,2)-Kneser graph and find its order and adjacency lists. In general, if n and k are positive, what is the order of the (n, k)-Kneser graph?

Solution. The (5, 2)-Kneser graph is the graph whose vertices are the 2 -subsets

$$
\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{2,3\},\{2,4\},\{2,5\},\{3,4\},\{3,5\},\{4,5\}
$$

of $\{1,2,3,4,5\}$. That is, each vertex of the (5,2)-Kneser graph is a 2 -combination of the set $\{1,2,3,4,5\}$ and therefore the graph itself has order $\binom{5}{2}=\frac{5 \times 4}{2!}=10$. The edges of this graph are

$$
\begin{aligned}
& (\{1,3\},\{2,4\}),(\{2,4\},\{1,5\}),(\{2,4\},\{3,5\}),(\{1,3\},\{4,5\}),(\{1,3\},\{2,5\}) \\
& (\{3,5\},\{1,4\}),(\{3,5\},\{1,2\}),(\{1,4\},\{2,3\}),(\{1,4\},\{2,5\}),(\{4,5\},\{2,3\}) \\
& (\{4,5\},\{1,2\}),(\{1,5\},\{2,3\}),(\{1,5\},\{3,4\}),(\{3,4\},\{1,2\}),(\{3,4\},\{2,5\})
\end{aligned}
$$

from which we obtain the following adjacency lists:

$$
\begin{array}{ll}
L_{\{1,2\}}=[\{3,4\},\{3,5\},\{4,5\}], & L_{\{1,3\}}=[\{2,4\},\{2,5\},\{4,5\}], \\
L_{\{1,4\}}=[\{2,3\},\{3,5\},\{2,5\}], & L_{\{1,5\}}=[\{2,4\},\{3,4\},\{2,3\}], \\
L_{\{2,3\}}=[\{1,5\},\{1,4\},\{4,5\}], & L_{\{2,4\}}=[\{1,3\},\{1,5\},\{3,5\}], \\
L_{\{2,5\}}=[\{1,3\},\{3,4\},\{1,4\}], & L_{\{3,4\}}=[\{1,2\},\{1,5\},\{2,5\}], \\
L_{\{3,5\}}=[\{2,4\},\{1,2\},\{1,4\}], & L_{\{4,5\}}=[\{1,3\},\{1,2\},\{2,3\}] .
\end{array}
$$

The (5,2)-Kneser graph itself is shown in Figure 3.2. Using Sage, we have

```
sage: K = graphs.KneserGraph(5, 2); K
Kneser graph with parameters 5,2: Graph on 10 vertices
sage: for v in K.vertices():
    print(v, K.neighbors(v))
({4, 5}, [{1, 3}, {1, 2}, {2, 3}])
({1, 3}, [{2, 4}, {2, 5}, {4, 5}])
({2, 5}, [{1, 3}, {3, 4}, {1, 4}])
({2, 3}, [{1, 5}, {1, 4}, {4, 5}])
({3, 4}, [{1, 2}, {1, 5}, {2, 5}])
({3, 5}, [{2, 4}, {1, 2}, {1, 4}])
({1, 4}, [{2, 3}, {3, 5}, {2, 5}])
({1, 5}, [{2, 4}, {3, 4}, {2, 3}])
({1, 2}, [{3, 4}, {3, 5}, {4, 5}])
({2, 4}, [{1, 3}, {1, 5}, {3, 5}])
```

If n and k are positive integers, then the (n, k)-Kneser graph has

$$
\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!}
$$

vertices.
We can categorize a graph $G=(V, E)$ as dense or sparse based upon its size. A dense graph has size $|E|$ that is close to $|V|^{2}$, i.e. $|E|=\Omega\left(|V|^{2}\right)$, in which case it is feasible to represent G as an adjacency matrix. The size of a sparse graph is much less than $|V|^{2}$, i.e. $|E|=\Omega(|V|)$, which renders the adjacency matrix representation as unsuitable. For a sparse graph, an adjacency list representation can require less storage space than an adjacency matrix representation of the same graph.

Figure 3.2: The (5, 2)-Kneser graph.

3.1.2 Edge lists

Lists can also be used to store the edges of a graph. To create an edge list L for a graph G, if $u v$ is an edge of G then we let $u v$ or the ordered pair (u, v) be an element of L. In general, let

$$
v_{0} v_{1}, v_{2} v_{3}, \ldots, v_{k} v_{k+1}
$$

be all the edges of G, where k is even. Then the edge list of G is given by

$$
L=\left[v_{0} v_{1}, v_{2} v_{3}, \ldots, v_{k} v_{k+1}\right] .
$$

In some cases, it is desirable to have the edges of G be in contiguous list representation. If the edge list L of G is as given above, the contiguous edge list representation of the edges of G is

$$
\left[v_{0}, v_{1}, v_{2}, v_{3}, \ldots, v_{k}, v_{k+1}\right] .
$$

That is, if $0 \leq i \leq k$ is even then $v_{i} v_{i+1}$ is an edge of G.

3.1.3 The graph6 format

The graph formats graph6 and sparse6 were developed by Brendan McKay [141] at The Australian National University as a compact way to represent graphs. These two formats use bit vectors and printable characters of the American Standard Code for Information Interchange (ASCII) encoding scheme. The 64 printable ASCII characters used in graph6 and sparse6 are those ASCII characters with decimal codes from 63 to 126, inclusive, as shown in Table 3.1. This section shall only cover the graph6 format. For full specification on both of the graph6 and sparse6 formats, see McKay [141].

Bit vectors

Before discussing how graph6 and sparse6 represent graphs using printable ASCII characters, we first present encoding schemes used by these two formats. A bit vector is, as

binary	decimal	glyph	binary	decimal	glyph
0111111	63	$?$	1011111	95	-
1000000	64	©	1100000	96	a
1000001	65	A	1100001	97	a
1000010	66	B	1100010	98	b
1000011	67	C	1100011	99	C
1000100	68	D	1100100	100	d
1000101	69	E	1100101	101	e
1000110	70	F	1100110	102	f
1000111	71	G	1100111	103	g
1001000	72	H	1101000	104	h
1001001	73	I	1101001	105	i
1001010	74	J	1101010	106	j
1001011	75	K	1101011	107	k
1001100	76	L	1101100	108	l
1001101	77	M	1101101	109	m
1001110	78	N	1101110	110	n
1001111	79	O	1101111	111	o
1010000	80	P	1110000	112	p
1010001	81	Q	1110001	113	q
1010010	82	R	1110010	114	r
1010011	83	S	1110011	115	s
1010100	84	T	1110100	116	t
1010101	85	U	1110101	117	u
1010110	86	V	1110110	118	v
1010111	87	W	1110111	119	w
1011000	88	X	1111000	120	x
1011001	89	Y	1111001	121	y
1011010	90	Z	1111010	122	z
1011011	91	[1111011	123	\{
1011100	92	I	1111100	124	l
1011101	93	J	1111101	125	\}
1011110	94	a	1111110	126	\sim

Table 3.1: ASCII printable characters used by graph6 and sparse6.
its name suggests, a vector whose elements are 1's and 0's. It can be represented as a list of bits, e.g. E can be represented as the ASCII bit vector $[1,0,0,0,1,0,1]$. For brevity, we write a bit vector in a compact form such as 1000101. The length of a bit vector is its number of bits. The most significant bit of a bit vector v is the bit position with the largest value among all the bit positions in v. Similarly, the least significant bit is the bit position in v having the least value among all the bit positions in v. The least significant bit of v is usually called the parity bit because when v is interpreted as an integer the parity bit determines whether the integer is even or odd. Reading 1000101 from left to right, the first bit 1 is the most significant bit, followed by the second bit 0 which is the second most significant bit, and so on all the way down to the seventh bit 1 which is the least significant bit.

The order in which we process the bits of a bit vector

$$
\begin{equation*}
v=b_{n-1} b_{n-2} \cdots b_{0} \tag{3.1}
\end{equation*}
$$

is referred to as endianness. Processing v in big-endian order means that we first process the most significant bit of v, followed by the second most significant bit, and so on all the way down to the least significant bit of v. Thus, in big-endian order we read the bits b_{i} of v from left to right in increasing order of powers of 2. Table 3.2 illustrates the big-endian interpretation of the ASCII binary representation of E. Little-endian order means that we first process the least significant bit, followed by the second least significant bit, and so on all the way up to the most significant bit. In little-endian order, the bits b_{i} are read from right to left in increasing order of powers of 2 . Table 3.3 illustrates the little-endian interpretation of the ASCII binary representation of E. In his novel Gulliver's Travels first published in 1726, Jonathan Swift used the terms big- and little-endian in satirizing politicians who squabbled over whether to break an egg at the big end or the little end. Danny Cohen $[55,56$] first used the terms in 1980 as an April fool's joke in the context of computer architecture.

Suppose the bit vector (3.1) is read in big-endian order. To determine the integer representation of v, multiply each bit value by its corresponding position value, then add up all the results. Thus, if v is read in big-endian order, the integer representation of v is obtained by evaluating the polynomial

$$
\begin{equation*}
p(x)=\sum_{i=0}^{n-1} x^{i} b_{i}=x^{n-1} b_{n-1}+x^{n-2} b_{n-2}+\cdots+x b_{1}+b_{0} . \tag{3.2}
\end{equation*}
$$

at $x=2$. See problem 3.?? for discussion of an efficient method to compute the integer representation of a bit vector.

position	0	1	2	3	4	5	6
bit value	1	0	0	0	1	0	1
position value	2^{0}	2^{1}	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}

Table 3.2: Big-endian order of the ASCII binary code of E .
In graph6 and sparse6 formats, the length of a bit vector must be a multiple of 6 . Suppose v is a bit vector of length k such that $6 \nmid k$. To transform v into a bit vector having length a multiple of 6 , let $r=k \bmod 6$ be the remainder upon dividing k by 6 , and pad $6-r$ zeros to the right of v.

position	0	1	2	3	4	5	6
bit value	1	0	0	0	1	0	1
position value	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

Table 3.3: Little-endian order of the ASCII binary code of E.

Suppose $v=b_{1} b_{2} \cdots b_{k}$ is a bit vector of length k, where $6 \mid k$. We split v into $k / 6$ bit vectors v_{i}, each of length 6 . For $0 \leq i \leq k / 6$, the i-th bit vector is given by

$$
v_{i}=b_{6 i-5} b_{6 i-4} b_{6 i-3} b_{6 i-2} b_{6 i-1} b_{6 i} .
$$

Consider each v_{i} as the big-endian binary representation of a positive integer. Use (3.2) to obtain the integer representation N_{i} of each v_{i}. Then add 63 to each N_{i} to obtain N_{i}^{\prime} and store N_{i}^{\prime} in one byte of memory. That is, each N_{i}^{\prime} can be represented as a bit vector of length 8 . Thus the required number of bytes to store v is $\lceil k / 6\rceil$. Let B_{i} be the byte representation of N_{i}^{\prime} so that

$$
\begin{equation*}
R(v)=B_{1} B_{2} \cdots B_{\lceil k / 6\rceil} \tag{3.3}
\end{equation*}
$$

denotes the representation of v as a sequence of $\lceil k / 6\rceil$ bytes.
We now discuss how to encode an integer n in the range $0 \leq n \leq 2^{36}-1$ using (3.3) and denote such an encoding of n as $N(n)$. Let v be the big-endian binary representation of n. Then $N(n)$ is given by

$$
N(n)= \begin{cases}n+63, & \text { if } 0 \leq n \leq 62 \tag{3.4}\\ 126 R(v), & \text { if } 63 \leq n \leq 258047 \\ 126126 R(v), & \text { if } 258048 \leq n \leq 2^{36}-1\end{cases}
$$

Note that $n+63$ requires one byte of storage memory, while $126 R(v)$ and $126126 R(v)$ require 4 and 8 bytes, respectively.

The graph6 format

The graph6 format is used to represent simple, undirected graphs of order from 0 to $2^{36}-1$, inclusive. Let G be a simple, undirected graph of order $0 \leq n \leq 2^{36}-1$. If $n=0$, then G is represented in graph6 format as "?". Suppose $n>0$. Let $M=\left[a_{i j}\right]$ be the adjacency matrix of G. Consider the upper triangle of M, excluding the main diagonal, and write that upper triangle as the bit vector

$$
v=\underbrace{a_{0,1}}_{c_{1}} \underbrace{a_{0,2} a_{1,2}}_{c_{2}} \underbrace{a_{0,3} a_{1,3} a_{2,3}}_{c_{3}} \cdots \underbrace{a_{0, i} a_{1, i} \cdots a_{i-1, i}}_{c_{i}} \cdots \underbrace{a_{0, n} a_{1, n} \cdots a_{n-1, n}}_{c_{n}}
$$

where c_{i} denotes the entries $a_{0, i} a_{1, i} \cdots a_{i-1, i}$ in column i of M. Then the graph6 representation of G is $N(n) R(v)$, where $R(v)$ and $N(n)$ are as in (3.3) and (3.4), respectively. That is, $N(n)$ encodes the order of G and $R(v)$ encodes the edges of G.

3.2 Graph searching

Errors, like straws, upon the surface flow; He who would search for pearls must dive below.

- John Dryden, All for Love, 1678

This section discusses two fundamental algorithms for graph traversal: breadth-first search and depth-first search. The word "search" used in describing these two algorithms is rather misleading. It would be more accurate to describe them as algorithms for constructing trees using the adjacency information of a given graph. However, the names "breadth-first search" and "depth-first search" are entrenched in literature on graph theory and computer science. From hereon, we use these two names as given above, bearing in mind their intended purposes.

3.2.1 Breadth-first search

Breadth-first search (BFS) is a strategy for running through the vertices of a graph. It was presented by Moore [148] in 1959 within the context of traversing mazes. Lee [131] independently discovered the same algorithm in 1961 in his work on routing wires on circuit boards. In the physics literature, BFS is also known as a "burning algorithm" in view of the analogy of a fire burning and spreading through an area, a piece of paper, fabric, etc.

The basic BFS algorithm can be described as follows. Starting from a given vertex v of a graph G, we first explore the neighborhood of v by visiting all vertices that are adjacent to v. We then apply the same strategy to each of the neighbors of v. The strategy of exploring the neighborhood of a vertex is applied to all vertices of G. The result is a tree rooted at v and this tree is a subgraph of G. Algorithm 3.1 presents a general template for the BFS strategy. The tree resulting from the BFS algorithm is called a breadth-first search tree.

```
Algorithm 3.1 A general breadth-first search template.
Input A directed or undirected graph \(G=(V, E)\) of order \(n>0\). A vertex \(s\) from
    which to start the search. The vertices are numbered from 1 to \(n=|V|\), i.e. \(V=\)
    \(\{1,2, \ldots, n\}\).
Output A list \(D\) of distances of all vertices from \(s\). A tree \(T\) rooted at \(s\).
    \(Q \leftarrow[s] \quad \triangleright\) queue of nodes to visit
    \(D \leftarrow[\infty, \infty, \ldots, \infty] \quad \triangleright n\) copies of \(\infty\)
    \(D[s] \leftarrow 0\)
    \(T \leftarrow[]\)
    while length \((Q)>0\) do
        \(v \leftarrow\) dequeue \((Q)\)
        for each \(w \in \operatorname{adj}(v)\) do
            if \(D[w]=\infty\) then
                \(D[w] \leftarrow D[v]+1\)
                enqueue \((Q, w)\)
                    \(\operatorname{append}(T, v w)\)
    return \((D, T)\)
```

The breadth-first search algorithm makes use of a special type of list called a queue. This is analogous to a queue of people waiting in line to be served. A person may enter the queue by joining the rear of the queue. The person who is in the queue the longest amount of time is served first, followed by the person who has waited the second longest time, and so on. Formally, a queue Q is a list of elements. At any time, we only have access to the first element of Q, known as the front or start of the queue. We insert a new element into Q by appending the new element to the rear or end of the queue. The operation of removing the front of Q is referred to as dequeue, while the operation of appending to the rear of Q is called enqueue. That is, a queue implements a first-in first-out (FIFO) protocol for adding and removing elements. As with lists, the length of a queue is its total number of elements.

Figure 3.3: Breadth-first search tree for an undirected graph.
Note that the BFS Algorithm 3.1 works on both undirected and directed graphs. For an undirected graph, line 7 means that we explore all the neighbors of vertex v, i.e. the set $\operatorname{adj}(v)$ of vertices adjacent to v. In the case of a digraph, we replace " $w \in \operatorname{adj}(v)$ " on line 7 with " $w \in \operatorname{oadj}(v)$ " because we only want to explore all vertices that are outneighbors of v. The algorithm returns two lists D and T. The list T contains a subset

(a) Original digraph.

(c) Second iteration of while loop.

(b) First iteration of while loop.

(d) Third iteration of while loop.

(e) Fourth iteration of while loop.

(f) Final BFS tree.

Figure 3.4: Breadth-first search tree for a digraph.
of edges in $E(G)$ that make up a tree rooted at the given start vertex s. As trees are connected graphs without cycles, we may take the vertices comprising the edges of T to be the vertex set of the tree. It is clear that T represents a tree by means of a list of edges, which allows us to identify the tree under consideration as the edge list T. The list D has the same number of elements as the order of $G=(V, E)$, i.e. length $(D)=|V|$. The i-th element $D[i]$ counts the number of edges in T between the vertices s and v_{i}. In other words, $D[i]$ is the length of the $s-v_{i}$ path in T. It can be shown that $D[i]=\infty$ if and only if G is disconnected. After one application of Algorithm 3.1, it may happen that $D[i]=\infty$ for at least one vertex $v_{i} \in V$. To traverse those vertices that are unreachable from s, again we apply Algorithm 3.1 on G with starting vertex v_{i}. Repeat this algorithm as often as necessary until all vertices of G are visited. The result may be a tree that contains all the vertices of G or a collection of trees, each of which contains a subset of $V(G)$. Figures 3.3 and 3.4 present BFS trees resulting from applying Algorithm 3.1 on an undirected graph and a digraph, respectively.

Theorem 3.2. The worst-case time complexity of Algorithm 3.1 is $O(|V|+|E|)$.
Proof. Without loss of generality, we can assume that $G=(V, E)$ is connected. The initialization steps in lines 1 to 4 take $O(|V|)$ time. After initialization, all but one vertex are labelled ∞. Line 8 ensures that each vertex is enqueued at most once and hence dequeued at most once. Each of enqueuing and dequeuing takes constant time. The total time devoted to queue operations is $O(|V|)$. The adjacency list of a vertex is scanned after dequeuing that vertex, so each adjacency list is scanned at most once. Summing the lengths of the adjacency lists, we have $\Theta(|E|)$ and therefore we require $O(|E|)$ time to scan the adjacency lists. After the adjacency list of a vertex is scanned, at most k edges are added to the list T, where k is the length of the adjacency list under consideration. Like queue operations, appending to a list takes constant time, hence we require $O(|E|)$ time to build the list T. Therefore, BFS runs in $O(|V|+|E|)$ time.
Theorem 3.3. For the list D resulting from Algorithm 3.1, let s be a starting vertex and let v be a vertex such that $D[v] \neq \infty$. Then $D[v]$ is the length of any shortest path from s to v.
Proof. It is clear that $D[v]=\infty$ if and only if there are no paths from s to v. Let v be a vertex such that $D[v] \neq \infty$. As v can be reached from s by a path of length $D[v]$, the length $d(s, v)$ of any shortest $s-v$ path satisfies $d(s, v) \leq D[v]$. Use induction on $d(s, v)$ to show that equality holds. For the base case $s=v$, we have $d(s, v)=D[v]=0$ since the trivial path has length zero. Assume for induction that if $d(s, v)=k$, then $d(s, v)=D[v]$. Let $d(s, u)=k+1$ with the corresponding shortest $s-u$ path being $\left(s, v_{1}, v_{2}, \ldots, v_{k}, u\right)$. By our induction hypothesis, $\left(s, v_{1}, v_{2}, \ldots, v_{k}\right)$ is a shortest path from s to v_{k} of length $d\left(s, v_{k}\right)=D\left[v_{k}\right]=k$. In other words, $D\left[v_{k}\right]<D[u]$ and the while loop spanning lines 5 to 11 processes v_{k} before processing u. The graph under consideration has the edge $v_{k} u$. When examining the adjacency list of v_{k}, BFS reaches u (if u is not reached earlier) and so $D[u] \leq k+1$. Hence, $D[u]=k+1$ and therefore $d(s, u)=D[u]=k+1$.

In the proof of Theorem 3.3, we used $d(u, v)$ to denote the length of the shortest path from u to v. This shortest path length is also known as the distance from u to v, and will be discussed in further details in section 3.3 and Chapter 5 . The diameter $\operatorname{diam}(G)$ of a graph $G=(V, E)$ is defined as

$$
\begin{equation*}
\operatorname{diam}(G)=\max _{\substack{u, v \in V \\ u \neq v}} d(u, v) \tag{3.5}
\end{equation*}
$$

Using the above definition, to find the diameter we first determine the distance between each pair of distinct vertices, then we compute the maximum of all such distances. Breadth-first search is a useful technique for finding the diameter: we simply run breadthfirst search from each vertex. An interesting application of the diameter appears in the small-world phenomenon $[120,146,193]$, which contends that a certain special class of sparse graphs have low diameter.

3.2.2 Depth-first search

I REALUY NEED TO STOP
USING DEPTH-FRST SEARCHES.

- Randall Munroe, xkcd, http://xkcd.com/761/

A depth-first search (DFS) is a graph traversal strategy similar to breadth-first search. Both BFS and DFS differ in how they explore each vertex. Whereas BFS explores the neighborhood of a vertex v before moving on to explore the neighborhoods of the neighbors, DFS explores as deep as possible a path starting at v. One can think of BFS as exploring the immediate surrounding, while DFS prefers to see what is on the other side of the hill. In the 19th century, Lucas [138] and Tarry [182] investigated DFS as a strategy for traversing mazes. Fundamental properties of DFS were discovered in the early 1970s by Hopcroft and Tarjan [101,181].

To get an intuitive appreciation for DFS, suppose we have an 8×8 chessboard in front of us. We place a single knight piece on a fixed square of the board, as shown in Figure 3.5(a). Our objective is to find a sequence of knight moves that visits each and every square exactly once, while obeying the rules of chess that govern the movement of the knight piece. Such a sequence of moves, if one exists, is called a knight's tour. How do we find such a tour? We could make one knight move after another, recording each move to ensure that we do not step on a square that is already visited, until we could not make any more moves. Acknowledging defeat when encountering a dead end,

Figure 3.5: The knight's tour from a given starting position.
it might make sense to backtrack a few moves and try again, hoping we would not get stuck. If we fail again, we try backtracking a few more moves and traverse yet another path, hoping to make further progress. Repeat this strategy until a tour is found or until we have exhausted all possible moves. The above strategy for finding a knight's tour is an example of depth-first search, sometimes called backtracking. Figure 3.5(b) shows a knight's tour with the starting position as shown in Figure 3.5(a); and Figure 3.5(c) is a graph representation of this tour. The black-filled nodes indicate the endpoints of the tour. A more interesting question is: What is the number of knight's tours on an 8×8 chessboard? Loebbing and Wegener [136] announced in 1996 that this number is $33,439,123,484,294$. The answer was later corrected by McKay [142] to be $13,267,364,410,532$. See [69] for a discussion of the knight's tour and its relationship to mathematics.

```
Algorithm 3.2 A general depth-first search template.
Input A directed or undirected graph \(G=(V, E)\) of order \(n>0\). A vertex \(s\) from
    which to start the search. The vertices are numbered from 1 to \(n=|V|\), i.e. \(V=\)
    \(\{1,2, \ldots, n\}\).
Output A list \(D\) of distances of all vertices from \(s\). A tree \(T\) rooted at \(s\).
    \(S \leftarrow[s] \quad \triangleright\) stack of nodes to visit
    \(D \leftarrow[\infty, \infty, \ldots, \infty] \quad \triangleright n\) copies of \(\infty\)
    \(D[s] \leftarrow 0\)
    \(T \leftarrow[]\)
    while length \((S)>0\) do
        \(v \leftarrow \operatorname{pop}(S)\)
        for each \(w \in \operatorname{adj}(v)\) do
            if \(D[w]=\infty\) then
                \(D[w] \leftarrow D[v]+1\)
                \(\operatorname{push}(S, w)\)
                \(\operatorname{append}(T, v w)\)
    return \((D, T)\)
```

Algorithm 3.2 formalizes the above description of depth-first search. The tree resulting from applying DFS on a graph is called a depth-first search tree. The general structure of this algorithm bears close resemblance to Algorithm 3.1. A significant difference is that instead of using a queue to structure and organize vertices to be visited, DFS uses another special type of list called a stack. To understand how elements of a stack are organized, we use the analogy of a stack of cards. A new card is added to the stack by placing it on top of the stack. Any time we want to remove a card, we are only allowed to remove the top-most card that is on the top of the stack. A list $L=\left[a_{1}, a_{2}, \ldots, a_{k}\right]$ of k elements is a stack when we impose the same rules for element insertion and removal. The top and bottom of the stack are $L[k]$ and $L[1]$, respectively. The operation of removing the top element of the stack is referred to as popping the element off the stack. Inserting an element into the stack is called pushing the element onto the stack. In other words, a stack implements a last-in first-out (LIFO) protocol for element insertion and removal, in contrast to the FIFO policy of a queue. We also use the term length to refer to the number of elements in the stack.

The depth-first search Algorithm 3.2 can be analyzed similar to how we analyzed Algorithm 3.3. Just as BFS is applicable to both directed and undirected graphs, we

(a) Original undirected graph.

(c) Second iteration of while loop.

(b) First iteration of while loop.

(d) Third iteration of while loop.

(e) Final DFS tree.

Figure 3.6: Depth-first search tree for an undirected graph.

(a) Original digraph.

(c) Second iteration of while loop.

(b) First iteration of while loop.

(d) Third iteration of while loop.

(e) Fourth iteration of while loop.

(f) Final DFS tree.

Figure 3.7: Depth-first search tree for a digraph.
can also have undirected graphs and digraphs as input to DFS. For the case of an undirected graph, line 7 of Algorithm 3.2 considers all vertices adjacent to the current vertex v. In case the input graph is directed, we replace " $w \in \operatorname{adj}(v)$ " on line 7 with " $w \in \operatorname{oadj}(v)$ " to signify that we only want to consider the out-neighbors of v. If any neighbors (respectively, out-neighbors) of v are labelled as ∞, we know that we have not explored any paths starting from any of those vertices. So we label each of those unexplored vertices with a positive integer and push them onto the stack S, where they will wait for later processing. We also record the paths leading from v to each of those unvisited neighbors, i.e. the edges $v w$ for each vertex $w \in \operatorname{adj}(v)$ (respectively, $w \in \operatorname{oadj}(v))$ are appended to the list T. The test on line 8 ensures that we do not push onto S any vertices on the path that lead to v. When we resume another round of the while loop that starts on line 5 , the previous vertex v have been popped off S and the neighbors (respectively, out-neighbors) of v have been pushed onto S. For example, in step 2 of Figure 3.6, vertex 5 is considered in DFS (in contrast to the vertex 2 in step 2 of the BFS in the graph in Figure 3.3) because DFS is organized by the LIFO protocol (in contrast to the FIFO protocol of BFS). To explore a path starting at v, we choose any unexplored neighbors of v by popping an element off S and repeat the for loop starting on line 7. Repeat the DFS algorithm as often as required in order to traverse all vertices of the input graph. The output of DFS consists of two lists D and $T: T$ is a tree rooted at the starting vertex s; and each $D[i]$ counts the length of the $s-v_{i}$ path in T. Figures 3.6 and 3.7 show the DFS trees resulting from running Algorithm 3.2 on an undirected graph and a digraph, respectively. The worst-case time complexity of DFS can be analyzed using an argument similar to that in Theorem 3.2. Arguing along the same lines as in the proof of Theorem 3.3, we can also show that the list D returned by DFS contains lengths of any shortest paths in the tree T from the starting vertex s to any other vertex in T (but not necessarily for shortest paths in the original graph G).

Figure 3.8: The Petersen graph.

Example 3.4. In 1898, Julius Petersen published [161] a graph that now bears his name: the Petersen graph shown in Figure 3.8. Compare the search trees resulting from running breadth- and depth-first searches on the Petersen graph with starting vertex 0.

Solution. The Petersen graph in Figure 3.8 can be constructed and searched as follows.

```
sage: list(g.breadth_first_search(0))
[0, 1, 4, 5, 2, 6, 3, 9, 7, 8]
sage: list(g.depth_first_search(0))
[0, 5, 8, 6, 9, 7, 2, 3, 4, 1]
```

From the above Sage session, we see that starting from vertex 0 breadth-first search yields the edge list

$$
[01,04,05,12,16,43,49,57,58]
$$

and depth-first search produces the corresponding edge list

$$
[05,58,86,69,97,72,23,34,01] .
$$

Our results are illustrated in Figure 3.9.

(a) Breadth-first search.

(b) Depth-first search.

Figure 3.9: Traversing the Petersen graph starting from vertex 0.

3.2.3 Connectivity of a graph

Both BFS and DFS can be used to determine if an undirected graph is connected. Let $G=(V, E)$ be an undirected graph of order $n>0$ and let s be an arbitrary vertex of G. We initialize a counter $c \leftarrow 1$ to mean that we are starting our exploration at s, hence we have already visited one vertex, i.e. s. We apply either BFS or DFS, treating G and s as input to any of these algorithms. Each time we visit a vertex that was previously unvisited, we increment the counter c. At the end of the algorithm, we compare c with n. If $c=n$, we know that we have visited all vertices of G and conclude that G is connected. Otherwise, we conclude that G is disconnected. This procedure is summarized in Algorithm 3.3.

Note that Algorithm 3.3 uses the BFS template of Algorithm 3.1, with some minor changes. Instead of initializing the list D with $n=|V|$ copies of ∞, we use n copies of 0 . Each time we have visited a vertex w, we make the assignment $D[w] \leftarrow 1$, instead of incrementing the value $D[v]$ of w 's parent vertex and assign that value to $D[w]$. At the end of the while loop, we have the equality $c=\sum_{d \in D} d$. The value of this sum could be used in the test starting from line 12. However, the value of the counter c is incremented immediately after we have visited an unvisited vertex. An advantage is that we do not need to perform a separate summation outside of the while loop. To use the DFS template for determining graph connectivity, we simply replace the queue implementation in Algorithm 3.3 with a stack implementation (see problem 3.14).

```
Algorithm 3.3 Determining whether an undirected graph is connected.
Input An undirected graph \(G=(V, E)\) of order \(n>0\). A vertex \(s\) from which to start
    the search. The vertices are numbered from 1 to \(n=|V|\), i.e. \(V=\{1,2, \ldots, n\}\).
Output true if \(G\) is connected; false otherwise.
    \(Q \leftarrow[s] \quad \triangleright\) queue of nodes to visit
    \(D \leftarrow[0,0, \ldots, 0] \quad \triangleright n\) copies of 0
    \(D[s] \leftarrow 1\)
    \(c \leftarrow 1\)
    while length \((Q)>0\) do
        \(v \leftarrow\) dequeue \((Q)\)
        for each \(w \in \operatorname{adj}(v)\) do
            if \(D[w]=0\) then
                \(D[w] \leftarrow 1\)
                \(c \leftarrow c+1\)
                enqueue \((Q, w)\)
    if \(c=|V|\) then
        return true
    return false
```


3.3 Weights and distances

In Chapter 1, we briefly mentioned some applications of weighted graphs, but we did not define the concept of weighted graphs. A graph is said to be weighted when we assign a numeric label or weight to each of its edges. Depending on the application, we can let the vertices represent physical locations and interpret the weight of an edge as the distance separating two adjacent vertices. There might be a cost involved in traveling from a vertex to one of its neighbors, in which case the weight assigned to the corresponding edge can represent such a cost. The concept of weighted digraphs can be similarly defined. When no explicit weights are assigned to the edges of an undirected graph or digraph, it is usually convenient to consider each edge as having a weight of one or unit weight.

Based on the concept of weighted graphs, we now define what it means for a path to be a shortest path. Let $G=(V, E)$ be a (di)graph with nonnegative edge weights $w(e) \in \mathbf{R}$ for each edge $e \in E$. The length or distance $d(P)$ of a $u-v$ path P from $u \in V$ to $v \in V$ is the sum of the edge weights for edges in P. Denote by $d(u, v)$ the smallest value of $d(P)$ for all paths P from u to v. When we regard edge weights as physical distances, a $u-v$ path that realizes $d(u, v)$ is sometimes called a shortest path from u to v. The above definitions of distance and shortest path also apply to graphs with negative edge weights. Unless otherwise specified, where the weight of an edge is not explicitly given, we usually consider the edge to have unit weight.

The distance function d on a graph with nonnegative edge weights is known as a metric function. Intuitively, the distance between two physical locations is greater than zero. When these two locations coincide, i.e. they are one and the same location, the distance separating them is zero. Regardless of whether we are measuring the distance from location a to b or from b to a, we would obtain the same distance. Imagine now a third location c. The distance from a to b plus the distance from b to c is greater than or equal to the distance from a to c. The latter principle is known as the triangle
inequality. In summary, given three vertices u, v, w in a graph G, the distance function d on G satisfies the following property.

Lemma 3.5. Path distance as metric function. Let $G=(V, E)$ be a graph with weight function $w: E \rightarrow \mathbf{R}$. Define a distance function $d: V \times V \rightarrow \mathbf{R}$ given by

$$
d(u, v)= \begin{cases}\infty, & \text { if there are no paths from u to } v, \\ \min \{w(W) \mid W \text { is a u-v walk }\}, & \text { otherwise. }\end{cases}
$$

Then d is a metric on V if it satisfies the following properties:

1. Nonnegativity: $d(u, v) \geq 0$ with $d(u, v)=0$ if and only if $u=v$.
2. Symmetry: $d(u, v)=d(v, u)$.
3. Triangle inequality: $d(u, v)+d(v, w) \geq d(u, w)$.

The pair (V, d) is called a metric space, where the word "metric" refers to the distance function d. Any graphs we consider are assumed to have finite sets of vertices. For this reason, (V, d) is also known as a finite metric space. The distance matrix $D=\left[d\left(v_{i}, v_{j}\right)\right]$ of a connected graph is the distance matrix of its finite metric space. The topic of metric space is covered in further details in topology texts such as Runde [168] and Shirali and Vasudeva [173]. See Buckley and Harary [44] for an in-depth coverage of the distance concept in graph theory.

Many different algorithms exist for computing a shortest path in a weighted graph. Some only work if the graph has no negative weight cycles. Some assume that there is a single start or source vertex. Some compute the shortest paths from any vertex to any other and also detect if the graph has a negative weight cycle. No matter what algorithm is used for the special case of nonnegative weights, the length of the shortest path can neither equal nor exceed the order of the graph.

Lemma 3.6. Fix a vertex v in a connected graph $G=(V, E)$ of order $n=|V|$. If there are no negative weight cycles in G, then there exists a shortest path from v to any other vertex $w \in V$ that uses at most $n-1$ edges.

Proof. Suppose that G contains no negative weight cycles. Observe that at most $n-1$ edges are required to construct a path from v to any vertex w (Proposition 1.13). Let P denote such a path:

$$
P: v_{0}=v, v_{1}, v_{2}, \ldots, v_{k}=w .
$$

Since G has no negative weight cycles, the weight of P is no less than the weight of P^{\prime}, where P^{\prime} is the same as P except that all cycles have been removed. Thus, we can remove all cycles from P and obtain a $v-w$ path P^{\prime} of lower weight. Since the final path is acyclic, it must have no more than $n-1$ edges.

Having defined weights and distances, we are now ready to discuss shortest path algorithms for weighted graphs. The breadth-first search Algorithm 3.1 can be applied where each edge has unit weight. Moving on to the general case of graphs with positive edge weights, algorithms for determining shortest paths in such graphs can be classified as weight-setting or weight-correcting [83]. A weight-setting method traverses a graph and assigns weights that, once assigned, remain unchanged for the duration of the algorithm. Weight-setting algorithms cannot deal with negative weights. On the other

```
Algorithm 3.4 A template for shortest path algorithms.
Input A weighted graph or digraph \(G=(V, E)\), where the vertices are numbered as
    \(V=\{1,2, \ldots, n\}\). A starting vertex \(s\).
Output A list \(D\) of distances from \(s\) to all other vertices. A list \(P\) of parent vertices
    such that \(P[v]\) is the parent of \(v\).
    \(D \leftarrow[\infty, \infty, \ldots, \infty] \quad \triangleright n\) copies of \(\infty\)
    \(C \leftarrow\) list of candidate vertices to visit
    while length \((C)>0\) do
        select \(v \in C\)
        \(C \leftarrow \operatorname{remove}(C, v)\)
        for each \(u \in \operatorname{adj}(v)\) do
            if \(D[u]>D[v]+w(v u)\) then
                \(D[u] \leftarrow D[v]+w(v u)\)
                \(P[u] \leftarrow v\)
                if \(u \notin C\) then
                add \(u\) to \(C\)
    return \((D, P)\)
```

hand, a weight-correcting method is able to change the value of a weight many times while traversing a graph. In contrast to a weight-setting algorithm, a weight-correcting algorithm is able to deal with negative weights, provided that the weight sum of any cycle is nonnegative. The term negative cycle refers to the weight sum s of a cycle such that $s<0$. Some algorithms halt upon detecting a negative cycle; examples of such algorithms include the Bellman-Ford and Johnson's algorithms.

Algorithm 3.4 is a general template for many shortest path algorithms. With a tweak here and there, one could modify it to suit the problem at hand. Note that $w(v u)$ is the weight of the edge $v u$. If the input graph is undirected, line 6 considers all the neighbors of v. For digraphs, we are interested in out-neighbors of v and accordingly we replace " $u \in \operatorname{adj}(v)$ " in line 6 with " $u \in \operatorname{oadj}(v)$ ". The general flow of Algorithm 3.4 follows the same pattern as depth-first and breadth-first searches.

3.4 Dijkstra's algorithm

FOR FOUR YEARS SHE STUDIED ALGORITHMS.

- Randall Munroe, xkcd, http://xkcd.com/342/

Dijkstra's algorithm [61], discovered by E. W. Dijkstra in 1959, is a graph search algorithm that solves the single-source shortest path problem for a graph with nonnegative edge weights. The algorithm is a generalization of breadth-first search. Imagine that the vertices of a weighted graph represent cities and edge weights represent distances between pairs of cities connected by a direct road. Dijkstra's algorithm can be used to find a shortest route from a fixed city to any other city.

Let $G=(V, E)$ be a (di)graph with nonnegative edge weights. Fix a start or source vertex $s \in V$. Dijkstra's Algorithm 3.5 performs a number of steps, basically one step for each vertex in V. First, we initialize a list D with n copies of ∞ and then assign 0 to $D[s]$. The purpose of the symbol ∞ is to denote the largest possible value. The list D is to store the distances of all shortest paths from s to any other vertices in G, where we take the distance of s to itself to be zero. The list P of parent vertices is initially empty and the queue Q is initialized to all vertices in G. We now consider each vertex in Q, removing any vertex after we have visited it. The while loop starting on line 5 runs until we have visited all vertices. Line 6 chooses which vertex to visit, preferring a vertex v whose distance value $D[v]$ from s is minimal. After we have determined such a vertex v, we remove it from the queue Q to signify that we have visited v. The for loop starting on line 8 adjusts the distance values of each neighbor u of v such that u is also in Q. If G is directed, we only consider out-neighbors of v that are also in Q. The conditional starting on line 9 is where the adjustment takes place. The expression $D[v]+w(v u)$ sums the distance from s to v and the distance from v to u. If this total sum is less than the distance $D[u]$ from s to u, we assign this lesser distance to $D[u]$ and let v be the parent vertex of u. In this way, we are choosing a neighbor vertex that results in minimal distance from s. Each pass through the while loop decreases the number of elements in Q by one without adding any elements to Q. Eventually, we would exit the while loop and the algorithm returns the lists D and P.

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}
$\underline{(0,-)}$	$(\infty,-)$	$(\infty,-)$	$(\infty,-)$	$(\infty,-)$
	$\left(10, v_{1}\right)$	$\underline{\left(3, v_{1}\right)}$	$\left(11, v_{3}\right)$	$\underline{\left(5, v_{3}\right)}$
	$\underline{\left(7, v_{3}\right)}$		$\underline{\left(9, v_{2}\right)}$	

Table 3.4: Stepping through Dijkstra's algorithm.

```
Algorithm 3.5 A general template for Dijkstra's algorithm.
Input An undirected or directed graph \(G=(V, E)\) that is weighted and has no self-
    loops. The order of \(G\) is \(n>0\). A vertex \(s \in V\) from which to start the search.
    Vertices are numbered from 1 to \(n\), i.e. \(V=\{1,2, \ldots, n\}\).
Output A list \(D\) of distances such that \(D[v]\) is the distance of a shortest path from \(s\)
    to \(v\). A list \(P\) of vertex parents such that \(P[v]\) is the parent of \(v\), i.e. \(v\) is adjacent
    from \(P[v]\).
    \(D \leftarrow[\infty, \infty, \ldots, \infty] \quad \triangleright n\) copies of \(\infty\)
    \(D[s] \leftarrow 0\)
    \(P \leftarrow[]\)
    \(Q \leftarrow V \quad \triangleright\) list of nodes to visit
    while length \((Q)>0\) do
        find \(v \in Q\) such that \(D[v]\) is minimal
        \(Q \leftarrow \operatorname{remove}(Q, v)\)
        for each \(u \in \operatorname{adj}(v) \cap Q\) do
            if \(D[u]>D[v]+w(v u)\) then
                \(D[u] \leftarrow D[v]+w(v u)\)
                \(P[u] \leftarrow v\)
    return \((D, P)\)
```


(a) Original digraph.

(b) First iteration of while loop.

(c) Second iteration of while loop.

(e) Fourth iteration of while loop.

(d) Third iteration of while loop.

(f) Final shortest paths graph.

Figure 3.10: Searching a weighted digraph using Dijkstra's algorithm.

Example 3.7. Apply Dijkstra's algorithm to the graph in Figure 3.10(a), with starting vertex v_{1}.

Solution. Dijkstra's Algorithm 3.5 applied to the graph in Figure 3.10(a) yields the sequence of intermediary graphs shown in Figure 3.10, culminating in the final shortest paths graph of Figure 3.10(f) and Table 3.4. For any column v_{i} in the table, each 2 -tuple represents the distance and parent vertex of v_{i}. As we move along the graph, processing vertices according to Dijkstra's algorithm, the distance and parent vertex of a column are updated. The underlined 2-tuple represents the final distance and parent vertex produced by Dijkstra's algorithm. From Table 3.4, we have the following shortest paths and distances:

$$
\begin{array}{ll}
v_{1}-v_{2}: v_{1}, v_{3}, v_{2} & d\left(v_{1}, v_{2}\right)=7 \\
v_{1}-v_{3}: v_{1}, v_{3} & d\left(v_{1}, v_{3}\right)=3 \\
v_{1}-v_{4}: v_{1}, v_{3}, v_{2}, v_{4} & d\left(v_{1}, v_{4}\right)=9 \\
v_{1}-v_{5}: v_{1}, v_{3}, v_{5} & d\left(v_{1}, v_{5}\right)=5
\end{array}
$$

Intermediary vertices for a $u-v$ path are obtained by starting from v and work backward using the parent of v, then the parent of the parent, and so on.

Dijkstra's algorithm is an example of a greedy algorithm. Whenever it tries to find the next vertex, it chooses only that vertex that minimizes the total weight so far. Greedy algorithms may not produce the best possible result. However, as the following theorem shows, Dijkstra's algorithm does indeed produce shortest paths.

Theorem 3.8. Correctness of Algorithm 3.5. Let $G=(V, E)$ be a weighted (di)graph with a nonnegative weight function w. When Dijkstra's algorithm is applied to G with source vertex $s \in V$, the algorithm terminates with $D[u]=d(s, u)$ for all $u \in V$. Furthermore, if $D[v] \neq \infty$ and $v \neq s$, then $s=u_{1}, u_{2}, \ldots, u_{k}=v$ is a shortest s-v path such that $u_{i-1}=P\left[u_{i}\right]$ for $i=2,3, \ldots, k$.
Proof. If G is disconnected, then any $v \in V$ that cannot be reached from s has distance $D[v]=\infty$ upon algorithm termination. Hence, it suffices to consider the case where G is connected. Let $V=\left\{s=v_{1}, v_{2}, \ldots, v_{n}\right\}$ and use induction on i to show that after visiting v_{i} we have

$$
\begin{equation*}
D[v]=d(s, v) \quad \text { for all } v \in V_{i}=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\} . \tag{3.6}
\end{equation*}
$$

For $i=1$, equality holds. Assume for induction that (3.6) holds for some $1 \leq i \leq n-1$, so that now our task is to show that (3.6) holds for $i+1$. To verify $D\left[v_{i+1}\right]=d\left(s, v_{i+1}\right)$, note that by our inductive hypothesis,

$$
D\left[v_{i+1}\right]=\min \left\{d(s, v)+w(v u) \mid v \in V_{i} \text { and } u \in \operatorname{adj}(v) \cap\left(Q \backslash V_{i}\right)\right\}
$$

and respectively

$$
D\left[v_{i+1}\right]=\min \left\{d(s, v)+w(v u) \mid v \in V_{i} \text { and } u \in \operatorname{oadj}(v) \cap\left(Q \backslash V_{i}\right)\right\}
$$

if G is directed. Therefore, $D\left[v_{i+1}\right]=d\left(s, v_{i+1}\right)$.
Let $v \in V$ such that $D[v] \neq \infty$ and $v \neq s$. We now construct an $s-v$ path. When Algorithm 3.5 terminates, we have $D[v]=D\left[v_{1}\right]+w\left(v_{1} v\right)$, where $P[v]=v_{1}$ and $d(s, v)=$ $d\left(s, v_{1}\right)+w\left(v_{1} v\right)$. This means that v_{1} is the second-to-last vertex in a shortest $s-v$ path. Repeated application of this process using the parent list P, we eventually produce a shortest $s-v$ path $s=v_{m}, v_{m-1}, \ldots, v_{1}, v$, where $P\left[v_{i}\right]=v_{i+1}$ for $i=1,2, \ldots, m-1$.

To analyze the worst case time complexity of Algorithm 3.5, note that initializing D takes $O(n+1)$ and initializing Q takes $O(n)$, for a total of $O(n)$ devoted to initialization. Each extraction of a vertex v with minimal $D[v]$ requires $O(n)$ since we search through the entire list Q to determine the minimum value, for a total of $O\left(n^{2}\right)$. Each insertion into D requires constant time and the same holds for insertion into P. Thus, insertion into D and P takes $O(|E|+|E|)=O(|E|)$, which require at most $O(n)$ time. In the worst case, Dijkstra's Algorithm 3.5 has running time $O\left(n^{2}+n\right)=O\left(n^{2}\right)$.

Can we improve the run time of Dijkstra's algorithm? The time complexity of Dijkstra's algorithm depends on its implementation. With a simple list implementation as presented in Algorithm 3.5, we have a worst case time complexity of $O\left(n^{2}\right)$, where n is the order of the graph under consideration. Let m be the size of the graph. Table 3.5 presents time complexities of Dijkstra's algorithm for various implementations. Out of all the four implementations in this table, the heap implementations are much more efficient than the list implementation presented in Algorithm 3.5. A heap is a type of tree, a topic which will be covered in Chapter 2. Of all the heap implementations in Table 3.5, the Fibonacci heap implementation [82] yields the best runtime. Chapter 4 discusses how to use trees for efficient implementations of priority queues via heaps.

Implementation	Time complexity
list	$O\left(n^{2}\right)$
binary heap	$O((n+m) \ln n)$
k-ary heap	$O\left((k n+m) \frac{\ln n}{\ln k}\right)$
Fibonacci heap	$O(n \ln n+m)$

Table 3.5: Implementation specific worst-case time complexity of Dijkstra's algorithm.

3.5 Bellman-Ford algorithm

- Randall Munroe, xkcd, http://xkcd.com/69/

A disadvantage of Dijkstra's Algorithm 3.5 is that it cannot handle graphs with negative edge weights. The Bellman-Ford algorithm computes single-source shortest paths in a weighted graph or digraph, where some of the edge weights may be negative. This algorithm is a modification of the one published in 1957 by Richard E. Bellman [21] and that by Lester Randolph Ford, Jr. [79] in 1956. Shimbel [172] independently discovered the same method in 1955, and Moore [148] in 1959. In contrast to the "greedy" approach that Dijkstra's algorithm takes, i.e. searching for the "cheapest" path, the Bellman-Ford algorithm searches over all edges and keeps track of the shortest one found as it searches.

The Bellman-Ford Algorithm 3.6 runs in time $O(m n)$, where m and n are the size and order of an input graph, respectively. To see this, note that the initialization on

```
Algorithm 3.6 The Bellman-Ford algorithm.
Input An undirected or directed graph \(G=(V, E)\) that is weighted and has no self-
    loops. Negative edge weights are allowed. The order of \(G\) is \(n>0\). A vertex
    \(s \in V\) from which to start the search. Vertices are numbered from 1 to \(n\), i.e. \(V=\)
    \(\{1,2, \ldots, n\}\).
Output A list \(D\) of distances such that \(D[v]\) is the distance of a shortest path from \(s\)
    to \(v\). A list \(P\) of vertex parents such that \(P[v]\) is the parent of \(v\), i.e. \(v\) is adjacent
    from \(P[v]\). If \(G\) has negative-weight cycles, then return false. Otherwise, return \(D\)
    and \(P\).
    \(D \leftarrow[\infty, \infty, \ldots, \infty] \quad \triangleright n\) copies of \(\infty\)
    \(D[s] \leftarrow 0\)
    \(P \leftarrow[]\)
    for \(i \leftarrow 1,2, \ldots, n-1\) do
        for each edge \(u v \in E\) do
            if \(D[v]>D[u]+w(u v)\) then
                \(D[v] \leftarrow D[u]+w(u v)\)
                \(P[v] \leftarrow u\)
    for each edge \(u v \in E\) do
        if \(D[v]>D[u]+w(u v)\) then
            return false
    return \((D, P)\)
```

lines 1 to 3 takes $O(n)$. Each of the $n-1$ rounds of the for loop starting on line 4 takes $O(m)$, for a total of $O(m n)$ time. Finally, the for loop starting on line 9 takes $O(m)$.

The loop starting on line 4 performs at most $n-1$ updates of the distance $D[v]$ of each head of an edge. Many graphs have sizes that are less then $n-1$, resulting in a number of redundant rounds of updates. To avoid such redundancy, we could add an extra check in the outer loop spanning lines 4 to 8 to immediately terminate that outer loop after any round that did not result in an update of any $D[v]$. Algorithm 3.7 presents a modification of the Bellman-Ford Algorithm 3.6 that avoids redundant rounds of updates.

3.6 Floyd-Roy-Warshall algorithm

The shortest distance between two points is not a very interesting journey. - R. Goldberg

Let D be a weighted digraph of order n and size m. Dijkstra's Algorithm 3.5 and the Bellman-Ford Algorithm 3.6 can be used to determine shortest paths from a single source vertex to all other vertices of D. To determine a shortest path between each pair of distinct vertices in D, we repeatedly apply either of these algorithms to each vertex of D. Such repeated application of Dijkstra's and the Bellman-Ford algorithms results in algorithms that run in time $O\left(n^{3}\right)$ and $O\left(n^{2} m\right)$, respectively.

The Floyd-Roy-Warshall algorithm (FRW), or the Floyd-Warshall algorithm, is an algorithm for finding shortest paths in a weighted, directed graph. Like the BellmanFord algorithm, it allows for negative edge weights and detects a negative weight cycle if one exists. Assuming that there are no negative weight cycles, a single execution of

```
Algorithm 3.7 The Bellman-Ford algorithm with checks for redundant updates.
Input An undirected or directed graph \(G=(V, E)\) that is weighted and has no self-
    loops. Negative edge weights are allowed. The order of \(G\) is \(n>0\). A vertex
    \(s \in V\) from which to start the search. Vertices are numbered from 1 to \(n\), i.e. \(V=\)
    \(\{1,2, \ldots, n\}\).
Output A list \(D\) of distances such that \(D[v]\) is the distance of a shortest path from \(s\)
    to \(v\). A list \(P\) of vertex parents such that \(P[v]\) is the parent of \(v\), i.e. \(v\) is adjacent
    from \(P[v]\). If \(G\) has negative-weight cycles, then return false. Otherwise, return \(D\)
    and \(P\).
    \(D \leftarrow[\infty, \infty, \ldots, \infty] \quad \triangleright n\) copies of \(\infty\)
    \(D[s] \leftarrow 0\)
    \(P \leftarrow[]\)
    for \(i \leftarrow 1,2, \ldots, n-1\) do
        updated \(\leftarrow\) false
        for each edge \(u v \in E\) do
            if \(D[v]>D[u]+w(u v)\) then
                \(D[v] \leftarrow D[u]+w(u v)\)
                \(P[v] \leftarrow u\)
                updated \(\leftarrow\) true
        if updated \(=\) false then
            exit the loop
    for each edge \(u v \in E\) do
        if \(D[v]>D[u]+w(u v)\) then
            return false
    return \((D, P)\)
```

the FRW algorithm will find the shortest paths between all pairs of vertices. It was discovered independently by Bernard Roy [167] in 1959, Robert Floyd [78] in 1962, and by Stephen Warshall [189] in 1962.

In some sense, the FRW algorithm is an example of dynamic programming, which allows one to break the computation into simpler steps using some sort of recursive procedure. The rough idea is as follows. Temporarily label the vertices of a weighted digraph G as $V=\{1,2, \ldots, n\}$ with $n=|V(G)|$. Let $W=[w(i, j)]$ be the weight matrix of G where

$$
w(i, j)= \begin{cases}w(i j), & \text { if } i j \in E(G) \tag{3.7}\\ 0, & \text { if } i=j \\ \infty, & \text { otherwise }\end{cases}
$$

Let $P_{k}(i, j)$ be a shortest path from i to j such that its intermediate vertices are in $\{1,2, \ldots, k\}$. Let $D_{k}(i, j)$ be the weight (or distance) of $P_{k}(i, j)$. If no shortest $i-j$ paths exist, define $P_{k}(i, j)=\infty$ and $D_{k}(i, j)=\infty$ for all $k \in\{1,2, \ldots, n\}$. If $k=0$, then $P_{0}(i, j): i, j$ since no intermediate vertices are allowed in the path and hence $D_{0}(i, j)=w(i, j)$. In other words, if i and j are adjacent, a shortest i - j path is the edge $i j$ itself and the weight of this path is simply the weight of $i j$. Now consider $P_{k}(i, j)$ for $k>0$. Either $P_{k}(i, j)$ passes through k or it does not. If k is not on the path $P_{k}(i, j)$, then the intermediate vertices of $P_{k}(i, j)$ are in $\{1,2, \ldots, k-1\}$, as are the vertices of $P_{k-1}(i, j)$. In case $P_{k}(i, j)$ contains the vertex k, then $P_{k}(i, j)$ traverses k exactly once by the definition of path. The $i-k$ subpath in $P_{k}(i, j)$ is a shortest $i-k$ path whose intermediate vertices are drawn from $\{1,2, \ldots, k-1\}$, which is also the set of intermediate vertices for the $k-j$ subpath in $P_{k}(i, j)$. That is, to obtain $P_{k}(i, j)$, we take the union of the paths $P_{k-1}(i, k)$ and $P_{k-1}(k, j)$. We compute the weight $D_{k}(i, j)$ of $P_{k}(i, j)$ using the expression

$$
D_{k}(i, j)= \begin{cases}w(i, j), & \text { if } k=0 \tag{3.8}\\ \min \left\{D_{k-1}(i, j), D_{k-1}(i, k)+D_{k-1}(k, j)\right\}, & \text { if } k>0\end{cases}
$$

The key to the Floyd-Roy-Warshall algorithm lies in exploiting expression (3.8). If $n=|V|$, then this is a $O\left(n^{3}\right)$ time algorithm. For comparison, the Bellman-Ford algorithm has complexity $O(|V| \cdot|E|)$, which is $O\left(n^{3}\right)$ time for dense graphs. However, Bellman-Ford only yields the shortest paths emanating from a single vertex. To achieve comparable output, we would need to iterate Bellman-Ford over all vertices, which would be an $O\left(n^{4}\right)$ time algorithm for dense graphs. Except possibly for sparse graphs, Floyd-Roy-Warshall is better than an iterated implementation of Bellman-Ford. Note that $P_{k}(i, k)=P_{k-1}(i, k)$ and $P_{k}(k, i)=P_{k-1}(k, i)$, consequently $D_{k}(i, k)=D_{k-1}(i, k)$ and $D_{k}(k, i)=D_{k-1}(k, i)$. This observation allows us to replace $P_{k}(i, j)$ with $P(i, j)$ for $k=1,2, \ldots, n$. The final results of $P(i, j)$ and $D(i, k)$ are the same as $P_{n}(i, j)$ and $D_{n}(i, j)$, respectively. Algorithm 3.8 summarizes the above discussion into an algorithmic presentation.

Like the Bellman-Ford algorithm, the Floyd-Roy-Warshall algorithm can also detect the presence of negative weight cycles. If G is a weighted digraph without self-loops, by (3.7) we have $D(i, i)=0$ for $i=1,2, \ldots, n$. Any path p starting and ending at i could only improve upon the initial weight of 0 if the weight sum of p is less than zero, i.e. a negative weight cycle. Upon termination of Algorithm 3.8, if $D(i, i)<0$, we conclude that there is a path starting and ending at i whose weight sum is negative.

```
    where \(D[i, j]\) is the weight (or distance) of a shortest \(i-j\) path in \(G\).
    \(n \leftarrow|V|\)
    \(P\left[a_{i j}\right] \leftarrow\) an \(n \times n\) zero matrix
    \(D\left[a_{i j}\right] \leftarrow W[w(i, j)]\)
    for \(k \leftarrow 1,2, \ldots, n\) do
        for \(i \leftarrow 1,2, \ldots, n\) do
            for \(j \leftarrow 1,2, \ldots, n\) do
                if \(D[i, j]>D[i, k]+D[k, j]\) then
                    \(P[i, j] \leftarrow k\)
                    \(D[i, j] \leftarrow D[i, k]+D[k, j]\)
    return \((P, D)\)
```

Algorithm 3.8 The Floyd-Roy-Warshall algorithm for all-pairs shortest paths,
Input A weighted digraph $G=(V, E)$ that has no self-loops. Negative edge weights
are allowed. The order of G is $n>0$. Vertices are numbered from 1 to n, i.e. $V=$
$\{1,2, \ldots, n\}$. The weight matrix $W=[w(i, j)]$ of G as defined in (3.7).
Output A matrix $P=\left[a_{i j}\right]$ of shortest paths in G. A matrix $D=\left[a_{i j}\right]$ of distances

Here is an implementation in Sage.

```
def floyd_roy_warshall(A):
" " "
Shortest paths
INPUT:
- A -- weighted adjacency matrix
OUTPUT :
- dist -- a matrix of distances of shortest paths.
_"||
G = Graph(A, format="weighted_adjacency_matrix")
V = G.vertices()
E=[(e[0],e[1]) for e in G.edges()]
n = len(V)
dist = [[0]*n for i in range(n)]
paths = [[-1]*n for i in range(n)]
# initialization step
for i in range(n):
    for j in range(n):
        if (i,j) in E:
                paths[i][j] = j
        if i == j:
            dist[i][j] = 0
        elif A[i][j]<>0:
            dist[i][j] = A[i][j]
        else:
            dist[i][j] = infinity
# iteratively finding the shortest path
for j in range(n):
    for i in range(n):
        if i <> j:
            for k in range(n):
            if k <> j:
                if dist[i][k]>dist[i][j]+dist[j][k]:
                    paths[i][k] = V[j]
                dist[i][k] = min(dist[i][k], dist[i][j] +dist[j][k])
for i in range(n):
        if dist[i][i] < 0:
        raise ValueError, "A negative edge weight cycle exists."
return dist, matrix(paths)
```

Here are some examples.

```
sage: A = matrix([[0,1,2,3], [0,0,2,1], [-5,0,0,3], [1,0,1,0]]); A
```

```
sage: floyd_roy_warshall(A)
Traceback (click to the left of this block for traceback)
ValueError: A negative edge weight cycle exists.
```

The plot of this weighted digraph with four vertices appears in Figure 3.11.

Figure 3.11: Demonstrating the Floyd-Roy-Warshall algorithm.

```
sage: A = matrix([[0,1,2,3], [0,0,2,1], [-1/2,0,0,3], [1,0,1,0]]); A
sage: floyd_roy_warshall(A)
([[[0, 1, 2, 2, 2],
    [rrrrrer
    2 2 -1 -1])
```

The plot of this weighted digraph with four vertices appears in Figure 3.12.

Figure 3.12: Another demonstration of the Floyd-Roy-Warshall algorithm.

Example 3.9. Section ?? briefly presented the concept of molecular graphs in chemistry. The Wiener number of a molecular graph was first published in 1947 by Harold

Figure 3.13: Molecular graph of 1,1,3-trimethylcyclobutane.

Wiener [196] who used it in chemistry to study properties of alkanes. Other applications [94] of the Wiener number to chemistry are now known. If $G=(V, E)$ is a connected graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, then the Wiener number W of G is defined by

$$
\begin{equation*}
W(G)=\sum_{i<j} d\left(v_{i}, v_{j}\right) \tag{3.9}
\end{equation*}
$$

where $d\left(v_{i}, v_{j}\right)$ is the distance from v_{i} to v_{j}. What is the Wiener number of the molecular graph in Figure 3.13?

Solution. Consider the molecular graph in Figure 3.13 as directed with unit weight. To compute the Wiener number of this graph, use the Floyd-Roy-Warshall algorithm to obtain a distance matrix $D=\left[d_{i, j}\right]$, where $d_{i, j}$ is the distance from v_{i} to v_{j}, and apply the definition (3.9). The distance matrix resulting from the Floyd-Roy-Warshall algorithm is

$$
M=\left[\begin{array}{lllllll}
0 & 2 & 1 & 2 & 3 & 2 & 4 \\
2 & 0 & 1 & 2 & 3 & 2 & 4 \\
1 & 1 & 0 & 1 & 2 & 1 & 3 \\
2 & 2 & 1 & 0 & 1 & 2 & 2 \\
3 & 3 & 2 & 1 & 0 & 1 & 1 \\
2 & 2 & 1 & 2 & 1 & 0 & 2 \\
4 & 4 & 3 & 2 & 1 & 2 & 0
\end{array}\right] .
$$

Sum all entries in the upper (or lower) triangular of M to obtain the Wiener number $W=42$. Using Sage, we have

```
sage: G = Graph({1:[3], 2:[3], 3:[4,6], 4:[5], 6:[5], 5:[7]})
sage: D = G.shortest_path_all_pairs()[0]
sage: M = [D[i][j] for i in D for j in D[i]]
sage: M = matrix(M, nrows=7, ncols=7)
sage: W = 0
sage: for i in range(M.nrows() - 1):
... for j in range(i+1, M.ncols()):
... W += M[i,j]
sage: W
4 2
```

which verifies our computation above. See [94] for a survey of some results concerning the Wiener number.

3.6.1 Transitive closure

Consider a digraph $G=(V, E)$ of order $n=|V|$. The transitive closure of G is defined as the digraph $G^{*}=\left(V, E^{*}\right)$ having the same vertex set as G. However, the edge set
E^{*} of G^{*} consists of all edges $u v$ such that there is a $u-v$ path in G and $u v \notin E$. The transitive closure G^{*} answers an important question about G : If u and v are two distinct vertices of G, are they connected by a path with length ≥ 1 ?

To compute the transitive closure of G, we let each edge of G be of unit weight and apply the Floyd-Roy-Warshall Algorithm 3.8 on G. By Proposition 1.13, for any $i-j$ path in G we have $D[i, j]<n$, and if there are no paths from i to j in G, we have $D[i, j]=\infty$. This procedure for computing transitive closure runs in time $O\left(n^{3}\right)$.

Modifying the Floyd-Roy-Warshall algorithm slightly, we obtain an algorithm for computing transitive closure that, in practice, is more efficient than Algorithm 3.8 in terms of time and space. Instead of using the operations min and + as is the case in the Floyd-Roy-Warshall algorithm, we replace these operations with the logical operations $\vee($ logical $O R)$ and $\wedge($ logical AND $)$, respectively. For $i, j, k=1,2, \ldots, n$, define $T_{k}(i, j)=1$ if there is an $i-j$ path in G with all intermediate vertices belonging to $\{1,2, \ldots, k\}$, and $T_{k}(i, j)=0$ otherwise. Thus, the edge $i j$ belongs to the transitive closure G^{*} if and only if $T_{k}(i, j)=1$. The definition of $T_{k}(i, j)$ can be cast in the form of a recursive definition as follows. For $k=0$, we have

$$
T_{0}(i, j)= \begin{cases}0, & \text { if } i \neq j \text { and } i j \notin E, \\ 1, & \text { if } i=j \text { or } i j \in E\end{cases}
$$

and for $k>0$, we have

$$
T_{k}(i, j)=T_{k-1}(i, j) \vee\left(T_{k-1}(i, k) \wedge T_{k-1}(k, j)\right)
$$

We need not use the subscript k at all and instead let T be a boolean matrix such that $T[i, j]=1$ if and only if there is an $i-j$ path in G, and $T[i, j]=0$ otherwise. Using the above notations, the Floyd-Roy-Warshall algorithm is translated to Algorithm 3.9 for obtaining the boolean matrix T. We can then use T and the definition of transitive closure to obtain the edge set E^{*} in the transitive closure $G^{*}=\left(V, E^{*}\right)$ of $G=(V, E)$.

A more efficient transitive closure algorithm can be found in the PhD thesis of Esko Nuutila [157]. See also the method of four Russians [1,8]. The transitive closure algorithm as presented in Algorithm 3.9 is due to Stephen Warshall [189]. It is a special case of a more general algorithm in automata theory due to Stephen Kleene [119], called Kleene's algorithm.

```
Algorithm 3.9 Variant of the Floyd-Roy-Warshall algorithm for transitive closure.
Input A digraph \(G=(V, E)\) that has no self-loops. Vertices are numbered from 1 to \(n\),
    i.e. \(V=\{1,2, \ldots, n\}\).
Output The boolean matrix \(T\) such that \(T[i, j]=1\) if and only if there is an \(i-j\) path
    in \(G\), and \(T[i, j]=0\) otherwise.
    \(n \leftarrow|V|\)
    \(T \leftarrow\) adjacency matrix of \(G\)
    for \(k \leftarrow 1,2, \ldots, n\) do
        for \(i \leftarrow 1,2, \ldots, n\) do
            for \(j \leftarrow 1,2, \ldots, n\) do
                \(T[i, j] \leftarrow T[i, j] \vee(T[i, k] \wedge T[k, j])\)
    return \(T\)
```


3.7 Johnson's algorithm

The shortest distance between two points is under construction.

- Noelie Altito

Let $G=(V, E)$ be a sparse digraph with edge weights but no negative cycles. Johnson's algorithm [111] finds a shortest path between each pair of vertices in G. First published in 1977 by Donald B. Johnson, the main insight of Johnson's algorithm is to combine the technique of edge reweighting with the Bellman-Ford and Dijkstra's algorithms. The Bellman-Ford algorithm is first used to ensure that G has no negative cycles. Next, we reweight edges in such a manner as to preserve shortest paths. The final stage makes use of Dijkstra's algorithm for computing shortest paths between all vertex pairs. Pseudocode for Johnson's algorithm is presented in Algorithm 3.10. With a Fibonacci heap implementation of the minimum-priority queue, the time complexity for sparse graphs is $O\left(|V|^{2} \log |V|+|V| \cdot|E|\right)$, where $n=|V|$ is the number of vertices of the original graph G.

To prove the correctness of Algorithm 3.10, we need to show that the new set of edge weights produced by \hat{w} must satisfy two properties:

1. The reweighted edges preserve shortest paths. That is, let p be a $u-v$ path for $u, v \in V$. Then p is a shortest weighted path using weight function w if and only if p is also a shortest weighted path using weight function \hat{w}.
2. The reweight function \hat{w} produces nonnegative weights. In other words, if $u, v \in V$ then $\hat{w}(u v) \geq 0$.

Both of these properties are proved in Lemma 3.10.

```
Algorithm 3.10 Johnson's algorithm for sparse graphs.
Input A sparse weighted digraph \(G=(V, E)\), where the vertex set is \(V=\{1,2, \ldots, n\}\).
Output If \(G\) has negative-weight cycles, then return false. Otherwise, return an \(n \times n\)
    matrix \(D\) of shortest-path weights and a list \(P\) such that \(P[v]\) is a parent list resulting
    from running Dijkstra's algorithm on \(G\) with start vertex \(v\).
    \(s \leftarrow\) vertex not in \(V\)
    \(V^{\prime} \leftarrow V \cup\{s\}\)
    \(E^{\prime} \leftarrow E \cup\{s v \mid v \in V\}\)
    \(G^{\prime} \leftarrow \operatorname{digraph}\left(V^{\prime}, E^{\prime}\right)\) with weight \(w(s v)=0\) for all \(v \in V\)
    if BellmanFord \(\left(G^{\prime}, w, s\right)=\) false then
        return false
    \(d \leftarrow\) distance list returned by BellmanFord \(\left(G^{\prime}, w, s\right)\)
    for each edge \(u v \in E^{\prime}\) do
        \(\hat{w}(u v) \leftarrow w(u v)+d[u]-d[v]\)
    for each \(u \in V\) do
        \((\hat{\delta}, \hat{P}) \leftarrow\) distance and parent lists returned by \(\operatorname{Dijkstra}(G, \hat{w}, u)\)
        \(P[u] \leftarrow \hat{P}\)
        for each \(v \in V\) do
            \(D[u, v] \leftarrow \hat{\delta}[v]+d[v]-d[u]\)
    return \((D, P)\)
```

Lemma 3.10. Reweighting preserves shortest paths. Let $G=(V, E)$ be a weighted digraph having weight function $w: E \rightarrow \mathbf{R}$ and let $h: V \rightarrow \mathbf{R}$ be a mapping of vertices to real numbers. Let \hat{w} be another weight function for G such that

$$
\hat{w}(u v)=w(u v)+h(u)-h(v)
$$

for all $u v \in E$. Suppose $p: v_{0}, v_{1}, \ldots, v_{k}$ is any path in G. Then we have the following results.

1. The path p is a shortest $v_{0}-v_{k}$ path with weight function w if and only if it is a shortest $v_{0}-v_{k}$ path with weight function \hat{w}.
2. The graph G has a negative cycle using weight function w if and only if G has a negative cycle using \hat{w}.
3. If G has no negative cycles, then $\hat{w}(u v) \geq 0$ for all $u v \in E$.

Proof. Write δ and $\hat{\delta}$ for the shortest path weights derived from w and \hat{w}, respectively. To prove part 1 , we need to show that $w(p)=\delta\left(v_{0}, v_{k}\right)$ if and only if $\hat{w}(p)=\hat{\delta}\left(v_{0}, v_{k}\right)$. First, note that any $v_{0}-v_{k}$ path p satisfies $\hat{w}(p)=w(p)+h\left(v_{0}\right)-h\left(v_{k}\right)$ because

$$
\begin{aligned}
\hat{w}(p) & =\sum_{i=1}^{k} \hat{w}\left(v_{i-1} v_{i}\right) \\
& =\sum_{i=1}^{k}\left(w\left(v_{i-1} v_{i}\right)+h\left(v_{i-1}\right)-h\left(v_{i}\right)\right) \\
& =\sum_{i=1}^{k} w\left(v_{i-1} v_{i}\right)+\sum_{i=1}^{k}\left(h\left(v_{i-1}\right)-h\left(v_{i}\right)\right) \\
& =\sum_{i=1}^{k} w\left(v_{i-1} v_{i}\right)+h\left(v_{0}\right)-h\left(v_{k}\right) \\
& =w(p)+h\left(v_{0}\right)-h\left(v_{k}\right) .
\end{aligned}
$$

Any $v_{0}-v_{k}$ path shorter than p and using weight function w is also shorter using \hat{w}. Therefore, $w(p)=\delta\left(v_{0}, v_{k}\right)$ if and only if $\hat{w}(p)=\hat{\delta}\left(v_{0}, v_{k}\right)$.

To prove part 2 , consider any cycle $c: v_{0}, v_{1}, \ldots, v_{k}$ where $v_{0}=v_{k}$. Using the proof of part 1 , we have

$$
\begin{aligned}
\hat{w}(c) & =w(c)+h\left(v_{0}\right)-h\left(v_{k}\right) \\
& =w(c)
\end{aligned}
$$

thus showing that c is a negative cycle using w if and only if it is a negative cycle using \hat{w}.

To prove part 3, we construct a new graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows. Consider a vertex $s \notin V$ and let $V^{\prime}=V \cup\{s\}$ and $E^{\prime}=E \cup\{s v \mid v \in V\}$. Extend the weight function w to include $w(s v)=0$ for all $v \in V$. By construction, s has no incoming edges and any path in G^{\prime} that contains s has s as the source vertex. Thus G^{\prime} has no negative cycles if and only if G has no negative cycles. Define the function $h: V \rightarrow \mathbf{R}$ by $v \mapsto \delta(s, v)$ with domain V^{\prime}. By the triangle inequality (see Lemma 3.5),

$$
\delta(s, u)+w(u v) \geq \delta(s, v) \quad \Longleftrightarrow \quad h(u)+w(u v) \geq h(v)
$$

thereby showing that $\hat{w}(u v)=w(u v)+h(u)-h(v) \geq 0$.

3.8 Problems

I believe that a scientist looking at nonscientific problems is just as dumb as the next guy.

- Richard Feynman
3.1. Let $G=(V, E)$ be an undirected graph, let $s \in V$, and D is the list of distances resulting from running Algorithm 3.1 with G and s as input. Show that G is connected if and only if $D[v]$ is defined for each $v \in V$.
3.2. Show that the worst-case time complexity of depth-first search Algorithm 3.2 is $O(|V|+|E|)$.
3.3. Let D be the list of distances returned by Algorithm 3.2, let s be a starting vertex, and let v be a vertex such that $D[v] \neq \infty$. Show that $D[v]$ is the length of any shortest path from s to v.
3.4. Consider the graph in Figure 3.10 as undirected. Run this undirected version through Dijkstra's algorithm with starting vertex v_{1}.

Figure 3.14: Searching a directed house graph using Dijkstra's algorithm.
3.5. Consider the graph in Figure 3.14. Choose any vertex as a starting vertex and run Dijkstra's algorithm over it. Now consider the undirected version of that digraph and repeat the exercise.
3.6. For each vertex v of the graph in Figure 3.14, run breadth-first search over that graph with v as the starting vertex. Repeat the exercise for depth-first search. Compare the graphs resulting from the above exercises.
3.7. A list data structure can be used to manage vertices and edges. If L is a nonempty list of vertices of a graph, we may want to know whether the graph contains a particular vertex. We could search the list L, returning True if L contains the vertex in question and False otherwise. Linear search is a simple searching algorithm. Given an object E for which we want to search, we consider each element e of L in turn and compare E to e. If at any point during our search we found a match, we halt the algorithm and output an affirmative answer. Otherwise, we have scanned through all elements of L and each of those elements do not match E. In this case, linear search reports that E is not in L. Our discussion is summarized in Algorithm 3.11.
(a) Implement Algorithm 3.11 in Sage and test your implementation using the graphs presented in the figures of this chapter.
(b) What is the maximum number of comparisons during the running of Algorithm 3.11? What is the average number of comparisons?
(c) Why must the input list L be nonempty?

```
Algorithm 3.11 Linear search for lists.
Input A nonempty list \(L\) of vertices or edges. An object \(E\) for which we want to search
    in \(L\).
Output true if \(E\) is in \(L\); false otherwise.
    for each \(e \in L\) do
        if \(E=e\) then
            return true
    return false
```

```
Algorithm 3.12 Binary search for lists of positive integers.
Input A nonempty list \(L\) of positive integers. Elements of \(L\) are sorted in nondecreasing
    order. An integer \(i\) for which we want to search in \(L\).
Output true if \(i\) is in \(L\); false otherwise.
    low \(\leftarrow 0\)
    high \(\leftarrow|L|-1\)
    while low \(\leq\) high do
        \(\operatorname{mid} \leftarrow\left\lfloor\frac{\text { low }+ \text { high }}{2}\right\rfloor\)
        if \(i=L[\mathrm{mid}]\) then
            return true
        if \(i<L[\mathrm{mid}]\) then
            high \(\leftarrow \operatorname{mid}-1\)
        else
            low \(\leftarrow\) mid +1
    return false
```

3.8. Binary search is a much faster searching algorithm than linear search. The binary search algorithm assumes that its input list is ordered in some manner. For simplicity, we assume that the input list L consists of positive integers. The main idea of binary search is to partition L into two halves: the left half and the right half. Our task now is to determine whether the object E of interest is in the left half or the right half, and apply binary search recursively to the half in which E is located. Algorithm 3.12 provides pseudocode of our discussion of binary search.
(a) Implement Algorithm 3.12 in Sage and test your implementation using the graphs presented in the figures of this chapter.
(b) What is the worst case runtime of Algorithm 3.12? How does this compare to the worst case runtime of linear search?
(c) Why must the input list L be sorted in nondecreasing order? Would Algorithm 3.12 work if L is sorted in nonincreasing order? If not, modify Algorithm 3.12 so that it works with an input list that is sorted in nonincreasing order.
(d) Line 4 of Algorithm 3.12 uses the floor function to compute the index of the middle value. Would binary search still work if we use the ceiling function instead of the floor function?
3.9. Let G be a simple undirected graph having distance matrix $D=\left[d\left(v_{i}, v_{j}\right)\right]$, where $d\left(v_{i}, v_{j}\right) \in \mathbf{R}$ denotes the shortest distance from $v_{i} \in V(G)$ to $v_{j} \in V(G)$. If $v_{i}=v_{j}$, we set $d\left(v_{i}, v_{j}\right)=0$. For each pair of distinct vertices $\left(v_{i}, v_{j}\right)$, we have $d\left(v_{i}, v_{j}\right)=d\left(v_{j}, v_{i}\right)$. The i-j entry of D is also written as $d_{i, j}$ and denotes the entry in row i and column j.
(a) The total distance $\operatorname{td}(u)$ of a fixed vertex $u \in V(G)$ is the sum of distances from u to each vertex in G :

$$
\operatorname{td}(u)=\sum_{v \in V(G)} d(u, v) .
$$

If G is connected, i is the row index of vertex u in the distance matrix D, and j is the column index of u in D, show that the total distance of u is

$$
\begin{equation*}
\operatorname{td}(u)=\sum_{k} d_{i, k}=\sum_{k} d_{k, j} . \tag{3.10}
\end{equation*}
$$

(b) Let the vertices of G be labeled $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, where $n=|V(G)|$ is the order of G. The total distance $\operatorname{td}(G)$ of G is obtained by summing all the $d\left(v_{i}, v_{j}\right)$ for $i<j$. If G is connected, show that the total distance of G is equal to the sum of all entries in the upper (or lower) triangular of D :

$$
\begin{equation*}
\operatorname{td}(G)=\sum_{i<j} d_{i, j}=\sum_{i>j} d_{i, j}=\frac{1}{2}\left(\sum_{u \in V} \sum_{v \in V} d(u, v)\right) \tag{3.11}
\end{equation*}
$$

Hence show that the total distance of G is equal to its Wiener number:

$$
\operatorname{td}(G)=W(G)
$$

(c) Would equations (3.10) and (3.11) hold if G is not connected or directed?
3.10. The following result is from [202]. Let G_{1} and G_{2} be graphs with orders $n_{i}=$ $\left|V\left(G_{i}\right)\right|$ and sizes $m_{i}=\left|E\left(G_{i}\right)\right|$, respectively.
(a) If each of G_{1} and G_{2} is connected, show that the Wiener number of the Cartesian product $G_{1} \square G_{2}$ is

$$
W\left(G_{1} \square G_{2}\right)=n_{2}^{2} \cdot W\left(G_{1}\right)+n_{1}^{2} \cdot W\left(G_{2}\right)
$$

(b) If G_{1} and G_{2} are arbitrary graphs, show that the Wiener number of the join $G_{1}+G_{2}$ is

$$
W\left(G_{1}+G_{2}\right)=n_{1}^{2}-n_{1}+n_{2}^{2}-n_{2}+n_{1} n_{2}-m_{1}-m_{2}
$$

3.11. The following results originally appeared in [70] and independently rediscovered many times since.
(a) If P_{n} is the path graph on $n \geq 0$ vertices, show that the Wiener number of P_{n} is $W\left(P_{n}\right)=\frac{1}{6} n\left(n^{2}-1\right)$.
(b) If C_{n} is the cycle graph on $n \geq 0$ vertices, show that the Wiener number of C_{n} is

$$
W\left(C_{n}\right)= \begin{cases}\frac{1}{8} n\left(n^{2}-1\right), & \text { if } n \text { is odd } \\ \frac{1}{8} n^{3}, & \text { if } n \text { is even }\end{cases}
$$

(c) If K_{n} is the complete graph on n vertices, show that its Wiener number is $W\left(K_{n}\right)=\frac{1}{2} n(n-1)$.
(d) Show that the Wiener number of the complete bipartite graph $K_{m, n}$ is

$$
W\left(K_{m, n}\right)=m n+m(m-1)+n(n-1) .
$$

3.12. In addition to searching, there is the related problem of sorting a list according to an ordering relation. If the given list $L=\left[e_{1}, e_{2}, \ldots, e_{n}\right]$ consists of real numbers, we want to order elements in nondecreasing order. Bubble sort is a basic sorting algorithm that can be used to sort a list of real numbers, indeed any collection of objects that can be ordered according to an ordering relation. During each pass through the list L from left to right, we consider e_{i} and its right neighbor e_{i+1}. If $e_{i} \leq e_{i+1}$, then we move on to consider e_{i+1} and its right neighbor e_{i+2}. If $e_{i}>e_{i+1}$, then we swap these two values around in the list and then move on to consider e_{i+1} and its right neighbor e_{i+2}. Each successive pass pushes to the right end an element that is the next largest in comparison to the previous largest element pushed to the right end. Hence the name bubble sort for the algorithm. Algorithm 3.13 summarizes our discussion.

```
Algorithm 3.13 Bubble sort.
    relation " \(\leq\) ".
Output The same list as \(L\), but sorted in nondecreasing order.
    for \(i \leftarrow n, n-1, \ldots, 2\) do
        for \(j \leftarrow 2,3, \ldots, i\) do
            if \(L[j-1]>L[j]\) then
                swap the values of \(L[j-1]\) and \(L[j]\)
    return \(L\)
```

Input A list L of $n>1$ elements that can be ordered using the "less than or equal to"
(a) Analyze the worst-case runtime of Algorithm 3.13.
(b) Modify Algorithm 3.13 so that it sorts elements in nonincreasing order.
3.13. Selection sort is another simple sorting algorithm that works as follows. Let $L=$ $\left[e_{1}, e_{2}, \ldots, e_{n}\right]$ be a list of elements that can be ordered according to the relation " \leq ", e.g. the e_{i} can all be real numbers or integers. On the first scan of L from left to right, among the elements $L[2], \ldots, L[n]$ we find the smallest element and exchange it with $L[1]$. On the second scan, we find the smallest element among $L[3], \ldots, L[n]$ and exchange that smallest element with $L[2]$. In general, during the i-th scan we find the smallest element among $L[i+1], \ldots, L[n]$ and exchange that with $L[i]$. At the end of the i-th scan, the element $L[i]$ is in its final
position and would not be processed again. When the index reaches $i=n$, the list would have been sorted in nondecreasing order. The procedure is summarized in Algorithm 3.14.
(a) Analyze the worst-case runtime of Algorithm 3.14 and compare your result to the worst-case runtime of the bubble sort Algorithm 3.13.
(b) Modify Algorithm 3.14 to sort elements in nonincreasing order.
(c) Line 6 of Algorithm 3.14 assumes that among $L[i+1], L[i+2], \ldots, L[n]$ there is a smallest element $L[k]$ such that $L[i]>L[k]$, hence we perform the swap. It is possible that $L[i]<L[k]$, obviating the need to carry out the value swapping. Modify Algorithm 3.14 to take account of our discussion.

```
Algorithm 3.14 Selection sort.
Input A list \(L\) of \(n>1\) elements that can be ordered using the relation " \(\leq\) ".
Output The same list as \(L\), but sorted in nondecreasing order.
    for \(i \leftarrow 1,2, \ldots, n-1\) do
        \(\min \leftarrow i\)
        for \(j \leftarrow i+1, i+2, \ldots, n\) do
            if \(L[j]<L[\min ]\) then
                \(\min \leftarrow j\)
        swap the values of \(L[\min ]\) and \(L[i]\)
    return \(L\)
```

3.14. Algorithm 3.3 uses breadth-first search to determine the connectivity of an undirected graph. Modify this algorithm to use depth-first search. How can Algorithm 3.3 be used or modified to test the connectivity of a digraph?
3.15. The following problem is known as the river crossing problem. A man, a goat, a wolf, and a basket of cabbage are all on one side of a river. They have a boat that could be used to cross to the other side of the river. The boat can only hold at most two passengers, one of whom must be able to row the boat. One of the two passengers must be the man and the other passenger can be either the goat, the wolf, or the basket of cabbage. When crossing the river, if the man leaves the wolf with the goat, the wolf would prey on the goat. If he leaves the goat with the basket of cabbage, the goat would eat the cabbage. The objective is to cross the river in such a way that the wolf has no chance of preying on the goat, nor that the goat eat the cabbage.
(a) Let M, G, W, and C denote the man, the goat, the wolf, and the basket of cabbage, respectively. Initially all four are on the left side of the river and none of them are on the right side. Denote this by the ordered pair ($M G W C, \quad$), which is called the initial state of the problem. When they have all crossed to the right side of the river, the final state of the problem is ($_, M G W C$). The underscore "-" means that neither M, G, W, nor C are on the corresponding side of the river. List a finite sequence of moves to get from $\left(M G W C, _\right)$to (_, MGWC). Draw your result as a digraph.
(b) In the digraph Γ obtained from the previous exercise, let each edge of Γ be of unit weight. Find a shortest path from $\left(M G W C, _\right)$to (,$\left.M G W C\right)$.
(c) Rowing from one side of the river to the other side is called a crossing. What is the minimum number of crossings needed to get from ($M G W C, _$) to (_, MGWC)?
3.16. Symbolic computation systems such as Magma, Maple, Mathematica, Maxima, and Sage are able to read in a symbolic expression such as

$$
(a+b) \wedge 2-(a-b) \wedge 2
$$

and determine whether or not the brackets match. A bracket is any of the following characters:

$$
\text { () \{ \} [] }
$$

A string S of characters is said to be balanced if any left bracket in S has a corresponding right bracket that is also in S. Furthermore, if there are k occurrences of one type of left bracket, then there must be k occurrences of the corresponding right bracket. The balanced bracket problem is concerned with determining whether or not the brackets in S are balanced. Algorithm 3.15 contains a procedure to determine if the brackets in S are balanced, and if so return a list of positive integers to indicate how the brackets match.
(a) Implement Algorithm 3.15 in Sage and test your implementation on various strings containing brackets. Test your implementation on nonempty strings without any brackets.
(b) Modify Algorithm 3.15 so that it returns True if the brackets of an input string are balanced, and returns False otherwise.
(c) What is the worst-case runtime of Algorithm 3.15?
3.17. An arithmetic expression written in the form $a+b$ is said to be in infix notation because the operator is in between the operands. The same expression can also be written in reverse Polish notation (or postfix notation) as

$$
a b+
$$

with the operator following its two operands. Given an arithmetic expression $A=$ $e_{0} e_{1} \cdots e_{n}$ written in reverse Polish notation, we can use the stack data structure to evaluate the expression. Let $P=\left[e_{0}, e_{1}, \ldots, e_{n}\right]$ be the stack representation of A, where traversing P from left to right we are moving from the top of the stack to the bottom of the stack. We call P the Polish stack and the stack E containing intermediate results the evaluation stack. While P is not empty, pop the Polish stack and assign the extracted result to x. If x is an operator, we pop the evaluation stack twice: the result of the first pop is assigned to b and the result of the second pop is assigned to a. Compute the infix expression $a x b$ and push the result onto E. However, if x is an operand, we push x onto E. Iterate the above process until P is empty, at which point the top of E contains the evaluation of A. Refer to Algorithm 3.16 for pseudocode of the above discussion.
(a) Prove the correctness of Algorithm 3.16.
(b) What is the worst-case runtime of Algorithm 3.16?

```
Algorithm 3.15 A brackets parser.
Input A nonempty string \(S\) of characters.
Output A list \(L\) of positive integers indicating how the brackets match. If the brackets
    are not balanced, return the empty string \(\varepsilon\).
    \(L \leftarrow[]\)
    \(T \leftarrow\) empty stack
    \(c \leftarrow 1\)
    \(n \leftarrow|S|\)
    for \(i \leftarrow 0,1, \ldots, n\) do
        if \(S[i+1]\) is a left bracket then
            \(\operatorname{append}(L, c)\)
            push \((S[i+1], c)\) onto \(T\)
            \(c \leftarrow c+1\)
        if \(S[i+1]\) is a right bracket then
            if \(T\) is empty then
                return \(\varepsilon\)
            \((\) left,\(d) \leftarrow \operatorname{pop}(T)\)
            if left matches \(S[i+1]\) then
                \(\operatorname{append}(L, d)\)
            else
                return \(\varepsilon\)
    if \(T\) is empty then
        return \(L\)
    return \(\varepsilon\)
```

```
Algorithm 3.16 Evaluate arithmetic expressions in reverse Polish notation.
Output An evaluation of the arithmetic expression represented by \(P\).
    \(E \leftarrow\) empty stack
    \(v \leftarrow\) Null
    while \(P\) is not empty do
        \(x \leftarrow \operatorname{pop}(P)\)
        if \(x\) is an operator then
            \(b \leftarrow \operatorname{pop}(E)\)
            \(a \leftarrow \operatorname{pop}(E)\)
            if \(x\) is addition operator then
                \(v \leftarrow a+b\)
            else if \(x\) is subtraction operator then
                \(v \leftarrow a-b\)
            else if \(x\) is multiplication operator then
                \(v \leftarrow a \times b\)
            else if \(x\) is division operator then
                \(v \leftarrow a / b\)
            else
                exit algorithm with error
            \(\operatorname{push}(E, v)\)
        else
            \(\operatorname{push}(E, x)\)
    \(v \leftarrow \operatorname{pop}(E)\)
    return \(v\)
```

Input A Polish stack P containing an arithmetic expression in reverse Polish notation.
(c) Modify Algorithm 3.16 to support the exponentiation operator.
3.18. Figure 3.5 provides a knight's tour for the knight piece with initial position as in Figure 3.5(a). By rotating the chessboard in Figure 3.5(b) by $90 n$ degrees for positive integer values of n, we obtain another knight's tour that, when represented as a graph, is isomorphic to the graph in Figure 3.5(c).
(a) At the beginning of the 18th century, de Montmort and de Moivre provided the following strategy [12, p.176] to solve the knight's tour problem on an 8×8 chessboard. Divide the board into an inner 4×4 square and an outer shell of two squares deep, as shown in Figure 3.15(a). Place a knight on a square in the outer shell and move the knight piece around that shell, always in the same direction, so as to visit each square in the outer shell. After that, move into the inner square and solve the knight's tour problem for the 4×4 case. Apply this strategy to solve the knight's tour problem with the initial position as in Figure 3.15(b).
(b) Use the Montmort-Moivre strategy to obtain a knight's tour, starting at the position of the black-filled node in the outer shell in Figure 3.5(b).
(c) A re-entrant or closed knight's tour is a knight's tour that starts and ends at the same square. Find re-entrant knight's tours with initial positions as in Figure 3.16.
(d) Devise a backtracking algorithm to solve the knight's tour problem on an $n \times n$ chessboard for $n>3$.

(a) A 4×4 inner square.

(b) Initial position in the outer shell.

Figure 3.15: De Montmort and de Moivre's solution strategy for the 8×8 knight's tour problem.
3.19. The n-queens problem is concerned with the placement of n queens on an $n \times n$ chessboard such that no two queens can attack each other. Two queens can attack each other if they are in the same row, column, diagonal, or antidiagonal of the chessboard. The trivial case $n=1$ is easily solved by placing the one queen in the only given position. There are no solutions for the cases $n=2,3$. Solutions for the cases $n=4,8$ are shown in Figure 3.17. Devise a backtracking algorithm to

(a) A 6×6 chessboard.

(b) An 8×8 chessboard.

Figure 3.16: Initial positions of re-entrant knight's tours.

(a) $n=4$

(b) $n=8$

Figure 3.17: Solutions of the n-queens problem for $n=4,8$.
solve the n-queens problem for the case where $n>3$. See [20] for a survey of the n-queens problem and its solutions.
3.20. Hampton Court Palace in England is well-known for its maze of hedges. Figure 3.18 shows a maze and its graph representation; the figure is adapted from page 434 in [169]. To obtain the graph representation, we use a vertex to represent an intersection in the maze. An edge joining two vertices represents a path from one intersection to another.
(a) Suppose the entrance to the maze is represented by the lower-left black-filled vertex in Figure 3.18(b) and the exit is the upper-right black-filled vertex. Solve the maze by providing a path from the entrance to the exit.
(b) Repeat the previous exercise for each pair of distinct vertices, letting one vertex of the pair be the entrance and the other vertex the exit.
(c) What is the diameter of the graph in Figure 3.18(b)?
(d) Investigate algorithms for generating and solving mazes.

Figure 3.18: A maze and its graph representation.
3.21. For each of the algorithms below: (i) justify whether or not it can be applied to multigraphs or multidigraphs; (ii) if not, modify the algorithm so that it is applicable to multigraphs or multidigraphs.
(a) Breadth-first search Algorithm 3.1.
(b) Depth-first search Algorithm 3.2.
(c) Graph connectivity test Algorithm 3.3.
(d) General shortest path Algorithm 3.4.
(e) Dijkstra's Algorithm 3.5.
(f) The Bellman-Ford Algorithms 3.6 and 3.7.
(g) The Floyd-Roy-Warshall Algorithm 3.8.
(h) The transitive closure Algorithm 3.9.
(i) Johnson's Algorithm 3.10.

(a) 2×2

(b) 3×3

(c) 4×4

Figure 3.19: Grid graphs for $n=2,3,4$.
3.22. Let n be a positive integer. An $n \times n$ grid graph is a graph on the Euclidean plane, where each vertex is an ordered pair from $\mathbf{Z} \times \mathbf{Z}$. In particular, the vertices are ordered pairs $(i, j) \in \mathbf{Z} \times \mathbf{Z}$ such that

$$
\begin{equation*}
0 \leq i, j<n . \tag{3.12}
\end{equation*}
$$

Each vertex (i, j) is adjacent to any of the following vertices provided that expression (3.12) is satisfied: the vertex $(i-1, j)$ immediately to its left, the vertex $(i+1, j)$ immediately to its right, the vertex $(i, j+1)$ immediately above it, or the vertex $(i, j-1)$ immediately below it. Figure 3.19 illustrates some examples of grid graphs. The 1×1 grid graph is the trivial graph K_{1}.
(a) Fix a positive integer $n>1$. Describe and provide pseudocode of an algorithm to generate all nonisomorphic $n \times n$ grid graphs. What is the worst-case runtime of your algorithm?
(b) How many $n \times n$ grid graphs are there? How many of those graphs are nonisomorphic to each other?
(c) Describe and provide pseudocode of an algorithm to generate a random $n \times n$ grid graph. Analyze the worst-case runtime of your algorithm.
(d) Extend the grid graph by allowing edges to be diagonals. That is, a vertex (i, j) can also be adjacent to any of the following vertices so long as expression (3.12) holds: $(i-1, j-1),(i-1, j+1),(i+1, j+1),(i+1, j-1)$. With this extension, repeat the previous exercises.
3.23. Let $G=(V, E)$ be a digraph with integer weight function $w: E \rightarrow \mathbf{Z} \backslash\{0\}$, where either $w(e)>0$ or $w(e)<0$ for each $e \in E$. Yamada and Kinoshita [199] provide a divide-and-conquer algorithm to enumerate all the negative cycles in G. Investigate the divide and conquer technique for algorithm design. Describe and provide pseudocode of the Yamada-Kinoshita algorithm. Analyze its runtime complexity and prove the correctness of the algorithm.

Chapter 4

Graph data structures

— Randall Munroe, xkcd, http://xkcd.com/835/
What is the next task to be completed? Our daily lives are littered with priorities. There are tasks that take higher priorities than everything else and should be completed as soon as possible. Other tasks are of lower priorities and can be done whenever we have time. If we assign a nonnegative whole number to each task that needs to be completed, the task with the highest priority has the lowest whole number assigned to it. As each new task comes along, it is assigned a numerical priority. At any point in time, we want to choose and complete the task with the highest priority. This chapter will show how a structure called a priority queue can be used to efficiently choose the next task of highest priority. The structure can efficiently handle from a few tasks up to millions of tasks.

In Chapters 3 and 2, we discussed various algorithms that rely on priority queues as one of their fundamental data structures. Such algorithms include Dijkstra's algorithm, Prim's algorithm, and the algorithm for constructing Huffman trees. The runtime of any algorithm that uses priority queues crucially depends on an efficient implementation of the priority queue data structure. This chapter discusses the general priority queue data structure and various efficient implementations based on trees. Section 4.1 provides some theoretical underpinning of priority queues and considers a simple implementation
of priority queues as sorted lists. Section 4.2 discusses how to use binary trees to realize an efficient implementation of priority queues called a binary heap. Although very useful in practice, binary heaps do not lend themselves to being merged in an efficient manner, a setback rectified in section 4.3 by a priority queue implementation called binomial heaps. As a further application of binary trees, section 4.4 discusses binary search trees as a general data structure for managing data in a sorted order.

4.1 Priority queues

A priority queue is a queue data structure with various rules on how to access and manage elements of the queue. Recall from section 3.2.1 that an ordinary queue Q has the following basic functions for accessing and managing its elements:

- dequeue (Q) - Remove the front of Q.
- enqueue (Q, e) - Append the element e to the end of Q.

If Q is now a priority queue, each element is associated with a key or priority $p \in X$ from a totally ordered set X. A binary relation denoted by an infix operator, say " \leq ", is defined on all elements of X such that the following properties hold for all $a, b, c \in X$:

- Totality: We have $a \leq b$ or $b \leq a$.
- Antisymmetry: If $a \leq b$ and $b \leq a$, then $a=b$.
- Transitivity: If $a \leq b$ and $b \leq c$, then $a \leq c$.

If the above three properties hold for the relation " \leq ", then we say that " \leq " is a total order on X and that X is a totally ordered set. In all, if the key of each element of Q belongs to the same totally ordered set X, we use the total order defined on X to compare the keys of the queue elements. For example, the set \mathbf{Z} of integers is totally ordered by the "less than or equal to" relation. If the key of each $e \in Q$ is an element of \mathbf{Z}, we use the latter relation to compare the keys of elements of Q. In the case of an ordinary queue, the key of each queue element is its position index.

To extract from a priority queue Q an element of lowest priority, we need to define the notion of smallest priority or key. Let p_{i} be the priority or key assigned to element e_{i} of Q. Then $p_{\min }$ is the lowest key if $p_{\min } \leq p$ for any element key p. The element with corresponding key $p_{\text {min }}$ is the minimum priority element. Based upon the notion of key comparison, we define two operations on a priority queue:

- insert (Q, e, p) - Insert into Q the element e with key p.
- extractMin (Q) - Extract from Q an element having the smallest priority.

An immediate application of priority queues is sorting a finite sequence of items. Suppose L is a finite list of $n>0$ items on which a total order is defined. Let Q be an empty priority queue. In the first phase of the priority queue sorting algorithm, we extract each element $e \in L$ from L and insert e into Q with key e itself. In other words, each element e is its own key. This first phase of the sorting algorithm requires n element extractions from L and n element insertions into Q. The second phase of the algorithm involves extracting elements from Q via the extractMin operation. Queue elements are extracted via extractMin and inserted back into L in the order in which they are extracted from Q. Algorithm 4.1 presents pseudocode of our discussion. The runtime of Algorithm 4.1 depends on how the priority queue Q is implemented.

```
Algorithm 4.1 Sorting a sequence via priority queue.
Input A finite list \(L\) of \(n>0\) elements on which a total order is defined.
Output The same list \(L\) sorted by the total order defined on its elements.
    \(Q \leftarrow[]\)
    for \(i \leftarrow 1,2, \ldots, n\) do
        \(e \leftarrow \operatorname{extractMin}(L)\)
        enqueue \((Q, e)\)
    return \(Q\)
```


4.1.1 Sequence implementation

A simple way to implement a priority queue is to maintain a sorted sequence. Let $e_{0}, e_{1}, \ldots, e_{n}$ be a sequence of $n+1$ elements with corresponding keys $\kappa_{0}, \kappa_{1}, \ldots, \kappa_{n}$ and suppose that the κ_{i} all belong to the same totally ordered set X having total order \leq. Using the total order, we assume that the κ_{i} are sorted as

$$
\kappa_{0} \leq \kappa_{1} \leq \cdots \leq \kappa_{n}
$$

and $e_{i} \leq e_{j}$ if and only if $\kappa_{i} \leq \kappa_{j}$. Then we consider the queue $Q=\left[e_{0}, e_{1}, \ldots, e_{n}\right]$ as a priority queue in which the head is always the minimum element and the tail is always the maximum element. Extracting the minimum element is simply a dequeue operation that can be accomplished in constant time $O(1)$. However, inserting a new element into Q takes linear time.

Let e be an element with corresponding key $\kappa \in X$. Inserting e into Q requires that we maintain elements of Q sorted according to the total order \leq. If Q is empty, we simply enqueue e into Q. Suppose now that Q is a nonempty priority queue. If $\kappa \leq \kappa_{0}$, then e becomes the new head of Q. If $\kappa_{n} \leq \kappa$, then e becomes the new tail of Q. Inserting a new head or tail into Q each requires constant time $O(1)$. However, if $\kappa_{1} \leq \kappa \leq \kappa_{n-1}$ then we need to traverse Q starting from e_{1}, searching for a position at which to insert e. Let e_{i} be the queue element at position i within Q. If $\kappa \leq \kappa_{i}$ then we insert e into Q at position i, thus moving e_{i} to position $i+1$. Otherwise we next consider e_{i+1} and repeat the above comparison process. By hypothesis, $\kappa_{1} \leq \kappa \leq \kappa_{n-1}$ and therefore inserting e into Q takes a worst-case runtime of $O(n)$.

4.2 Binary heaps

A sequence implementation of priority queues has the advantage of being simple to understand. Inserting an element into a sequence-based priority queue requires linear time, which can quickly become infeasible for queues containing hundreds of thousands or even millions of elements. Can we do any better? Rather than using a sorted sequence, we can use a binary tree to realize an implementation of priority queues that is much more efficient than a sequence-based implementation. In particular, we use a data structure called a binary heap, which allows for element insertion in logarithmic time.

In [197], Williams introduced the heapsort algorithm and described how to implement a priority queue using a binary heap. A basic idea is to consider queue elements as internal vertices in a binary tree T, with external vertices or leaves being "place-holders". The tree T satisfies two further properties:

1. A relational property specifying the relative ordering and placement of queue elements.
2. A structural property that specifies the structure of T.

The relational property of T can be expressed as follows:
Definition 4.1. Heap-order property. Let T be a binary tree and let v be a vertex of T other than the root. If p is the parent of v and these vertices have corresponding keys κ_{p} and κ_{v}, respectively, then $\kappa_{p} \leq \kappa_{v}$.

The heap-order property is defined in terms of the total order used to compare the keys of the internal vertices. Taking the total order to be the ordinary "less than or equal to" relation, it follows from the heap-order property that the root of T is always the vertex with a minimum key. Similarly, if the total order is the usual "greater than or equal to" relation, then the root of T is always the vertex with a maximum key. In general, if \leq is a total order defined on the keys of T and u and v are vertices of T, we say that u is less than or equal to v if and only if $u \leq v$. Furthermore, u is said to be a minimum vertex of T if and only if $u \leq v$ for all vertices of T. From our discussion above, the root is always a minimum vertex of T and is said to be "at the top of the heap", from which we derive the name "heap" for this data structure.

Another consequence of the heap-order property becomes apparent when we trace out a path from the root of T to any internal vertex. Let r be the root of T and let v be any internal vertex of T. If $r, v_{0}, v_{1}, \ldots, v_{n}, v$ is an $r-v$ path with corresponding keys

$$
\kappa_{r}, \kappa_{v_{0}}, \kappa_{v_{1}}, \ldots, \kappa_{v_{n}}, \kappa_{v}
$$

then we have

$$
\kappa_{r} \leq \kappa_{v_{0}} \leq \kappa_{v_{1}} \leq \cdots \leq \kappa_{v_{n}} \leq \kappa_{v}
$$

In other words, the keys encountered on the path from r to v are arranged in nondecreasing order.

The structural property of T is used to enforce that T be of as small a height as possible. Before stating the structural property, we first define the level of a binary tree. Recall that the depth of a vertex in T is its distance from the root. Level i of a binary tree T refers to all vertices of T that have the same depth i. We are now ready to state the heap-structure property.

Definition 4.2. Heap-structure property. Let T be a binary tree with height h. Then T satisfies the heap-structure property if T is nearly a complete binary tree. That is, level $0 \leq i \leq h-1$ has 2^{i} vertices, whereas level h has $\leq 2^{h}$ vertices. The vertices at level h are filled from left to right.

If a binary tree T satisfies both the heap-order and heap-structure properties, then T is referred to as a binary heap. By insisting that T satisfy the heap-order property, we are able to determine the minimum vertex of T in constant time $O(1)$. Requiring that T also satisfy the heap-structure property allows us to determine the last vertex of T. The last vertex of T is identified as the right-most internal vertex of T having the greatest depth. Figure 4.1 illustrates various examples of binary heaps. The heapstructure property together with Theorem 2.21 result in the following corollary on the height of a binary heap.

Figure 4.1: Examples of binary heaps with integer keys.

Corollary 4.3. A binary heap T with n internal vertices has height

$$
h=\lceil\lg (n+1)\rceil .
$$

Proof. Level $h-1$ has at least one internal vertex. Apply Theorem 2.21 to see that T has at least

$$
2^{h-2+1}-1+1=2^{h-1}
$$

internal vertices. On the other hand, level $h-1$ has at most 2^{h-1} internal vertices. Another application of Theorem 2.21 shows that T has at most

$$
2^{h-1+1}-1=2^{h}-1
$$

internal vertices. Thus n is bounded by

$$
2^{h-1} \leq n \leq 2^{h}-1
$$

Taking logarithms of each side in the latter bound results in

$$
\lg (n+1) \leq h \leq \lg n+1
$$

and the corollary follows.

Figure 4.2: Sequence representations of various binary heaps.

4.2.1 Sequence representation

Any binary heap can be represented as a binary tree. Each vertex in the tree must know about its parent and its two children. However, a more common approach is to represent a binary heap as a sequence such as a list, array, or vector. Let T be a binary heap consisting of n internal vertices and let L be a list of n elements. The root vertex is represented as the list element $L[0]$. For each index i, the children of $L[i]$ are $L[2 i+1]$ and $L[2 i+2]$ and the parent of $L[i]$ is

$$
L\left[\left\lfloor\frac{i-1}{2}\right\rfloor\right]
$$

With a sequence representation of a binary heap, each vertex needs not know about its parent and children. Such information can be obtained via simple arithmetic on sequence indices. For example, the binary heaps in Figure 4.1 can be represented as the corresponding lists in Figure 4.2. Note that it is not necessary to store the leaves of T in the sequence representation.

4.2.2 Insertion and sift-up

We now consider the problem of inserting a vertex v into a binary heap T. If T is empty, inserting a vertex simply involves the creation of a new internal vertex. We let that new internal vertex be v and let its two children be leaves. The resulting binary heap augmented with v has exactly one internal vertex and satisfies both the heap-order and heap-structure properties, as shown in Figure 4.3. In other words, any binary heap with one internal vertex trivially satisfies the heap-order property.

Figure 4.3: Inserting a vertex into an empty binary heap.

Let T now be a nonempty binary heap, i.e. T has at least one internal vertex, and suppose we want to insert into T an internal vertex v. We must identify the correct leaf of T at which to insert v. If the n internal vertices of T are $r=v_{0}, v_{1}, \ldots, v_{n-1}$, then by the sequence representation of T we can identify the last internal vertex v_{n-1} in constant time. The correct leaf at which to insert v is the sequence element immediately following v_{n-1}, i.e. the element at position n in the sequence representation of T. We replace with v the leaf at position n in the sequence so that v now becomes the last vertex of T.

The binary heap T augmented with the new last vertex v satisfies the heap-structure property, but may violate the heap-order property. To ensure that T satisfies the heaporder property, we perform an operation on T called sift-up that involves possibly moving v up through various levels of T. Let κ_{v} be the key of v and let $\kappa_{p(v)}$ be the key of v 's parent. If the relation $\kappa_{p(v)} \leq \kappa_{v}$ holds, then T satisfies the heap-order property. Otherwise we swap v with its parent, effectively moving v up one level to be at the position previously occupied by its parent. The parent of v is moved down one level and now occupies the position where v was previously. With v in its new position, we perform the same key comparison process with v 's new parent. The key comparison and swapping continue until the heap-order property holds for T. In the worst case, v would become the new root of T after undergoing a number of swaps that is proportional to the height of T. Therefore, inserting a new internal vertex into T can be achieved in time $O(\lg n)$. Figure 4.4 illustrates the insertion of a new internal vertex into a nonempty binary heap and the resulting sift-up operation to maintain the heap-order property. Algorithm 4.2 presents pseudocode of our discussion for inserting a new internal vertex into a nonempty binary heap. The pseudocode is adapted from Howard [103], which provides a C implementation of binary heaps.

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Figure 4.4: Insert and sift-up in a binary heap.

```
Algorithm 4.2 Inserting a new internal vertex into a binary heap.
Input A nonempty binary heap \(T\), in sequence representation, having \(n\) internal vertices.
    An element \(v\) that is to be inserted as a new internal vertex of \(T\).
Output The binary heap \(T\) augmented with the new internal vertex \(v\).
    \(i \leftarrow n\)
    while \(i>0\) do
        \(p \leftarrow\lfloor(i-1) / 2\rfloor\)
        if \(\kappa_{T[p]} \leq \kappa_{v}\) then
            exit the loop
        else
            \(T[i] \leftarrow T[p]\)
            \(i \leftarrow p\)
    \(T[i] \leftarrow v\)
    return \(T\)
```


4.2.3 Deletion and sift-down

The process for deleting the minimum vertex of a binary heap bears some resemblance to that of inserting a new internal vertex into the heap. Having removed the minimum vertex, we must then ensure that the resulting binary heap satisfies the heap-order property. Let T be a binary heap. By the heap-order property, the root of T has a key that is minimum among all keys of internal vertices in T. If the root r of T is the only internal vertex of T, i.e. T is the trivial binary heap, we simply remove r and T now becomes the empty binary heap or the trivial tree, for which the heap-order property vacuously holds. Figure 4.5 illustrates the case of removing the root of a binary heap having one internal vertex.

(a)
b)

Figure 4.5: Deleting the root of a trivial binary heap.
We now turn to the case where T has $n>1$ internal vertices. Let r be the root of T and let v be the last internal vertex of T. Deleting r would disconnect T. So we instead replace the key and information at r with the key and other relevant information pertaining to v. The root r now has the key of the last internal vertex, and v becomes a leaf.

At this point, T satisfies the heap-structure property but may violate the heap-order property. To restore the heap-order property, we perform an operation on T called siftdown that may possibly move r down through various levels of T. Let $c(r)$ be the child of r with key that is minimum among all the children of r, and let κ_{r} and $\kappa_{c(r)}$ be the keys of r and $c(r)$, respectively. If $\kappa_{r} \leq \kappa_{c(r)}$, then the heap-order property is satisfied. Otherwise we swap r with $c(r)$, moving r down one level to the position previously occupied by $c(r)$. Furthermore, $c(r)$ is moved up one level to the position previously occupied by r. With r in its new position, we perform the same key comparison process with a child of r that has minimum key among all of r 's children. The key comparison and swapping
continue until the heap-order property holds for T. In the worst case, r would percolate all the way down to the level that is immediately above the last level after undergoing a number of swaps that is proportional to the height of T. Therefore, deleting the minimum vertex of T can be achieved in time $O(\lg n)$. Figure 4.6 illustrates the deletion of the minimum vertex of a binary heap with at least two internal vertices and the resulting sift-down process that percolates vertices down through various levels of the heap in order to maintain the heap-order property. Algorithm 4.3 summarizes our discussion of the process for extracting the minimum vertex of T while also ensuring that T satisfies the heap-order property. The pseudocode is adapted from the C implementation of binary heaps in Howard [103]. With some minor changes, Algorithm 4.3 can be used to change the key of the root vertex and maintain the heap-order property for the resulting binary tree.

```
Algorithm 4.3 Extract the minimum vertex of a binary heap.
Input A binary heap \(T\), given in sequence representation, having \(n>1\) internal vertices.
Output Extract the minimum vertex of \(T\). With one vertex removed, \(T\) must satisfy
    the heap-order property.
    root \(\leftarrow T[0]\)
    \(n \leftarrow n-1\)
    \(v \leftarrow T[n]\)
    \(i \leftarrow 0\)
    \(j \leftarrow 0\)
    while true do
        left \(\leftarrow 2 i+1\)
        right \(\leftarrow 2 i+2\)
        if left \(<n\) and \(\kappa_{T[\text { left }]} \leq \kappa_{v}\) then
                if right \(<n\) and \(\kappa_{T[\text { right }]} \leq \kappa_{T[\text { left }]}\) then
                \(j \leftarrow\) right
            else
                \(j \leftarrow \operatorname{left}\)
        else if right \(<n\) and \(\kappa_{T[\text { right }]} \leq \kappa_{v}\) then
            \(j \leftarrow\) right
        else
            \(T[i] \leftarrow v\)
            exit the loop
        \(T[i] \leftarrow T[j]\)
        \(i \leftarrow j\)
    return root
```


4.2.4 Constructing a binary heap

Given a collection of n vertices $v_{0}, v_{1}, \ldots, v_{n-1}$ with corresponding keys $\kappa_{0}, \kappa_{1}, \ldots, \kappa_{n-1}$, we want to construct a binary heap containing exactly those vertices. A basic approach is to start with a trivial tree and build up a binary heap via successive insertions. As each insertion requires $O(\lg n)$ time, the method of binary heap construction via successive insertion of each of the n vertices requires $O(n \cdot \lg n)$ time. It turns out we could do a bit better and achieve the same result in linear time.

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Figure 4.6: Delete and sift-down in a binary heap.

```
Algorithm 4.4 Heapify a binary tree.
Input A binary tree \(T\), given in sequence representation, having \(n>1\) internal vertices.
Output The binary tree \(T\) heapified so that it satisfies the heap-order property.
    for \(i \leftarrow\lfloor n / 2\rfloor-1, \ldots, 0\) do
        \(v \leftarrow T[i]\)
        \(j \leftarrow 0\)
        while true do
            left \(\leftarrow 2 i+1\)
            right \(\leftarrow 2 i+2\)
            if left \(<n\) and \(\kappa_{T[\text { left }]} \leq \kappa_{v}\) then
                if right \(<n\) and \(\kappa_{T[\text { right }]} \leq \kappa_{T[\text { left }]}\) then
                \(j \leftarrow\) right
                else
                    \(j \leftarrow \operatorname{left}\)
            else if right \(<n\) and \(\kappa_{T[\text { right }]} \leq \kappa_{v}\) then
                \(j \leftarrow\) right
            else
                \(T[i] \leftarrow v\)
                exit the while loop
            \(T[i] \leftarrow T[j]\)
            \(i \leftarrow j\)
    return \(T\)
```

A better approach starts by letting $v_{0}, v_{1}, \ldots, v_{n-1}$ be the internal vertices of a binary tree T. The tree T need not satisfy the heap-order property, but it must satisfy the heapstructure property. Suppose T is given in sequence representation so that we have the correspondence $v_{i}=T[i]$ and the last internal vertex of T has index $n-1$. The parent of $T[n-1]$ has index

$$
j=\left\lfloor\frac{n-1}{2}\right\rfloor .
$$

Any vertex of T with sequence index beyond $n-1$ is a leaf. In other words, if an internal vertex has index $>j$, then the children of that vertex are leaves and have indices $\geq n$. Thus any internal vertex with index $\geq\lfloor n / 2\rfloor$ has leaves for its children. Conclude that internal vertices with indices

$$
\begin{equation*}
\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{n}{2}\right\rfloor+1,\left\lfloor\frac{n}{2}\right\rfloor+2, \ldots, n-1 \tag{4.1}
\end{equation*}
$$

have only leaves for their children.
Our next task is to ensure that the heap-order property holds for T. If v is an internal vertex with index in (4.1), then the subtree rooted at v is trivially a binary heap. Consider the indices from $\lfloor n / 2\rfloor-1$ all the way down to 0 and let i be such an index, i.e. let $0 \leq i \leq\lfloor n / 2\rfloor-1$. We heapify the subtree of T rooted at $T[i]$, effectively performing a sift-down on this subtree. Once we have heapified all subtrees rooted at $T[i]$ for $0 \leq i \leq\lfloor n / 2\rfloor-1$, the resulting tree T is a binary heap. Our discussion is summarized in Algorithm 4.4.

Earlier in this section, we claimed that Algorithm 4.4 can be used to construct a binary heap in worst-case linear time. To prove this, let T be a binary tree satisfying the
heap-structure property and having n internal vertices. By Corollary 4.3, T has height $h=\lceil\lg (n+1)\rceil$. We perform a sift-down for at most 2^{i} vertices of depth i, where each sift-down for a subtree rooted at a vertex of depth i takes $O(h-i)$ time. Then the total time for Algorithm 4.4 is

$$
\begin{aligned}
O\left(\sum_{0 \leq i<h} 2^{i}(h-i)\right) & =O\left(2^{h} \sum_{0 \leq i<h} \frac{2-i}{2^{h-i}}\right) \\
& =O\left(2^{h} \sum_{k>0} \frac{k}{2^{k}}\right) \\
& =O\left(2^{h+1}\right) \\
& =O(n)
\end{aligned}
$$

where we used the closed form $\sum_{k>0} k / 2^{k}=2$ for a geometric series and Theorem 2.21.

4.3 Binomial heaps

We are given two binary heaps T_{1} and T_{2} and we want to merge them into a single heap. We could start by choosing to insert each element of T_{2} into T_{1}, successively extracting the minimum element from T_{2} and insert that minimum element into T_{1}. If T_{1} and T_{2} have m and n elements, respectively, we would perform n extractions from T_{2} totalling

$$
O\left(\sum_{0<k \leq n} \lg k\right)
$$

time and inserting all of the extracted elements from T_{2} into T_{1} requires a total runtime of

$$
\begin{equation*}
O\left(\sum_{n \leq k<n+m} \lg k\right) . \tag{4.2}
\end{equation*}
$$

We approximate the addition of the two sums by

$$
\int_{0}^{n+m} \lg k d k=\frac{k \ln k-k}{\ln 2}+\left.C\right|_{k=0} ^{k=n+m}
$$

for some constant C. The above method of successive extraction and insertion therefore has a total runtime of

$$
O\left(\frac{(n+m) \ln (n+m)-n-m}{\ln 2}\right)
$$

for merging two binary heaps.
Alternatively, we could slightly improve the latter runtime for merging T_{1} and T_{2} by successively extracting the last internal vertex of T_{2}. The whole process of extracting all elements from T_{2} in this way takes $O(n)$ time and inserting each of the extracted elements into T_{1} still requires the runtime in expression (4.2). We approximate the sum in (4.2) by

$$
\int_{k=n}^{k=n+m} \lg k d k=\frac{k \ln k-k}{\ln 2}+\left.C\right|_{k=n} ^{k=n+m}
$$

for some constant C. Therefore the improved extraction and insertion method requires

$$
O\left(\frac{(n+m) \ln (n+m)-n \ln n-m}{\ln 2}-n\right)
$$

time in order to merge T_{1} and T_{2}.
Can we improve on the latter runtime for merging two binary heaps? It turns out we can by using a type of mergeable heap called binomial heap that supports merging two heaps in logarithmic time.

4.3.1 Binomial trees

A binomial heap can be considered as a collection of binomial trees. The binomial tree of order k is denoted B_{k} and defined recursively as follows:

1. The binomial tree of order 0 is the trivial tree.
2. The binomial tree of order $k>0$ is a rooted tree, where from left to right the children of the root of B_{k} are roots of $B_{k-1}, B_{k-2}, \ldots, B_{0}$.

Various examples of binomial trees are shown in Figure 4.7. The binomial tree B_{k} can also be defined as follows. Let T_{1} and T_{2} be two copies of B_{k-1} with root vertices r_{1} and r_{2}, respectively. Then B_{k} is obtained by letting, say, r_{1} be the left-most child of r_{2}. Lemma 4.4 lists various basic properties of binomial trees. Property (3) of Lemma 4.4 uses the binomial coefficient, from whence B_{k} derives its name.

Lemma 4.4. Basic properties of binomial trees. Let B_{k} be a binomial tree of order $k \geq 0$. Then the following properties hold:

1. The order of B_{k} is 2^{k}.
2. The height of B_{k} is k.
3. For $0 \leq i \leq k$, we have $\binom{k}{i}$ vertices at depth i.
4. The root of B_{k} is the only vertex with maximum degree $\Delta\left(B_{k}\right)=k$. If the children of the root are numbered $k-1, k-2, \ldots, 0$ from left to right, then child i is the root of the subtree B_{i}.

Proof. We use induction on k. The base case for each of the above properties is B_{0}, which trivially holds.
(1) By our inductive hypothesis, B_{k-1} has order 2^{k-1}. Since B_{k} is comprised of two copies of B_{k-1}, conclude that B_{k} has order

$$
2^{k-1}+2^{k-1}=2^{k} .
$$

(2) The binomial tree B_{k} is comprised of two copies of B_{k-1}, the root of one copy being the left-most child of the root of the other copy. Then the height of B_{k} is one greater than the height of B_{k-1}. By our inductive hypothesis, B_{k-1} has height $k-1$ and therefore B_{k} has height $(k-1)+1=k$.

Figure 4.7: Binomial trees B_{k} for $k=0,1,2,3,4,5$.
(3) Denote by $D(k, i)$ the number of vertices of depth i in B_{k}. As B_{k} is comprised of two copies of B_{k-1}, a vertex at depth i in B_{k-1} appears once in B_{k} at depth i and a second time at depth $i+1$. By our inductive hypothesis,

$$
\begin{aligned}
D(k, i) & =D(k-1, i)+D(k-1, i-1) \\
& =\binom{k-1}{i}+\binom{k-1}{i-1} \\
& =\binom{k}{i}
\end{aligned}
$$

where we used Pascal's formula which states that

$$
\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r}
$$

for any positive integers n and r with $r \leq n$.
(4) This property follows from the definition of B_{k}.

Corollary 4.5. If a binomial tree has order $n \geq 0$, then the degree of any vertex i is bounded by $\operatorname{deg}(i) \leq \lg n$.

Proof. Apply properties (1) and (4) of Lemma 4.4.

4.3.2 Binomial heaps

In 1978, Jean Vuillemin [188] introduced binomial heaps as a data structure for implementing priority queues. Mark R. Brown [41, 42] subsequently extended Vuillemin's work, providing detailed analysis of binomial heaps and introducing an efficient implementation.

A binomial heap H can be considered as a collection of binomial trees. Each vertex in H has a corresponding key and all vertex keys of H belong to a totally ordered set having total order \leq. The heap also satisfies the following binomial heap properties:

- Heap-order property. Let B_{k} be a binomial tree in H. If v is a vertex of B_{k} other than the root and p is the parent of v and having corresponding keys κ_{v} and κ_{p}, respectively, then $\kappa_{p} \leq \kappa_{v}$.
- Root-degree property. For any integer $k \geq 0, H$ contains at most one binomial tree whose root has degree k.

If H is comprised of the binomial trees $B_{k_{0}}, B_{k_{1}}, \ldots, B_{k_{n}}$ for nonnegative integers k_{i}, we can consider H as a forest made up of the trees $B_{k_{i}}$. We can also represent H as a tree in the following way. List the binomial trees of H as $B_{k_{0}}, B_{k_{1}}, \ldots, B_{k_{n}}$ in nondecreasing order of root degrees, i.e. the root of $B_{k_{i}}$ has order less than or equal to the root of $B_{k_{j}}$ if and only if $k_{i} \leq k_{j}$. The root of H is the root of $B_{k_{0}}$ and the root of each $B_{k_{i}}$ has for its child the root of $B_{k_{i+1}}$. Both the forest and tree representations are illustrated in Figure 4.8 for the binomial heap comprised of the binomial trees B_{0}, B_{1}, B_{3}.

The heap-order property for binomial heaps is analogous to the heap-order property for binary heaps. In the case of binomial heaps, the heap-order property implies that the root of a binomial tree has a key that is minimum among all vertices in that tree.

Figure 4.8: Forest and tree representations of a binomial heap.

However, the similarity more or less ends there. In a tree representation of a binomial heap, the root of the heap may not necessarily have the minimum key among all vertices of the heap.

The root-degree property can be used to derive an upper bound on the number of binomial trees in a binomial heap. If H is a binomial heap with n vertices, then H has at most $1+\lfloor\lg n\rfloor$ binomial trees. To prove this result, note that (see Theorem 2.1 and Corollary 2.1.1 in [166, pp.40-42]) n can be uniquely written in binary representation as the polynomial

$$
n=a_{k} 2^{k}+a_{k-1} 2^{k-1}+\cdots+a_{1} 2^{1}+a_{0} 2^{0} .
$$

The binary representation of n requires $1+\lfloor\lg n\rfloor$ bits, hence $n=\sum_{i=0}^{\lfloor\lg n\rfloor} a_{i} 2^{i}$. Apply property (1) of Lemma 4.4 to see that the binomial tree B_{i} is in H if and only if the i-th bit is $b_{i}=1$. Conclude that H has at most $1+\lfloor\lg n\rfloor$ binomial trees.

4.3.3 Construction and management

Let H be a binomial heap comprised of the binomial trees $B_{k_{0}}, B_{k_{1}}, \ldots, B_{k_{n}}$ where the root of $B_{k_{i}}$ has order less than or equal to the root of $B_{k_{j}}$ if and only if $k_{i} \leq k_{j}$. Denote by $r_{k_{i}}$ the root of the binomial tree $B_{k_{i}}$. If v is a vertex of H, denote by child $[v]$ the left-most child of v and by sibling $[v]$ we mean the sibling immediately to the right of v. Furthermore, let parent $[v]$ be the parent of v and let degree $[v]$ denote the degree of v. If v has no children, we set $\operatorname{child}[v]=$ NULL. If v is one of the roots $r_{k_{i}}$, we set parent $[v]=$ NULL. And if v is the right-most child of its parent, then we set sibling $[v]=$ NULL.

The roots $r_{k_{0}}, r_{k_{1}}, \ldots, r_{k_{n}}$ can be organized as a linked list, called a root list, with two functions for accessing the next root and the previous root. The root immediately following $r_{k_{i}}$ is denoted next $\left[r_{k_{i}}\right]=\operatorname{sibling}[v]=r_{k_{i+1}}$ and the root immediately before $r_{k_{i}}$ is written $\operatorname{prev}\left[r_{k_{i}}\right]=r_{k_{i-1}}$. For $r_{k_{0}}$ and $r_{k_{n}}$, we set next $\left[r_{k_{n}}\right]=\operatorname{sibling}[v]=$ NULL and $\operatorname{prev}\left[r_{k_{0}}\right]=$ NULL. We also define the function head $[H]$ that simply returns $r_{k_{0}}$ whenever H has at least one element, and head $[H]=$ NULL otherwise.

Minimum vertex

To find the minimum vertex, we find the minimum among $r_{k_{0}}, r_{k_{1}}, \ldots, r_{k_{m}}$ because by definition the root $r_{k_{i}}$ is the minimum vertex of the binomial tree $B_{k_{i}}$. If H has n vertices,
we need to check at most $1+\lfloor\lg n\rfloor$ vertices to find the minimum vertex of H. Therefore determining the minimum vertex of H takes $O(\lg n)$ time. Algorithm 4.5 summarizes our discussion.

```
Algorithm 4.5 Determine the minimum vertex of a binomial heap.
Input A binomial heap \(H\) of order \(n>0\).
Output The minimum vertex of \(H\).
    \(u \leftarrow\) Null
    \(v \leftarrow \operatorname{head}[H]\)
    \(\min \leftarrow \infty\)
    while \(v \neq\) Null do
        if \(\kappa_{v}<\min\) then
            \(\min \leftarrow \kappa_{v}\)
            \(u \leftarrow v\)
        \(v \leftarrow \operatorname{sibling}[v]\)
    return \(u\)
```


Merging heaps

Recall that B_{k} is constructed by linking the root of one copy of B_{k-1} with the root of another copy of B_{k-1}. When merging two binomial heaps whose roots have the same degree, we need to repeatedly link the respective roots. The root linking procedure runs in constant time $O(1)$ and is rather straightforward, as presented in Algorithm 4.6.

```
Algorithm 4.6 Linking the roots of binomial heaps.
Input Two copies of \(B_{k-1}\), one rooted at \(u\) and the other at \(v\).
Output The respective roots of two copies of \(B_{k-1}\) linked, with one root becoming the
    parent of the other.
    parent \([u] \leftarrow v\)
    sibling \([u] \leftarrow \operatorname{child}[v]\)
    child \([v] \leftarrow u\)
    degree \([v] \leftarrow\) degree \([v]+1\)
```

Besides linking the roots of two copies of B_{k-1}, we also need to merge the root lists of two binomial heaps H_{1} and H_{2}. The resulting merged list is sorted in nondecreasing order of degree. Let L_{1} be the root list of H_{1} and let L_{2} be the root list of H_{2}. First we create an empty list L. As the lists L_{i} are already sorted in nondecreasing order of vertex degree, we use merge sort to merge the L_{i} into a single sorted list. The whole procedure for merging the L_{i} takes linear time $O(n)$, where $n=\left|L_{1}\right|+\left|L_{2}\right|-1$. Refer to Algorithm 4.7 for pseudocode of the procedure just described.

Having clarified the root linking and root lists merging procedures, we are now ready to describe a procedure for merging two nonempty binomial heaps H_{1} and H_{2} into a single binomial heap H. Initially there are at most two copies of B_{0}, one from each of the H_{i}. If two copies of B_{0} are present, we let the root of one be the parent of the other as per Algorithm 4.6, producing B_{1} as a result. From thereon, we generally have at most three copies of B_{k} for some integer $k>0$: one from H_{1}, one from H_{2}, and the third from a previous merge of two copies of B_{k-1}. In the presence of two or more copies of B_{k}, we

```
Algorithm 4.7 Merging two root lists.
    order of vertex degree.
    of degree.
    \(i \leftarrow 1\)
    \(j \leftarrow 1\)
    \(L \leftarrow[]\)
    \(n \leftarrow\left|L_{1}\right|+\left|L_{2}\right|-1\)
    \(\operatorname{append}\left(L_{1}, \infty\right)\)
    \(\operatorname{append}\left(L_{2}, \infty\right)\)
    for \(k \leftarrow 0,1, \ldots, n\) do
        if \(\operatorname{deg}\left(L_{1}[i]\right) \leq \operatorname{deg}\left(L_{2}[j]\right)\) then
            \(\operatorname{append}\left(L, L_{1}[i]\right)\)
            \(i \leftarrow i+1\)
        else
            \(\operatorname{append}\left(L, L_{2}[j]\right)\)
            \(j \leftarrow j+1\)
    return \(L\)
```

Input Two root lists L_{1} and L_{2}, each containing the roots of binomial trees in the
binomial heaps H_{1} and H_{2}, respectively. Each root list L_{i} is sorted in increasing
Output A single list L that merges the root lists L_{i} and sorted in nondecreasing order
merge two copies as per Algorithm 4.6 to produce B_{k+1}. If H_{i} has n_{i} vertices, then H_{i} has at most $1+\left\lfloor\lg n_{i}\right\rfloor$ binomial trees, from which it is clear that merging H_{1} and H_{2} requires

$$
\max \left(1+\left\lfloor\lg n_{1}\right\rfloor, 1+\left\lfloor\lg n_{2}\right\rfloor\right)
$$

steps. Letting $N=\max \left(n_{1}, n_{2}\right)$, we see that merging H_{1} and H_{2} takes logarithmic time $O(\lg N)$. The operation of merging two binomial heaps is presented in pseudocode as Algorithm 4.8, which is adapted from Cormen et al. [57, p.463] and the C implementation of binomial queues in [103]. A word of warning is order here. Algorithm 4.8 is destructive in the sense that it modifies the input heaps H_{i} in-place without making copies of those heaps.

Vertex insertion

Let v be a vertex with corresponding key κ_{v} and let H_{1} be a binomial heap of n vertices. The single vertex v can be considered as a binomial heap H_{2} comprised of exactly the binomial tree B_{0}. Then inserting v into H_{1} is equivalent to merging the heaps H_{i} and can be accomplished in $O(\lg n)$ time. Refer to Algorithm 4.9 for pseudocode of this straightforward procedure.

Delete minimum vertex

Extracting the minimum vertex from a binomial heap H consists of several phases. Let H be comprised of the binomial trees $B_{k_{0}}, B_{k_{1}}, \ldots, B_{k_{m}}$ with corresponding roots $r_{k_{0}}, r_{k_{1}}, \ldots, r_{k_{m}}$ and let n be the number of vertices in H. In the first phase, from among the $r_{k_{i}}$ we identify the root v with minimum key and remove v from H, an operation that runs in $O(\lg n)$ time because we need to process at most $1+\lfloor\lg n\rfloor$ roots. With the binomial tree B_{k} rooted at v thus severed from H, we now have a forest consisting of the

```
Algorithm 4.8 Merging two binomial heaps.
Input Two binomial heaps \(H_{1}\) and \(H_{2}\).
Output A binomial heap \(H\) that results from merging the \(H_{i}\).
    \(H \leftarrow\) empty binomial heap
    head \([H] \leftarrow\) merge sort the root lists of \(H_{1}\) and \(H_{2}\)
    if head \([H]=\) Null then
        return \(H\)
    prevv \(\leftarrow\) Null
    \(v \leftarrow \operatorname{head}[H]\)
    nextv \(\leftarrow \operatorname{sibling}[v]\)
    while nextv \(\neq\) Null do
        if degree[v] \(\neq\) degree[nextv] or (sibling[nextv] \(\neq\) Null and
    degree[sibling[nextv]] \(=\) degree \([v])\) then
        prevv \(\leftarrow v\)
        \(v \leftarrow\) nextv
        else if \(\kappa_{v} \leq \kappa_{\text {nextv }}\) then
            sibling \([v] \leftarrow\) sibling[nextv]
            link the roots nextv and \(v\) as per Algorithm ??
        else
            if prevv \(=\) Null then
                head \([H] \leftarrow\) nextv
            else
                sibling \([\) prevv \(] \leftarrow\) nextv
            link the roots \(v\) and nextv as per Algorithm ??
            \(v \leftarrow\) nextv
        nextv \(\leftarrow \operatorname{sibling}[v]\)
    return \(H\)
```

```
Algorithm 4.9 Insert a vertex into a binomial heap.
Input A binomial heap \(H\) and a vertex \(v\).
Output The heap \(H\) with \(v\) inserted into it.
    1: \(H_{1} \leftarrow\) empty binomial heap
    : head \(\left[H_{1}\right] \leftarrow v\)
    parent \([v] \leftarrow\) Null
    child \([v] \leftarrow\) Null
    sibling \([v] \leftarrow\) Null
    degree \([v] \leftarrow 0\)
    \(H \leftarrow\) merge \(H\) and \(H_{1}\) as per Algorithm ??
```

heap without B_{k} (denote this heap by H_{1}) and the binomial tree B_{k}. By construction, v is the root of B_{k} and the children of v from left to right can be considered as roots of binomial trees as well, say $B_{\ell_{s}}, B_{\ell_{s-1}}, \ldots, B_{\ell_{0}}$ where $\ell_{s}>\ell_{s-1}>\cdots>\ell_{0}$. Now sever the root v from its children. The $B_{\ell_{j}}$ together can be viewed as a binomial heap H_{2} with, from left to right, binomial trees $B_{\ell_{0}}, B_{\ell_{1}}, \ldots, B_{\ell_{s}}$. Finally the binomial heap resulting from removing v can be obtained by merging H_{1} and H_{2} in $O(\lg n)$ time as per Algorithm 4.8. In total we can extract the minimum vertex of H in $O(\lg n)$ time. Our discussion is summarized in Algorithm 4.10 and an illustration of the extraction process is presented in Figure 4.9.

```
Algorithm 4.10 Extract the minimum vertex from a binomial heap.
Input A binomial heap \(H\).
Output The minimum vertex of \(H\) removed.
    \(v \leftarrow\) extract minimum vertex from root list of \(H\)
    \(H_{2} \leftarrow\) empty binomial heap
    \(L \leftarrow\) list of \(v\) 's children reversed
    \(\operatorname{head}\left[H_{2}\right] \leftarrow L[0]\)
    \(H \leftarrow\) merge \(H\) and \(H_{2}\) as per Algorithm ??
    return \(v\)
```


4.4 Binary search trees

A binary search tree (BST) is a rooted binary tree $T=(V, E)$ having vertex weight function $\kappa: V \rightarrow \mathbf{R}$. The weight of each vertex v is referred to as its key, denoted κ_{v}. Each vertex v of T satisfies the following properties:

- Left subtree property. The left subtree of v contains only vertices whose keys are at most κ_{v}. That is, if u is a vertex in the left subtree of v, then $\kappa_{u} \leq \kappa_{v}$.
- Right subtree property. The right subtree of v contains only vertices whose keys are at least κ_{v}. In other words, any vertex u in the right subtree of v satisfies $\kappa_{v} \leq \kappa_{u}$.
- Recursion property. Both the left and right subtrees of v must also be binary search trees.

The above are collectively called the binary search tree property. See Figure 4.10 for an example of a binary search tree. Based on the binary search tree property, we can use in-order traversal (see Algorithm 2.12) to obtain a listing of the vertices of a binary search tree sorted in nondecreasing order of keys.

4.4.1 Searching

Given a BST T and a key k, we want to locate a vertex (if one exists) in T whose key is k. The search procedure for a BST is reminiscent of the binary search algorithm discussed in problem 3.8. We begin by examining the root v_{0} of T. If $\kappa_{v_{0}}=k$, the search is successful. However, if $\kappa_{v_{0}} \neq k$ then we have two cases to consider. In the first case, if $k<\kappa_{v_{0}}$ then we search the left subtree of v_{0}. The second case occurs when $k>\kappa_{v_{0}}$,

(a)

(b)

(c)

(d)

Figure 4.9: Extracting the minimum vertex from a binomial heap.

Figure 4.10: A binary search tree.
in which case we search the right subtree of v_{0}. Repeat the process until a vertex v in T is found for which $k=\kappa_{v}$ or the indicated subtree is empty. Whenever the target key is different from the key of the vertex we are currently considering, we move down one level of T. Thus if h is the height of T, it follows that searching T takes a worst-case runtime of $O(h)$. The above procedure is presented in pseudocode as Algorithm 4.11. Note that if a vertex v does not have a left subtree, the operation of locating the root of v 's left subtree should return NULL. A similar comment applies when v does not have a right subtree. Furthermore, from the structure of Algorithm 4.11, if the input BST is empty then NULL is returned. See Figure 4.11 for an illustration of locating vertices with given keys in a BST.

```
Algorithm 4.11 Locate a key in a binary search tree.
Input A binary search tree \(T\) and a target key \(k\).
Output A vertex in \(T\) with key \(k\). If no such vertex exists, return Null.
    \(v \leftarrow \operatorname{root}[T]\)
    while \(v \neq\) Null and \(k \neq \kappa_{v}\) do
        if \(k<\kappa_{v}\) then
            \(v \leftarrow\) leftchild \([v]\)
        else
            \(v \leftarrow \operatorname{rightchild}[v]\)
    return \(v\)
```


(a) Vertex with key 6: search fail.

(b) Vertex with key 22: search success.

Figure 4.11: Finding vertices with given keys in a BST.
From the binary search tree property, deduce that a vertex of a BST T with minimum key can be found by starting from the root of T and repeatedly traversing left subtrees.

(a) Minimum vertex.

(b) Maximum vertex.

Figure 4.12: Locating minimum and maximum vertices in a BST.

(a) Successor of 9 .

(b) Predecessor of 11 .

Figure 4.13: Searching for successor and predecessor.

When we have reached the left-most vertex v of T, querying for the left subtree of v should return NULL. At this point, we conclude that v is a vertex with minimum key. Each query for the left subtree moves us one level down T, resulting in a worst-case runtime of $O(h)$ with h being the height of T. See Algorithm 4.12 for pseudocode of the procedure.

The procedure for finding a vertex with maximum key is analogous to that for finding one with minimum key. Starting from the root of T, we repeatedly traverse right subtrees until we encounter the right-most vertex, which by the binary search tree property has maximum key. This procedure has the same worst-case runtime of $O(h)$. Figure 4.12 illustrates the process of locating the minimum and maximum vertices of a BST.

```
Algorithm 4.12 Finding a vertex with minimum key in a BST.
Input A nonempty binary search tree \(T\).
Output A vertex of \(T\) with minimum key.
    \(v \leftarrow \operatorname{root}\) of \(T\)
    while leftchild \([v] \neq\) Null do
        \(v \leftarrow\) leftchild \([v]\)
    return \(v\)
```

Corresponding to the notions of left- and right-children, we can also define successors and predecessors as follows. Suppose v is not a maximum vertex of a nonempty BST T. The successor of v is a vertex in T distinct from v with the smallest key greater than or equal to κ_{v}. Similarly, for a vertex v that is not a minimum vertex of T, the predecessor of v is a vertex in T distinct from v with the greatest key less than or equal to κ_{v}. The notions of successors and predecessors are concerned with relative key order, not a vertex's position within the hierarchical structure of a BST. For instance, from Figure 4.10 we see that the successor of the vertex u with key 8 is the vertex v with key 10 , i.e. the root, even though v is an ancestor of u. The predecessor of the vertex a with key 4 is the vertex b with key 3, i.e. the minimum vertex, even though b is a descendant of a.

We now describe a method to systematically locate the successor of a given vertex. Let T be a nonempty BST and $v \in V(T)$ not a maximum vertex of T. If v has a right subtree, then we find a minimum vertex of v 's right subtree. In case v does not have a right subtree, we backtrack up one level to v 's parent $u=\operatorname{parent}(v)$. If v is the root of the right subtree of u, we backtrack up one level again to u 's parent, making the assignments $v \leftarrow u$ and $u \leftarrow \operatorname{parent}(u)$. Otherwise we return v 's parent. Repeat the above backtracking procedure until the required successor is found. Our discussion is summarized in Algorithm 4.13. Each time we backtrack to a vertex's parent, we move up one level, hence the worst-case runtime of Algorithm 4.13 is $O(h)$ with h being the height of T. The procedure for finding predecessors is similar. Refer to Figure 4.13 for an illustration of locating successors and predecessors.

4.4.2 Insertion

Inserting a vertex v into a BST T is rather straightforward. If T is empty, we let v be the root of T. Otherwise T has at least one vertex. In that case, we need to locate a vertex in T that can act as a parent and "adopt" v as a child. To find a candidate parent, let u be the root of T. If $\kappa_{v}<\kappa_{u}$ then we assign the root of the left subtree of u to u itself.

```
Algorithm 4.13 Finding successors in a binary search tree.
Input A nonempty binary search tree \(T\) and a vertex \(v\) that is not a maximum of \(T\).
Output The successor of \(v\).
    if rightchild \([v] \neq\) Null then
        return minimum vertex of \(v\) 's right subtree as per Algorithm ??
    \(u \leftarrow \operatorname{parent}(v)\)
    while \(u \neq\) Null and \(v=\operatorname{rightchild}[u]\) do
        \(v \leftarrow u\)
        \(u \leftarrow \operatorname{parent}(u)\)
    return \(u\)
```

Otherwise we assign the root of the right subtree of u to u. We then carry on the above key comparison process until the operation of locating the root of a left or right subtree returns NULL. At this point, a candidate parent for v is the last non-NULL value of u. If $\kappa_{v}<\kappa_{u}$ then we let v be u 's left-child. Otherwise v is the right-child of u. After each key comparison, we move down at most one level so that in the worst-case inserting a vertex into T takes $O(h)$ time, where h is the height of T. Algorithm 4.14 presents pseudocode of our discussion and Figure 4.14 illustrates how to insert a vertex into a BST.

```
Algorithm 4.14 Inserting a vertex into a binary search tree.
Input A binary search tree \(T\) and a vertex \(x\) to be inserted into \(T\).
Output The same BST \(T\) but augmeneted with \(x\).
    \(u \leftarrow\) Null
    \(v \leftarrow \operatorname{root}\) of \(T\)
    while \(v \neq\) Null do
        \(u \leftarrow v\)
        if \(\kappa_{x}<\kappa_{v}\) then
            \(v \leftarrow\) leftchild \([v]\)
        else
            \(v \leftarrow\) rightchild \([v]\)
    parent \([x] \leftarrow u\)
    if \(u=\) Null then
        \(\operatorname{root}[T] \leftarrow x\)
    else
        if \(\kappa_{x}<\kappa_{u}\) then
            leftchild \([u] \leftarrow x\)
        else
            rightchild \([u] \leftarrow x\)
```


4.4.3 Deletion

Whereas insertion into a BST is straightforward, removing a vertex requires much more work. Let T be a nonempty binary search tree and suppose we want to remove $v \in V(T)$ from T. Having located the position that v occupies within T, we need to consider three separate cases: (1) v is a leaf; (2) v has one child; (3) v has two children.

Figure 4.14: Inserting into a binary search tree.

```
Algorithm 4.15 Deleting a vertex from a binary search tree.
Input A nonempty binary search tree \(T\) and a vertex \(x \in V(T)\) to be removed from \(T\).
Output The same BST \(T\) but without \(x\).
    \(u \leftarrow \mathrm{Null}\)
    \(v \leftarrow \mathrm{Null}\)
    if leftchild \([x] \neq\) Null or rightchild \([x] \neq\) Null then
        \(v \leftarrow x\)
    else
        \(v \leftarrow\) successor of \(x\)
    if leftchild \([v] \neq\) Null then
        \(u \leftarrow \operatorname{leftchild}[v]\)
    else
        \(u \leftarrow \operatorname{rightchild}[v]\)
    if \(u \neq\) Null then
        parent \([u] \leftarrow\) parent \([v]\)
    if parent \([v]=\) Null then
        \(\operatorname{root}[T] \leftarrow u\)
    else
        if \(v=\) leftchild[parent[v]] then
            \(\operatorname{leftchild}[\) parent \([v]] \leftarrow u\)
        else
            rightchild \([\) parent \([v]] \leftarrow u\)
    if \(v \neq x\) then
        \(\kappa_{x} \leftarrow \kappa_{v}\)
        copy \(v\) 's auxilary data into \(x\)
```

1. If v is a leaf, we simply remove v from T and the procedure is complete. The resulting tree without v satisfies the binary search tree property.
2. Suppose v has the single child u. Removing v would disconnect T, a situation that can be prevented by splicing out u and letting u occupy the position previously held by v. The resulting tree with v removed as described satisfies the binary search tree property.
3. Finally suppose v has two children and let s and p be the successor and predecessor of v, respectively. It can be shown that s has no left-child and p has no right-child. We can choose to either splice out s or p. Say we choose to splice out s. Then we remove v and let s hold the position previously occupied by v. The resulting tree with v thus removed satisfies the binary search tree property.
The above procedure is summarized in Algorithm 4.15, which is adapted from [57, p.262]. Figure 4.15 illustrates the various cases to be considered when removing a vertex from a BST. Note that in Algorithm 4.15, the process of finding the successor dominates the runtime of the entire algorithm. Other operations in the algorithm take at most constant time. Therefore deleting a vertex from a binary search tree can be accomplished in worstcase $O(h)$ time, where h is the height of the BST under consideration.

4.5 Problems

No problem is so formidable that you can't walk away from it.

- Charles M. Schulz
4.1. Let Q be a priority queue of $n>1$ elements, given in sequence representation. From section 4.1.1, we know that inserting an element into Q takes $O(n)$ time and deleting an element from Q takes $O(1)$ time.
(a) Suppose Q is an empty priority queue and let $e_{0}, e_{1}, \ldots, e_{n}$ be $n+1$ elements we want to insert into Q. What is the total runtime required to insert all the e_{i} into Q while also ensuring that the resulting queue is a priority queue?
(b) Let $Q=\left[e_{0}, e_{1}, \ldots, e_{n}\right]$ be a priority queue of $n+1$ elements. What is the total time required to remove all the elements of Q ?
4.2. Prove the correctness of Algorithms 4.2 and 4.3.
4.3. Describe a variant of Algorithm 4.3 for modifying the key of the root of a binary heap, without extracting any vertex from the heap.
4.4. Section 4.2.2 describes how to insert an element into a binary heap T. The general strategy is to choose the first leaf following the last internal vertex of T, replace that leaf with the new element so that it becomes an internal vertex, and perform a sift-up operation from there. If instead we choose any leaf of T and replace that leaf with the new element, explain why we cannot do any better than Algorithm 4.2.
4.5. Section 4.2 .3 shows how to extract the minimum vertex from a binary heap T. Instead of replacing the root with the last internal vertex of T, we could replace the root with any other vertex of T that is not a leaf and then proceed to maintain the heap-structure and heap-order properties. Explain why the latter strategy is not better than Algorithm 4.3.

(a) Target vertex 9 is a leaf.

(c) Target vertex 13 has one child.

(e) Target vertex 15 has two children.

(b) Leaf deleted.

(d) Vertex deleted.

(f) Vertex deleted.

Figure 4.15: Deleting a vertex from a binary search tree.

Figure 4.16: Different structural representations of a BST.
4.6. Let S be a sequence of $n>1$ real numbers. How can we use algorithms described in section 4.2 to sort S ?
4.7. The binary heaps discussed in section 4.2 are properly called minimum binary heaps because the root of the heap is always the minimum vertex. A corresponding notion is that of maximum binary heaps, where the root is always the maximum element. Describe algorithms analogous to those in section 4.2 for managing maximum binary heaps.
4.8. What is the total time required to extract all elements from a binary heap?
4.9. Numbers of the form $\binom{n}{r}$ are called binomial coefficients. They also count the number of r-combinations from a set of n objects. Algorithm ?? presents pseudocode to generate all the r-combinations of a set of n distinct objects. What is the worst-case runtime of Algorithm ??? Prove the correctness of Algorithm ??.
4.10. In contrast to enumerating all the r-combinations of a set of n objects, we may only want to generate a random r-combination. Describe and present pseudocode of a procedure to generate a random r-combination of $\{1,2, \ldots, n\}$.
4.11. A problem related to the r-combinations of the set $S=\{1,2, \ldots, n\}$ is that of generating the permutations of S. Algorithm ?? presents pseudocode to generate all the permutations of S in increasing lexicographic order. Find the worst-case runtime of this algorithm and prove its correctness.
4.12. Provide a description and pseudocode of an algorithm to generate a random permutation of $\{1,2, \ldots, n\}$.
4.13. Takaoka [179] presents a general method for combinatorial generation that runs in $O(1)$ time. How can Takaoka's method be applied to generating combinations and permutations?
4.14. The proof of Lemma 4.4 relies on Pascal's formula, which states that for any
positive integers n and r such that $r \leq n$, the following identity holds:

$$
\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r} .
$$

Prove Pascal's formula.
4.15. Let m, n, r be nonnegative integers such that $r \leq n$. Prove the Vandermonde convolution

$$
\binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{k}\binom{n}{r-k} .
$$

The latter equation, also known as Vandermonde's identity, was already known as early as 1303 in China by Chu Shi-Chieh. Alexandre-Théophile Vandermonde independently discovered it and his result was published in 1772.
4.16. If m and n are nonnegative integers, prove that

$$
\binom{m+n+1}{n}=\sum_{k=0}^{n}\binom{m+k}{k}
$$

4.17. Let n be a positive integer. How many distinct binomial heaps having n vertices are there?
4.18. The algorithms described in section 4.3 are formally for minimum binomial heaps because the vertex at the top of the heap is always the minimum vertex. Describe analogous algorithms for maximum binomial heaps.
4.19. If H is a binomial heap, what is the total time required to extract all elements from H ?
4.20. Frederickson [81] describes an $O(k)$ time algorithm for finding the k-th smallest element in a binary heap. Provide a description and pseudocode of Frederickson's algorithm and prove its correctness.
4.21. Fibonacci heaps [82] allow for amortized $O(1)$ time with respect to finding the minimum element, inserting an element, and merging two Fibonacci heaps. Deleting the minimum element takes amortized time $O(\lg n)$, where n is the number of vertices in the heap. Describe and provide pseudocode of the above Fibonacci heap operations and prove the correctness of the procedures.
4.22. Takaoka [180] introduces another type of heap called a 2-3 heap. Deleting the minimum element takes amortized $O(\lg n)$ time with n being the number of vertices in the 2-3 heap. Inserting an element into the heap takes amortized $O(1)$ time. Describe and provide pseudocode of the above 2-3 heap operations. Under which conditions would 2-3 heaps be more efficient than Fibonacci heaps?
4.23. In 2000, Chazelle [50] introduced the soft heap, which can perform common heap operations in amortized $O(1)$ time. He then applied [49] the soft heap to realize a very efficient implementation of an algorithm for finding minimum spanning trees. In 2009, Kaplan and Zwick [117] provided a simple implementation and analysis of Chazelle's soft heap. Describe soft heaps and provide pseudocode of common heap
operations. Prove the correctness of the algorithms and provide runtime analyses. Describe how to use soft heap to realize an efficient implementation of an algorithm to produce minimum spanning trees.
4.24. Explain any differences between the binary heap-order property, the binomial heaporder property, and the binary search tree property. Can in-order traversal be used to list the vertices of a binary heap in sorted order? Explain why or why not.
4.25. Present pseudocode of an algorithm to find a vertex with maximum key in a binary search tree.
4.26. Compare and contrast algorithms for locating minimum and maximum elements in a list with their counterparts for a binary search tree.
4.27. Let T be a nonempty BST and suppose $v \in V(T)$ is not a minimum vertex of T. If h is the height of T, describe and present pseudocode of an algorithm to find the predecessor of v in worst-case time $O(h)$.
4.28. Let $L=\left[v_{0}, v_{1}, \ldots, v_{n}\right]$ be the in-order listing of a BST T. Present an algorithm to find the successor of $v \in V(T)$ in constant time $O(1)$. How can we find the predecessor of v in constant time as well?
4.29. Modify Algorithm 4.15 to extract a minimum vertex of a binary search tree. Now do the same to extract a maximum vertex. How can Algorithm 4.15 be modified to extract a vertex from a binary search tree?
4.30. Let v be a vertex of a BST and suppose v has two children. If s and p are the successor and predecessor of v, respectively, show that s has no left-child and p has no right-child.
4.31. Let $L=\left[e_{0}, e_{1}, \ldots, e_{n}\right]$ be a list of $n+1$ elements from a totally ordered set X with total order \leq. How can binary search trees be used to sort L ?
4.32. Describe and present pseudocode of a recursive algorithm for each of the following operations on a BST.
(a) Find a vertex with a given key.
(b) Locate a minimum vertex.
(c) Locate a maximum vertex.
(d) Insert a vertex.
4.33. Are the algorithms presented in section 4.4 able to handle a BST having duplicate keys? If not, modify the relevant algorithm(s) to account for the case where two vertices in a BST have the same key.
4.34. The notion of vertex level for binary trees can be extended to general rooted trees as follows. Let T be a rooted tree with $n>0$ vertices and height h. Then level $0 \leq i \leq h$ of T consists of all those vertices in T that have the same depth i. If each vertex at level i has $i+m$ children for some fixed integer $m>0$, what is the number of vertices at each level of T ?
4.35. Compare the search, insertion, and deletion times of AVL trees and random binary search trees. Provide empirical results of your comparative study.
4.36. Describe and present pseudocode of an algorithm to construct a Fibonacci tree of height n for some integer $n \geq 0$. Analyze the worst-case runtime of your algorithm.
4.37. The upper bound in Theorem ?? can be improved as follows. From the proof of the theorem, we have the recurrence relation $N(h)>N(h-1)+N(h-2)$.
(a) If $h \leq 2$, show that there exists some $c>0$ such that $N(h) \geq c^{h}$.
(b) Assume for induction that

$$
N(h)>N(h-1)+N(h-2) \geq c^{h-1}+c^{h-2}
$$

for some $h>2$. If $c>0$, show that $c^{2}-c-1=0$ is a solution to the recurrence relation $c^{h-1}+c^{h-2}$ and that

$$
N(h)>\left(\frac{1+\sqrt{5}}{2}\right)^{h}
$$

(c) Use the previous two parts to show that

$$
h<\frac{1}{\lg \varphi} \cdot \lg n
$$

where $\varphi=(1+\sqrt{5}) / 2$ is the golden ratio and n counts the number of internal vertices of an AVL tree of height h.
4.38. The Fibonacci sequence F_{n} is defined as follows. We have initial values $F_{0}=0$ and $F_{1}=1$. For $n>1$, the n-th term in the sequence can be obtained via the recurrence relation $F_{n}=F_{n-1}+F_{n-2}$. Show that

$$
\begin{equation*}
F_{n}=\frac{\varphi^{n}-(-1 / \varphi)^{n}}{\sqrt{5}} \tag{4.3}
\end{equation*}
$$

where φ is the golden ratio. The closed form solution (4.3) to the Fibonacci sequence is known as Binet's formula, named after Jacques Philippe Marie Binet, even though Abraham de Moivre knew about this formula long before Binet did.

Chapter 5

Distance and connectivity

- Spiked Math, http://spikedmath.com/382.html

5.1 Paths and distance

5.1.1 Distance and metrics

Consider an edge-weighted simple graph $G=(V, E, i, h)$ without negative weight cycles. Here $E \subseteq V^{(2)}$, $i: E \rightarrow V^{(2)}$ is an incidence function as in (1.2), which we regard as the identity function, and $h: E \rightarrow V$ is an orientation function as in (1.3). Let $W: E \rightarrow \mathbf{R}$ be the weight function. (If G is not provided with a weight function on the edges, we assume that each edge has unit weight.) If $v_{1}, v_{2} \in V$ are two vertices and $P=\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ is a $v_{1}-v_{2}$ path (so v_{1} is incident to e_{1} and v_{2} is incident to e_{m}), define the weight of P to be the sum of the weights of the edges in P :

$$
W(P)=\sum_{i=1}^{m} W\left(e_{i}\right) .
$$

The distance function $d: V \times V \rightarrow \mathbf{R} \cup\{\infty\}$ on G is defined by

$$
d\left(v_{1}, v_{2}\right)=\infty
$$

if v_{1} and v_{2} lie in distinct connected components of G, and by

$$
\begin{equation*}
d\left(v_{1}, v_{2}\right)=\min _{P} W(P) \tag{5.1}
\end{equation*}
$$

otherwise, where the minimum is taken over all paths P from v_{1} to v_{2}. By hypothesis, G has no negative weight cycles so the minimum in (5.1) exists. It follows by definition of the distance function that $d(u, v)=\infty$ if and only if there is no path between u and v.

How we interpret the distance function d depends on the meaning of the weight function W. In practical applications, vertices can represent physical locations such as cities, sea ports, or landmarks. An edge weight could be interpreted as the physical distance in kilometers between two cities, the monetary cost of shipping goods from one sea port to another, or the time required to travel from one landmark to another. Then $d(u, v)$ could mean the shortest route in kilometers between two cities, the lowest cost incurred in transporting goods from one sea port to another, or the least time required to travel from one landmark to another.

The distance function d is not in general a metric, i.e. the triangle inequality does not in general hold for d. However, when the distance function is a metric then G is called a metric graph. The theory of metric graphs, due to their close connection with tropical curves, is an active area of research. For more information on metric graphs, see Baker and Faber [11].

5.1.2 Radius and diameter

A new hospital is to be built in a large city. Construction has not yet started and a number of urban planners are discussing the future location of the new hospital. What is a possible location for the new hospital and how are we to determine this location? This is an example of a class of problems known as facility location problems. Suppose our objective in selecting a location for the hospital is to minimize the maximum response time between the new hospital and the site of an emergency. To help with our decision making, we could use the notion of the center of a graph.

The center of a graph $G=(V, E)$ is defined in terms of the eccentricity of the graph under consideration. The eccentricity $\epsilon: V \rightarrow \mathbf{R}$ is defined as follows. For any vertex v, the eccentricity $\epsilon(v)$ is the greatest distance between v and any other vertex in G. In symbols, the eccentricity is expressible as

$$
\epsilon(v)=\max _{u \in V} d(u, v) .
$$

For example, in a tree T with root r the eccentricity of r is the height of T. In the graph of Figure 5.1, the eccentricity of 2 is 5 and the shortest paths that yield $\epsilon(2)$ are

$$
\begin{gathered}
P_{1}: 2,3,4,14,15,16 \\
P_{2}: 2,3,4,14,15,17 .
\end{gathered}
$$

The eccentricity of a vertex v can be thought of as an upper bound on the distance from v to any other vertex in G. Furthermore, we have at least one vertex in G whose distance from v is $\epsilon(v)$.

$$
\begin{array}{r|ccccccccccccccccc}
v & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\hline \epsilon(v) & 6 & 5 & 4 & 4 & 5 & 6 & 7 & 7 & 5 & 6 & 7 & 7 & 6 & 5 & 6 & 7 & 7
\end{array}
$$

Table 5.1: Eccentricity distribution for the graph in Figure 5.1.
To motivate the notion of the radius of a graph, consider the distribution of eccentricity among vertices of the graph G in Figure 5.1. The required eccentricity distribution

Figure 5.1: Determine the eccentricity, center, radius, and diameter.

Figure 5.2: Eccentricity distribution of the graph in Figure 5.1. The horizontal axis represents the vertex name, while the vertical axis is the corresponding eccentricity.
is shown in Table 5.1. Among the eccentricities in the latter table, the minimum eccentricity is $\epsilon(3)=\epsilon(4)=4$. An intuitive interpretation is that both of the vertices 3 and 4 have the shortest distance to any other vertices in G. We can invoke an analogy with plane geometry as follows. If a circle has radius r, then the distance from the center of the circle to any point within the circle is at most r. The minimum eccentricity in graph theory plays a role similar to the radius of a circle. If an object is strategically positioned - e.g. a vertex with minimum eccentricity or the center of a circle - then its greatest distance to any other object is guaranteed to be minimum. With the above analogy in mind, we define the radius of a graph $G=(V, E)$, written $\operatorname{rad}(G)$, to be the minimum eccentricity among the eccentricity distribution of G. In symbols,

$$
\operatorname{rad}(G)=\min _{v \in V} \epsilon(v)
$$

The center of G, written $C(G)$, is the set of vertices with minimum eccentricity. Thus the graph in Figure 5.1 has radius 4 and center $\{3,4\}$. As should be clear from the latter example, the radius is a number whereas the center is a set. Refer to the beginning of the section where we mentioned the problem of selecting a location for a new hospital. We could use a graph to represent the geography of the city wherein the hospital is to be situated and select a location that is in the center of the graph.

Consider now the maximum eccentricity of a graph. In (3.5) we defined the diameter of a graph $G=(V, E)$ by

$$
\operatorname{diam}(G)=\max _{\substack{u, v \in V \\ u \neq v}} d(u, v)
$$

The diameter of G can also be defined as the maximum eccentricity of any vertex in G :

$$
\operatorname{diam}(G)=\max _{v \in V} \epsilon(v)
$$

In case G is disconnected, define its diameter to be $\operatorname{diam}(G)=\infty$. To compute $\operatorname{diam}(G)$, use the Floyd-Roy-Warshall algorithm (see section 3.6) to compute the shortest distance between each pair of vertices. The maximum of these distances is the diameter. The set of vertices of G with maximum eccentricity is called the periphery of G, written $\operatorname{per}(G)$. The graph in Figure 5.1 has diameter 7 and periphery $\{7,8,11,12,16,17\}$.

Theorem 5.1. Eccentricities of adjacent vertices. Let $G=(V, E)$ be an undirected, connected graph having nonnegative edge weights. If $u v \in E$ and W is a weight function for G, then $|\epsilon(u)-\epsilon(v)| \leq W(u v)$.

Proof. By definition, we have $d(u, x) \leq \epsilon(u)$ and $d(v, x) \leq \epsilon(v)$ for all $x \in V$. Let $w \in V$ such that $d(u, w)=\epsilon(u)$. Apply the triangle inequality to obtain

$$
\begin{aligned}
d(u, w) & \leq d(u, v)+d(v, w) \\
\epsilon(u) & \leq W(u v)+d(v, w) \\
& \leq W(u v)+\epsilon(v)
\end{aligned}
$$

from which we have $\epsilon(u)-\epsilon(v) \leq W(u v)$. Repeating the above argument with the role of u and v interchanged yields $\epsilon(v)-\epsilon(u) \leq W(u v)$. Both $\epsilon(u)-\epsilon(v) \leq W(u v)$ and $\epsilon(v)-\epsilon(u) \leq W(u v)$ together yields the inequality $|\epsilon(u)-\epsilon(v)| \leq W(u v)$ as required.

5.1.3 Center of trees

Given a tree T of order ≥ 3, we want to derive a bound on the number of vertices that comprise the center of T. A graph in general can have one, two, or more number of vertices for its center. Indeed, for any integer $n>0$ we can construct a graph whose center has cardinality n. The cases for $n=1,2,3$ are illustrated in Figure 5.3. But can we do the same for trees? That is, given any positive integer n does there exist a tree whose center has n vertices? It turns out that the center of a tree cannot have more than two vertices, a result first discovered [113] by Camille Jordan in 1869.

(a) $|C(G)|=1$

(b) $|C(G)|=2$

(c) $|C(G)|=3$

Figure 5.3: Constructing graphs with arbitrarily large centers.
Theorem 5.2. Jordan [113]. If a tree T has order ≥ 3, then the center of T is either a single vertex or two adjacent vertices.

Proof. As all eccentric vertices of T are leaves (see problem 5.7), removing all the leaves of T decreases the eccentricities of the remaining vertices by one. The tree comprised of the surviving vertices has the same center as T. Continue pruning leaves as described above and note that the tree comprised of the surviving vertices has the same center as the previous tree. After a finite number of leaf pruning stages, we eventually end up with a tree made up of either one vertex or two adjacent vertices. The vertex set of this final tree is the center of T.

5.1.4 Distance matrix

In sections 1.3.4 and 3.3, the distance matrix D of a graph G was defined to be $D=\left[d_{i j}\right]$, where $d_{i j}=d\left(v_{i}, v_{j}\right)$ and the vertices of G are indexed by $V=\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$. The matrix D is square where we set $d_{i j}=0$ for entries along the main diagonal. If there is no path from v_{i} to v_{j}, then we set $d_{i j}=\infty$. If G is undirected, then D is symmetric and is equal to its transpose, i.e. $D^{T}=D$. To compute the distance matrix D, apply the Floyd-Roy-Warshall algorithm to determine the distances between all pairs of vertices. Refer to Figure 5.4 for examples of distance matrices of directed and undirected graphs. In the remainder of this section, "graph" refers to an undirected graph unless otherwise specified.

Instead of one distance matrix, we can define several distance matrices on G. Consider an edge-weighted graph $G=(V, E)$ without negative weight cycles and let

$$
d: V \times V \rightarrow \mathbf{R} \cup\{\infty\}
$$

be a distance function of G. Let $\partial=\operatorname{diam}(G)$ be the diameter of G and index the vertices of G in some arbitrary but fixed manner, say $V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$. The sequence

$$
\left[\begin{array}{cccccc}
0 & 1 & 2 & \infty & 1 & 2 \\
\infty & 0 & 1 & \infty & \infty & \infty \\
\infty & 1 & 0 & \infty & \infty & \infty \\
\infty & 2 & 1 & 0 & 2 & 1 \\
\infty & \infty & \infty & \infty & 0 & 1 \\
\infty & \infty & \infty & \infty & 1 & 0
\end{array}\right]
$$

(a)

(b)

Figure 5.4: Distance matrices of directed and undirected graphs.
of distance matrices of G are a sequence of $(n-1) \times(n-1)$ matrices $A_{1}, A_{2}, \ldots, A_{\partial}$ where

$$
\left(A_{k}\right)_{i j}= \begin{cases}1, & \text { if } d\left(v_{i}, v_{j}\right)=k \\ 0, & \text { otherwise }\end{cases}
$$

In particular, A_{1} is the usual adjacency matrix A. To compute the sequence of distance matrices of G, use the Floyd-Roy-Warshall algorithm to compute the distance between each pair of vertices and assign the resulting distance to the corresponding matrix A_{i}.

The distance matrix arises in several applications, including communication network design [89] and network flow algorithms [61]. Thanks to Graham and Pollak [89], the following unusual fact is known. If T is any tree then

$$
\operatorname{det} D(T)=(-1)^{n-1}(n-1) 2^{n-2}
$$

where n denotes the order of T. In particular, the determinant of the distance matrix of a tree is independent of the structure of the tree. This fact is proven in the paper [89], but see also [68].

5.2 Vertex and edge connectivity

If $G=(V, E)$ is a graph and $U \subseteq V$ is a vertex set with the property that $G-U$ has more connected components than G, then we call U a vertex-cut. The term cutvertex or cut-point is used when the vertex-cut consists of exactly one vertex. For an intuitive appreciation of vertex-cut, suppose $G=(V, E)$ is a connected graph. Then $U \subseteq V$ is a vertex-cut if the vertex deletion subgraph $G-U$ is disconnected. For example, the cut-vertex of the graph in Figure 5.5 is the vertex 0 . By $\kappa_{v}(G)$ we mean the vertex connectivity of a connected graph G, defined as the minimum number of vertices whose removal would either disconnect G or reduce G to the trivial graph. The
vertex connectivity $\kappa_{v}(G)$ is also written as $\kappa(G)$. The vertex connectivity of the graph in Figure 5.5 is $\kappa_{v}(G)=1$ because we only need to remove vertex 0 in order to disconnect the graph. The vertex connectivity of a connected graph G is thus the vertex-cut of minimum cardinality. And G is said to be k-connected if $\kappa_{v}(G) \geq k$. From the latter definition, it immediately follows that if G has at least 3 vertices and is k-connected then any vertex-cut of G has at least cardinality k. For instance, the graph in Figure 5.5 is 1 -connected. In other words, G is k-connected if the graph remains connected even after removing any $k-1$ or fewer vertices from G.

Figure 5.5: A claw graph with 4 vertices.

Figure 5.6: The Petersen graph on 10 vertices.

Example 5.3. Here is a Sage example concerning $\kappa(G)$ using the Petersen graph depicted in Figure 5.6. A linear programming Sage package, such as GLPK, must be installed for the commands below to work.

```
sage: G = graphs.PetersenGraph()
sage: len(G.vertices())
10
sage: G.vertex_connectivity()
3.0
sage: G.delete_vertex(0)
sage: len(G.ver}tices()
9
sage: G.vertex_connectivity()
2.0
```

The notions of edge-cut and cut-edge are similarly defined. Let $G=(V, E)$ be a graph and $D \subseteq E$ an edge set such that the edge deletion subgraph $G-D$ has more components than G. Then D is called an edge-cut. An edge-cut D is said to be minimal
if no proper subset of D is an edge-cut. The term cut-edge or bridge is reserved for the case where the set D is a singleton. Think of a cut-edge as an edge whose removal from a connected graph would result in that graph being disconnected. Going back to the case of the graph in Figure 5.5, each edge of the graph is a cut-edge. A graph having no cut-edge is called bridgeless. An open question as of 2010 involving bridges is the cycle double cover conjecture, due to Paul Seymour and G. Szekeres, which states that every bridgeless graph admits a set of cycles that contains each edge exactly twice. The edge connectivity of a connected graph G, written $\kappa_{e}(G)$ and sometimes denoted by $\lambda(G)$, is the minimum number of edges whose removal would disconnect G. In other words, $\kappa_{e}(G)$ is the minimum cardinality among all edge-cuts of G. Furthermore, G is said to be k-edge-connected if $\kappa_{e}(G) \geq k$. A connected graph that is k-edge-connected is guaranteed to be connected after removing $\leq k-1$ edges from it. When we have removed k or more edges, then the graph would become disconnected. By convention, a 1-edge-connected graph is simply a connected graph. The graph in Figure 5.5 has edge connectivity $\kappa_{e}(G)=1$ and is 1-edge-connected.
Example 5.4. Here is a Sage example concerning $\lambda(G)$ using the Petersen graph shown in Figure 5.6. You must install an optional linear programming Sage package such as GLPK for the commands below to work.

```
sage: G = graphs.PetersenGraph()
sage: len(G.vertices())
10
sage: E = G.edges(); len(E)
15
sage: G.edge_connectivity()
3.0
sage: G.delete_edge(E[0])
sage: len(G.edges())
1 4
sage: G.edge_connectivity()
2.0
```

Vertex and edge connectivity are intimately related to the reliability and survivability of computer networks. If a computer network G (which is a connected graph) is k connected, then it would remain connected despite the failure of at most $k-1$ network nodes. Similarly, G is k-edge-connected if the network remains connected after the failure of at most $k-1$ network links. In practical terms, a network with redundant nodes and/or links can afford to endure the failure of a number of nodes and/or links and still be connected, whereas a network with very few redundant nodes and/or links (e.g. something close to a spanning tree) is more prone to be disconnected. A k-connected or k-edge-connected network is more robust (i.e. can withstand) against node and/or link failures than is a j-connected or j-edge-connected network, where $j<k$.

Proposition 5.5. If $\delta(G)$ is the minimum degree of an undirected connected graph $G=$ (V, E), then the edge connectivity of G satisfies $\lambda(G) \leq \delta(G)$.
Proof. Choose a vertex $v \in V$ whose degree is $\operatorname{deg}(v)=\delta(G)$. Deleting the $\delta(G)$ edges incident on v suffices to disconnect G as v is now an isolated vertex. It is possible that G has an edge-cut whose cardinality is smaller than $\delta(G)$. Hence the result follows.

Let $G=(V, E)$ be a graph and suppose X_{1} and X_{2} comprise a partition of V. A partition-cut of G, denoted $\left\langle X_{1}, X_{2}\right\rangle$, is the set of all edges of G with one endpoint in X_{1} and the other endpoint in X_{2}. If G is a bipartite graph with bipartition X_{1} and X_{2}, then $\left\langle X_{1}, X_{2}\right\rangle$ is a partition-cut of G. It follows that a partition-cut is also an edge-cut.

Proposition 5.6. An undirected connected graph G is k-edge-connected if and only if any partition-cut of G has at least k edges.

Proof. Assume that G is k-edge-connected. Then each edge-cut has at least k edges. As a partition-cut is an edge-cut, then any partition-cut of G has at least k edges.

On the other hand, suppose each partition-cut has at least k edges. If D is a minimal edge-cut of G and X_{1} and X_{2} are the vertex sets of the two components of $G-D$, then $D=\left\langle X_{1}, X_{2}\right\rangle$. To see this, note that $D \subseteq\left\langle X_{1}, X_{2}\right\rangle$. If $\left\langle X_{1}, X_{2}\right\rangle-D \neq \emptyset$ then choose some $e \in\left\langle X_{1}, X_{2}\right\rangle$ such that $e \notin D$. The endpoints of e belong to the same component of $G-D$, in contradiction of the definition of X_{1} and X_{2}. Thus any minimal edge-cut is a partition-cut and conclude that any edge-cut has at least k edges.
Proposition 5.7. If $G=(V, E)$ is an undirected connected graph with vertex connectivity $\kappa(G)$ and edge connectivity $\lambda(G)$, then we have $\kappa(G) \leq \lambda(G)$.

Proof. Let S be an edge-cut of G with cardinality $k=|S|=\lambda(G)$. Removing k suitably chosen vertices of G suffice to delete the edges of S and hence disconnect G. It is also possible to have a smaller vertex-cut elsewhere in G. Hence the inequality follows.

Taking together Propositions 5.5 and 5.7, we have Whitney's inequality.
Theorem 5.8. Whitney's inequality [195]. Let G be an undirected connected graph with vertex connectivity $\kappa(G)$, edge connectivity $\lambda(G)$, and minimum degree $\delta(G)$. Then we have the following inequality:

$$
\kappa(G) \leq \lambda(G) \leq \delta(G)
$$

Proposition 5.9. Let G be an undirected connected graph that is k-connected for some $k \geq 3$. If e is an edge of G, then the edge-deletion subgraph $G-e$ is $(k-1)$-connected.

Proof. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{k-2}\right\}$ be a set of $k-2$ vertices in $G-e$. It suffice to show the existence of a $u-v$ walk in $(G-e)-V$ for any distinct vertices u and v in $(G-e)-V$. We need to consider two cases: (i) at least one of the endpoints of e is in V; and (ii) neither endpoints of e is in V.
(i) Assume that V has at least one endpoint of e. As $G-V$ is 2 -connected, any distinct pair of vertices u and v in $G-V$ is connected by a $u-v$ path that excludes e. Hence the $u-v$ path is also in $(G-e)-V$.
(ii) Assume that neither endpoints of e is in V. If u and v are distinct vertices in ($G-e$) - V, then either: (1) both u and v are endpoints of e; or (2) at least one of u and v is an endpoint of e.
(1) Suppose u and v are both endpoints of e. As G is k-connected, then G has at least $k+1$ vertices so that the vertex set of $G-\left\{v_{1}, v_{2}, \ldots, v_{k-2}, u, v\right\}$ is nonempty. Let w be a vertex of $G-\left\{v_{1}, v_{2}, \ldots, v_{k-2}, u, v\right\}$. Then there is a $u-w$ path in $G-$ $\left\{v_{1}, v_{2}, \ldots, v_{k-2}, v\right\}$ and a $w-v$ path in $G-\left\{v_{1}, v_{2}, \ldots, v_{k-2}, u\right\}$. Neither the u-w nor the $w-v$ paths contain e. The concatenation of these two paths is a $u-v$ walk in $(G-e)-V$.
(2) Now suppose at least one of u and v, say u, is an endpoint of e. Let w be the other endpoint of e. As G is k-connected, then $G-\left\{v_{1}, v_{2}, \ldots, v_{k-2}, w\right\}$ is connected and we can find a $u-v$ path P in $G-\left\{v_{1}, v_{2}, \ldots, v_{k-2}, w\right\}$. Furthermore P is a $u-v$ path in $G-\left\{v_{1}, v_{2}, \ldots, v_{k-2}\right\}$ that neither contain w nor e. Hence P is a $u-v$ path in $(G-e)-V$.

Conclude that $G-e$ is $(k-1)$-connected.
Repeated application of Proposition 5.9 results in the following corollary.
Corollary 5.10. Let G be an undirected connected graph that is k-connected for some $k \geq 3$. If E is any set of m edges of G, for $m \leq k-1$, then the edge-deletion subgraph $G-E$ is $(k-m)$-connected.

What does it mean for a communications network to be fault-tolerant? In 1932, Hassler Whitney provided [195] a characterization of 2-connected graphs whereby he showed that a graph G is 2-connected if and only if each pair of distinct vertices in G has two different paths connecting those two vertices. A key to understanding Whitney's characterization of 2 -connected graphs is the notion of internal vertex of a path. Given a path P in a graph, a vertex along that path is said to be an internal vertex if it is neither the initial nor the final vertex of P. In other words, a path P has an internal vertex if and only if P has at least two edges. Building upon the notion of internal vertices, we now discuss what it means for two paths to be internally disjoint. Let u and v be distinct vertices in a graph G and suppose P_{1} and P_{2} are two paths from u to v. Then P_{1} and P_{2} are said to be internally disjoint if they do not share any common internal vertex. Two $u-v$ paths are internally disjoint in the sense that both u and v are the only vertices to be found in common between those paths. The notion of internally disjoint paths can be easily extended to a collection of $u-v$ paths. Whitney's characterization essentially says that a graph is 2-connected if and only if any two $u-v$ paths are internally disjoint.

Consider the notion of internally disjoint paths within the context of communications network. As a first requirement for fault-tolerant communications network, we want the network to remain connected despite the failure of any network node. By Whitney's characterization, this is possible if the original communications network is 2-connected. That is, we say that a communications network is fault-tolerant provided that any pair of distinct nodes is connected by two internally disjoint paths. The failure of any node should at least guarantee that any two distinct nodes are still connected.

Theorem 5.11. Whitney's characterization of 2-connected graphs [195]. Let G be an undirected connected graph having at least 3 vertices. Then G is 2-connected if and only if any two distinct vertices in G are connected by two internally disjoint paths.

Proof. ($\Longleftarrow)$ For the case of necessity, argue by contraposition. That is, suppose G is not 2-connected. Let v be a cut-vertex of G, from which it follows that $G-v$ is disconnected. We can find two vertices w and x such that there is no $w-x$ path in $G-v$. Therefore v is an internal vertex of any $w-x$ path in G.
(\Longrightarrow) For the case of sufficiency, let G be 2 -connected and let u and v be any two distinct vertices in G. Argue by induction on $d(u, v)$ that G has at least two internally disjoint $u-v$ paths. For the base case, suppose u and v are connected by an edge e so that $d(u, v)=1$. Adapt the proof of Proposition 5.9 to see that $G-e$ is connected. Hence we can find a $u-v$ path P in $G-e$ such that P and e are two internally disjoint $u-v$ paths in G.

Assume for induction that G has two internally disjoint u - v paths where $d(u, v)<k$ for some $k \geq 2$. Let w and x be two distinct vertices in G such that $d(w, x)=k$ and hence there is a $w-x$ path in G of length k, i.e. we have a $w-x$ path

$$
W: w=w_{1}, w_{2}, \ldots, w_{k-1}, w_{k}=x .
$$

Note that $d\left(w, w_{k-1}\right)<k$ and apply the induction hypothesis to see that we have two internally disjoint $w-w_{k-1}$ paths in G; call these paths P and Q. As G is 2-connected, we have a $w-x$ path R in $G-w_{k-1}$ and hence R is also a $w-x$ path in G. Let z be the vertex on R that immediately precedes x and assume without loss of generality that z is on P. We claim that G has two internally disjoint $w-x$ paths. One of these paths is the concatenation of the subpath of P from w to z with the subpath of R from z to x. If x is not on Q, then construct a second $w-x$ path, internally disjoint from the first one, as follows: concatenate the path Q with the edge $w_{k-1} w$. In case x is on Q, take the subpath of Q from w to x as the required second path.

From Theorem 5.11, an undirected connected graph G is 2 -connected if and only if any two distinct vertices of G are connected by two internally disjoint paths. In particular, let u and v be any two distinct vertices of G and let P and Q be two internally disjoint $u-v$ paths as guaranteed by Theorem 5.11. Starting from u, travel along the path P to arrive at v. Then start from v and travel along the path Q to arrive at u. The concatenation of the internally disjoint paths P and Q is hence a cycle passing through u and v. We have proved the following corollary to Theorem 5.11.

Corollary 5.12. Let G be an undirected connected graph having at least 3 vertices. Then G is 2-connected if and only if any two distinct vertices of G lie on a common cycle.

The following theorem provides further characterizations of 2-connected graphs, in addition to Whitney's characterization.

Theorem 5.13. Characterizations of 2-connected graphs. Let $G=(V, E)$ be an undirected connected graph having at least 3 vertices. Then the following are equivalent.

1. G is 2-connected.
2. If $u, v \in V$ are distinct vertices of G, then u and v lie on a common cycle.
3. If $v \in V$ and $e \in E$, then v and e lie on a common cycle.
4. If $e_{1}, e_{2} \in E$ are distinct edges of G, then e_{1} and e_{2} lie on a common cycle.
5. If $u, v \in V$ are distinct vertices and $e \in E$, then they lie on a common path.
6. If $u, v, w \in V$ are distinct vertices, then they lie on a common path.
7. If $u, v, w \in V$ are distinct vertices, then there is a path containing any two of these vertices but excluding the third.

5.3 Menger's theorem

Menger's theorem has a number of different versions: an undirected, vertex-connectivity version; a directed, vertex-connectivity version; an undirected, edge-connectivity version; and a directed, edge-connectivity version. In this section, we will prove the undirected, vertex-connectivity version. But first, let's consider a few technical results that will be of use for the purpose of this section.

Let u and v be distinct vertices in a connected graph $G=(V, E)$ and let $S \subseteq V$. Then S is said to be $u-v$ separating if u and v lie in different components of the vertex
deletion subgraph $G-S$. The vertices u and v are positioned such that after removing vertices in S from G and the corresponding edges, u and v are no longer connected nor strongly connected to each other. It is clear by definition that $u, v \notin S$. We also say that S separates u and v, or S is a vertex separating set. Similarly an edge set $T \subseteq E$ is $u-v$ separating (or separates u and v) if u and v lie in different components of the edge deletion subgraph $G-T$. But unlike the case of vertex separating sets, it is possible for u and v to be endpoints of edges in T because the removal of edges does not result in deleting the corresponding endpoints. The set T is also called an edge separating set. In other words, S is a vertex cut and T is an edge cut. When it is clear from context, we simply refer to a separating set. See Figure 5.7 for illustrations of separating sets.

Figure 5.7: Vertex and edge separating sets. Blue-colored vertices are those we want to separate. The red-colored vertices form a vertex separating set or vertex cut; the red-colored edges constitute an edge separating set or edge cut.

Proposition 5.14. Consider two distinct, non-adjacent vertices u, v in a connected graph G. If $\mathcal{P}_{u v}$ is a collection of internally disjoint $u-v$ paths in G and $S_{u v}$ is a uv separating set of vertices in G, then

$$
\begin{equation*}
\left|\mathcal{P}_{u v}\right| \leq\left|S_{u v}\right| . \tag{5.2}
\end{equation*}
$$

Proof. Each $u-v$ path in $\mathcal{P}_{u v}$ must include at least one vertex from $S_{u v}$ because $S_{u v}$ is a vertex cut of G. Any two distinct paths in $\mathcal{P}_{u v}$ cannot contain the same vertex from $S_{u v}$. Thus the number of internally disjoint $u-v$ paths is at most $\left|S_{u v}\right|$.

The bound (5.2) holds for any $u-v$ separating set $S_{u v}$ of vertices in G. In particular, we can choose $S_{u v}$ to be of minimum cardinality among all $u-v$ separating sets of vertices in G. Thus we have the following corollary. Menger's Theorem 5.18 provides a much stronger statement of Corollary 5.15, saying in effect that the two quantities $\max \left(\left|\mathcal{P}_{u v}\right|\right)$ and $\min \left(\left|S_{u v}\right|\right)$ are equal.

Corollary 5.15. Consider any two distinct, non-adjacent vertices u, v in a connected graph G. Let $\max \left(\left|\mathcal{P}_{u v}\right|\right)$ be the maximum number of internally disjoint u-v paths in G and denote by $\min \left(\left|S_{u v}\right|\right)$ the minimum cardinality of a u-v separating set of vertices in G. Then we have $\max \left(\left|\mathcal{P}_{u v}\right|\right) \leq \min \left(\left|S_{u v}\right|\right)$.

Corollary 5.16. Consider any two distinct, non-adjacent vertices u, v in a connected graph G. Let $\mathcal{P}_{u v}$ be a collection of internally disjoint $u-v$ paths in G and let $S_{u v}$ be a u-v separating set of vertices in G. If $\left|\mathcal{P}_{u v}\right|=\left|S_{u v}\right|$, then $\mathcal{P}_{u v}$ has maximum cardinality among all collections of internally disjoint u-v paths in G and $S_{u v}$ has minimum cardinality among all $u-v$ separating sets of vertices in G.
Proof. Argue by contradiction. Let $\mathcal{Q}_{u v}$ be another collection of internally disjoint $u-v$ paths in G such that $\left|\mathcal{Q}_{u v}\right| \geq\left|\mathcal{P}_{u v}\right|$. Then $\left|\mathcal{P}_{u v}\right| \leq\left|\mathcal{Q}_{u v}\right| \leq\left|S_{u v}\right|$ by Proposition 5.14. We cannot have $\left|\mathcal{Q}_{u v}\right|>\left|\mathcal{P}_{u v}\right|$, which would be contradictory to our hypothesis that $\mathcal{P}_{u v}=\left|S_{u v}\right|$. Thus $\left|\mathcal{Q}_{u v}\right|=\left|\mathcal{P}_{u v}\right|$. Let $T_{u v}$ be another $u-v$ separating set of vertices in G such that $\left|T_{u v}\right| \leq\left|S_{u v}\right|$. Then we have $\left|\mathcal{P}_{u v}\right| \leq\left|T_{u v}\right| \leq\left|S_{u v}\right|$ by Proposition 5.14. We cannot have $\left|T_{u v}\right|<\left|S_{u v}\right|$ because we would then end up with $\left|\mathcal{P}_{u v}\right| \leq\left|T_{u v}\right|$ and $\mathcal{P}_{u v}=\left|S_{u v}\right|$, a contradiction. Therefore $\left|T_{u v}\right|=\left|S_{u v}\right|$.
Lemma 5.17. Consider two distinct, non-adjacent vertices u, v in a connected graph G and let k be the minimum number of vertices required to separate u and v. If G has a $u-v$ path of length 2 , then G has k internally disjoint $u-v$ paths.

Proof. Argue by induction on k. For the base case, assume $k=1$. Hence G has a cut vertex x such that u and v are disconnected in $G-x$. Any $u-v$ path must contain x. In particular, there can be only one internally disjoint $u-v$ path.

Assume for induction that $k \geq 2$. Let $P: u, x, v$ be a path in G having length 2 and suppose S is a smallest $u-v$ separating set for $G-x$. Then $S \cup\{x\}$ is a $u-v$ separating set for G. By the minimality of k, we have $|S| \geq k-1$. By the induction hypothesis, we have at least $k-1$ internally disjoint $u-v$ paths in $G-x$. As P is internally disjoint from any of the latter paths, conclude that G has k internally disjoint $u-v$ paths.

Theorem 5.18. Menger's theorem. Let G be an undirected connected graph and let u and v be distinct, non-adjacent vertices of G. Then the maximum number of internally disjoint $u-v$ paths in G equals the minimum number of vertices needed to separate u and v.

Proof. Suppose that the maximum number of independent $u-v$ paths in G is attained by $u-v$ paths P_{1}, \ldots, P_{k}. To obtain a separating set $W \subset V$, we must at least remove one point in each path P_{i}. This implies the minimum number of vertices needed to separate u and v is at least k. Therefore, we have an upper bound:
$\#\{$ indep. $u-v$ paths $\} \leq \#\{$ min. number of vertices needed to separate u and $v\}$.
We show that equality holds. Let n denote the number of edges of G. The proof is by induction on n. By hypothesis, $n \geq 2$. If $n=2$ the statement holds by inspection, since in that case G is a line graph with 3 vertices $V=\{u, v, w\}$ and 2 edges, $E=\{u w \cdot w v\}$. In that situation, there is only $1 u-v$ path (namely, $u w v$) and only one vertex separating u and v (namely, w).

Suppose now $n>3$ and assume the statement holds for each graph with $<n$ edges. Let

$$
k=\#\{\text { independent } u-v \text { paths }\}
$$

and let
$\ell=\#\{$ min. number of vertices needed to separate u and $v\}$,
so that $k \leq \ell$. Let $e \in E$ and let G / e be the contraction graph having edges $E-\{e\}$ and vertices the same as those of G, except that the endpoints of e have been identified.

Suppose that $k<\ell$ and G does not have ℓ independent $u-v$ paths. The contraction graph G / e does not have ℓ independent $u-v$ paths either (where now, if e contains u or v then we must appropriately redefine u or v, if needed). However, by the induction hypothesis G / e does have the property that the maximum number of internally disjoint $u-v$ paths equals the minimum number of vertices needed to separate u and v. Therefore,

$$
\#\{\text { independent } u-v \text { paths in } G / e\}
$$

$<\#\{$ min. number of vertices needed to separate u and v in $G\}$.
By induction,
\# \{independent $u-v$ paths in $G / e\}$
$=\#\{$ min. number of vertices needed to separate u and v in $G / e\}$.
Now, we claim we can pick e such that e does contain u or v and in such a way that
$\#\{$ minimum number of vertices needed to separate u and v in $G\}$
$\geq \#\{$ minimum number of vertices needed to separate u and v in $G / e\}$.
Proof: Indeed, since $n>3$ any separating set realizing the minimum number of vertices needed to separate u and v in G cannot contain both a vertex in G adjacent to u and a vertex in G adjacent to v. Therefore, we may pick e accordingly. (Q.E.D. claim)

The result follows from the claim and the above inequalities.
The following statement is the undirected, edge-connectivity version of Menger's theorem.

Theorem 5.19. Menger's theorem (edge-connectivity form). Let G be an undirected graph, and let s and t be vertices in G. Then, the maximum number of edgedisjoint (s, t)-paths in G equals the minimum number of edges from $E(G)$ whose deletion separates s and t.

This is proven the same way as the previous version but using the generalized min-cut/max-flow theorem (see Remark 9.16 above).

Theorem 5.20. Dirac's theorem. Let $G=(V, E)$ be an undirected k-connected graph with $|V| \geq k+1$ vertices for $k \geq 3$. If $S \subseteq V$ is any set of k vertices, then G has a cycle containing the vertices of S.

Proof.

5.4 Whitney's Theorem

Theorem 5.21. Whitney's theorem (vertex version). Suppose $G=(V, E)$ is a graph with $|V| \geq k+1$. The following are equivalent:

- G is k-vertex-connected,
- Any pair of distinct vertices $v, w \in V$ are connected by at least k independent paths.

Solution. ..

Theorem 5.22. Whitney's theorem (edge version). Suppose $G=(V, E)$ is a graph with $|V| \geq k+1$. The following are equivalent:

- the graph G is k-edge-connected,
- any pair of vertices are connected by at least k edge-disjoint paths.

Solution. ...

Theorem 5.23. Whitney's Theorem. Let $G=(V, E)$ be a connected graph such that $|V| \geq 3$. Then G is 2 -connected if and only if any pair $u, v \in V$ has two internally disjoint paths between them.

5.5 Centrality of a vertex

Louis, I think this is the beginning of a beautiful friendship.

- Rick from the 1942 film Casablanca
- degree centrality
- betweenness centrality; for efficient algorithms, see [36, 200]
- closeness centrality
- eigenvector centrality

The degree centrality of a graph $G=(V, E)$ is the list parameterized by the vertex set V of G whose v-th entry is the fraction of vertices connected to $v \in V$. The centrality of a vertex within a graph determines the relative importance of that vertex to its graph. Degree centrality measures the number of edges incident upon a vertex.

```
sage: G = graphs.RandomNewmanWattsStrogatz(6,2,1/2)
sage: G
Graph on 6 vertices
sage: D = G.degree_sequence()
sage: D
[5, 4, 3, 3, 3, 2]
sage: VG = G.vertices()
sage: VG
[0, 1, 2, 3, 4, 5]
sage: DC = [QQ(x)/len(VG) for x in D]
sage: DC
[5/6, 2/3, 1/2, 1/2, 1/2, 1/3]
```

This graph is shown in Figure 5.8.
The closeness centrality is defined to be
$\frac{1}{\text { average distance to all vertices }}$.

Closeness centrality is an inverse measure of centrality in that a larger value indicates a less central vertex while a smaller value indicates a more central vertex.

Figure 5.8: A randomly choosen graph whose "central-most" vertex is 0 , with degree centrality equal to $5 / 6$.

```
Algorithm 5.1 Friendship graph.
Input A positive integer \(n\).
Output The friendship graph \(F_{n}\).
    if \(n=1\) then
        return \(C_{3}\)
    \(G \leftarrow\) null graph
    \(N \leftarrow 2 n+1\)
    for \(i \leftarrow 0,1, \ldots, N-3\) do
        if \(i\) is odd then
            add edges \((i, i+1)\) and \((i, N-1)\) to \(G\)
        else
            add edge \((i, N-1)\) to \(G\)
10: add edges \((N-2,0)\) and \((N-2, N-1)\) to \(G\)
11: return \(E\)
```


5.6 Network reliability

- Whitney synthesis
- Tutte's synthesis of 3-connected graphs
- Harary graphs
- constructing an optimal k-connected n-vertex graph

5.7 The spectrum of a graph

We use the notes "The spectrum of a graph" by Andries Brouwer [40] as a basic reference.

- Spectrum of a graph
- Laplacian spectrum of a graph
- Applications
- Examples from Boolean functions

Let $G=(V, E)$ be a (possibly directed) finite graph on $n=|V|$ vertices. The adjacency matrix of G is the $n \times n$ matrix $A=A(G)=\left(a_{v, w}\right)_{v, w \in V}$ with rows and columns indexed by V and entries $a_{v, w}$ denoting the number of edges from v to w.

The spectrum of $G, \operatorname{spec}(G)$, is by definition the spectrum of A, that is, its multi-set of eigenvalues together with their multiplicities. The characteristic polynomial of G is that of A, that is, the polynomial p_{A} defined by $p_{A}(x)=\operatorname{det}(A-x I)$.

5.7.1 The Laplacian spectrum

Recall from section 1.3.3 that, given a simple graph G with n vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$, its (vertex) Laplacian matrix $L=\left(\ell_{i, j}\right)_{n \times n}$ is defined as:

$$
\ell_{i, j}= \begin{cases}\operatorname{deg}\left(v_{i}\right), & \text { if } i=j \\ -1, & \text { if } i \neq j \text { and } v_{i} \text { is adjacent to } v_{j} \\ 0, & \text { otherwise }\end{cases}
$$

The Laplacian spectrum is by definition the spectrum of the vertex Laplacian of G, that is, its multi-set of eigenvalues together with their multiplicities.

For a graph G and its Laplacian matrix L with eigenvalues $\lambda_{n} \leq \lambda_{n-1} \leq \cdots \leq \lambda_{1}$:

- For all $i, \lambda_{i} \geq 0$ and $\lambda_{n}=0$.
- The number of times 0 appears as an eigenvalue in the Laplacian is the number of connected components in the graph.
- $\lambda_{n}=0$ because every Laplacian matrix has an eigenvector of $[1,1, \ldots, 1]$,
- If we define a signed edge adjacency matrix M with element $m_{e, v}$ for edge $e \in E$ (connecting vertex v_{i} and v_{j}, with $i<j$) and vertex $v \in V$ given by

$$
M_{e v}= \begin{cases}1, & \text { if } v=v_{i} \\ -1, & \text { if } v=v_{j} \\ 0, & \text { otherwise }\end{cases}
$$

then the Laplacian matrix L satisifies $L=M^{T} M$, where M^{T} is the matrix transpose of M.

These are left as an exercise.

5.7.2 Applications of the (ordinary) spectrum

The following is a basic fact about the largest eigenvalue of a graph.
Theorem 5.24. Each graph G has a real eigenvalue $\lambda_{1}>0$ with nonnegative real corresponding eigenvector, and such that for each eigenvalue λ we have $|\lambda| \leq \lambda_{1}$.

We shall mostly be interested in the case where G is undirected, without loops or multiple edges. This means that A is symmetric, has zero diagonal ($a_{v, v}=0$), and is a $0-1$ matrix ($a_{v, w} \in\{0,1\}$).

A number λ is eigenvalue of A if and only if it is a zero of the polynomial p_{A}. Since A is real and symmetric, all its eigenvalues are real and A is diagonalizable. In particular, for each eigenvalue, its algebraic multiplicity (that is, its multiplicity as a root of the characteristic polynomial) coincides with its geometric multiplicity (that is, the dimension of the corresponding eigenspace).

Theorem 5.25. Let G be a connected graph of diameter d. Then G has at least $d+1$ distinct eigenvalues.

Proof. Let the distinct eigenvalues of the adjacency matrix A of G be $\lambda_{1}, \ldots, \lambda_{r}$. Then $\left(A-\lambda_{1} I\right) \ldots\left(A-\lambda_{r} I\right)=0$, so that A^{r} is a linear combination of I, A, \ldots, A^{r-1}. But if the distance from the vertex $v \in V$ to the vertex $w \in V$ is r, then $\left(A^{i}\right)_{v, w}=0$ for $0 \leq i \leq r-1$ and $\left(A^{r}\right)_{v, w}>0$, contradiction. Hence $d>r$.

5.7.3 Examples from Boolean functions

Let f be a Boolean function on $G F(2)^{n}$. The Cayley graph of f is defined to be the graph

$$
\Gamma_{f}=\left(G F(2)^{n}, E_{f}\right),
$$

whose vertex set is $G F(2)^{n}$ and the set of edges is defined by

$$
E_{f}=\left\{(u, v) \in G F(2)^{n} \times G F(2)^{n} \mid f(u+v)=1\right\} .
$$

The adjacency matrix A_{f} of this graph is the matrix whose entries are

$$
A_{i, j}=f(b(i)+b(j)),
$$

where $b(k)$ is the binary representation of the integer k. Note Γ_{f} is a regular graph of degree $\mathrm{wt}(f)$, where wt denotes the Hamming weight of f when regarded as a vector of values (of length 2^{n}).

Recall that, given a graph Γ and its adjacency matrix A, the spectrum $\operatorname{Spec}(\Gamma)$ is the multi-set of eigenvalues of A.

The Walsh transform of a Boolean function f is an integer-valued function over $G F(2)^{n}$ that can be defined as

$$
W_{f}(u)=\sum_{x i n G F(2)^{n}}(-1)^{f(x)+\langle u, x\rangle}
$$

A Boolean function f is bent if $\left|W_{f}(a)\right|=2^{n / 2}$ (this only makes sense if n is even). This property says, roughly speaking, that f is "as non-linear as possible." The Hadamard transform of a integer-valued function f is an integer-valued function over $G F(2)^{n}$ that can be defined as

$$
H_{f}(u)=\sum_{x i n G F(2)^{n}} f(x)(-1)^{\langle u, x\rangle}
$$

It turns out that the spectrum of Γ_{f} is equal to the Hadamard transform of f when regarded as a vector of (integer) 0,1 -values. (This nice fact seems to have first appeared in [23], [24].)

Recall that a graph is regular of degree r (or r-regular) if every vertex has degree r. We say that an r-regular graph Γ is a strongly regular graph with parameters (v, r, d, e) (for nonnegative integers e, d) provided, for all vertices u, v the number of vertices adjacent to both u, v is equal to

$$
\begin{cases}e, & \text { if } u, v \text { are adjacent } \\ d, & \text { if } u, v \text { are nonadjacent. }\end{cases}
$$

It turns out tht f is bent if and only if Γ_{f} is strongly regular and $e=d$ (see [24], [7]).
The following Sage computations illustrate these and other theorems in [177], [23], [24], [7].

First, consider the Boolean function $f: G F(2)^{4} \rightarrow G F(2)$ given by $f\left(x_{0}, x_{1}, x_{2}\right)=$ $x_{0} x_{1}+x_{2} x_{3}$
sage: $V=G F(2) \wedge 4$
sage: $\mathrm{f}=$ lambda x : $\mathrm{x}[0] * \mathrm{x}[1]+\mathrm{x}[2] * \mathrm{x}[3]$
sage: CartesianProduct (range (16), range (16))
Cartesian product of $[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]$,
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
sage: $C=$ CartesianProduct (range (16), range (16))
sage: Vlist $=$ V.list ()
sage: $E=[(x[0], x[1])$ for x in C if $f(V 1 i s t[x[0]]+V 1 i s t[x[1]])==1]$
sage: len (E)
96
sage: $E=\operatorname{Set}([\operatorname{Set}(s)$ for s in E])
sage: $E=$ [tuple(s) for s in E]
sage: Gamma $=$ Graph (E)
sage: Gamma
Graph on 16 vertices
sage: $V G=$ Gamma.vertices ()
sage: L1 = []
sage: L2 = []
sage: for v 1 in VG:
.... for V 2 in VG:
...: $\quad \mathrm{N} 1=$ Gamma.neighbors(v1)
...: $N 2=$ Gamma.neighbors(v2)
...: if v 1 in N2:

```
...: L1 = L1+[len([x for x in N1 if x in N2])]
...: if not(v1 in N2) and v1!=v2:
...: L2 = L2+[len([x for }x\mathrm{ in N1 if }x\mathrm{ in N2])]
.... .
sage: L1; L2
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
```

This implies the graph is strongly regular with $d=e=2$. Let us use Sage to determine some properties of this graph.

```
sage: Gamma.spectrum()
[6, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2]
sage: [walsh_transform(f, a) for a in V]
[4, 4, 4, -4, 4, 4, 4, -4, 4, 4, 4, -4, -4, -4, -4, 4]
sage: Omega_f = [v for v in V if f(v)===1]
sage: len(Omega_f)
6
sage: Gamma.is_bipartite()
False
sage: Gamma.is_hamiltonian()
True
sage: Gamma.is_planar()
False
sage: Gamma.is_regular()
True
sage: Gamma.is_eulerian()
True
sage: Gamma.is_connected()
True
sage: Gamma.is_triangle_free()
False
sage: Gamma.diameter()
S
sage: Gamma.degree_sequence()
[6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
```

The picture of the graph is given in Figure 5.9.

The Hadamard transform of the Boolean function does indeed determine the spec-

Figure 5.9: A Cayley graph of a Boolean function.
trum of its Cayley graph.
Here is another example: $f: G F(2)^{3} \rightarrow G F(2)$ given by $f\left(x_{0}, x_{1}, x_{2}\right)=x_{0} x_{1}+x_{2}$.

```
sage: V = GF(2)^3
sage: f = lambda x: x[0]*x[1]+x[2]
sage: Omega_f = [v for v in V if f(v)==1]
sage: len(Omega_f)
4
sage: C = CartesianProduct(range(8), range(8))
sage: Vlist = V.list()
sage: E = [(x[0],x[1]) for x in C if f(Vlist[x[0]]+Vlist[x[1]])==1]
sage: E = Set([Set(s) for s in E])
sage: E = [tuple(s) for s in E]
sage: Gamma = Graph(E)
sage: Gamma
Graph on 8 vertices
sage:
sage: VG = Gamma.vertices()
sage: L1 = []
sage: L2 = []
sage: for v1 in VG:
...: for v2 in VG:
...: N1 = Gamma.neighbors(v1)
...: N2 = Gamma.neighbors(v2)
...: if v1 in N2:
...: L1 = L1+[len([x for x in N1 if x in N2])]
\cdots... if not(v1 in N2) and v1!=v2:
...: L2 = L2+[len([x for x in N1 if x in N2])]
sage: L1; L2
[2, 0, 2, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 2, 0, 0, 2, 2, 2,
2, 0, 2, 2, 2, 0, 2, 2, 2, 2, 0, 2]
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
```

This implies that the graph is not strongly regular, therefore f is not bent. (There are other reasons why f cannot be bent as well.) Again, let us use Sage to determine some properties of this graph.

[^9]```
sage:
sage: Gamma.is_bipartite()
sage: Gamma.is_hamiltonian()
True
sage: Gamma.is_planar()
False
sage: Gamma.is_regular()
True
sage: Gamma.is_eulerian()
True
sage: Gamma.is_connected()
True
sage: Gamma.is_triangle_free()
False
sage: Gamma.diameter()
2
sage: Gamma.degree_sequence()
[4, 4, 4, 4, 4, 4, 4, 4]
sage: H = matrix(QQ, 8, 8, [(-1)^(Vlist[x[0]]).dot_product(Vlist[x[1]]) for x in C])
sage: H
[[1
[[rrrrrrrrrre
[[1
[11 -1 [-1
[11 1
[[1
[11 11 -1 1
[[1 -1 -1
sage: flist = vector(QQ, [int(f(v)) for v in V])
sage: H*flist
(4, 0, 0, 0, -2, -2, -2, 2)
sage: Gamma.spectrum()
[4, 2, 0, 0, 0, -2, -2, -2]
sage: A = matrix(QQ, 8, 8, [f(Vlist[x[0]]+Vlist[x[1]]) for x in C])
sage: A.eigenvalues()
[4, 2, 0, 0, 0, -2, -2, -2]
```

Again, we see the Hadamard transform does indeed determine the graph spectrum. The picture of the graph is given in Figure 5.10.


Figure 5.10: Another Cayley graph of a Boolean function.

### 5.8 Expander graphs and Ramanujan graphs

In combinatorics, an expander graph is a sparse graph that has strong connectivity properties. Expander graphs have many applications - for example, to cryptography,
and the theory of error-correcting codes.
The edge expansion $h(G)$ of a graph $G=(V, E)$ is defined as

$$
h(G)=\min _{0<|S| \leq \frac{|V|}{2}} \frac{|\partial(S)|}{|S|},
$$

where the minimum is over all nonempty sets $S$ of at most $|V| / 2$ vertices and $\partial(S)$ is the edge boundary of $S$, i.e., the set of edges with exactly one endpoint in $S$.

The vertex expansion (or vertex isoperimetric number) $h_{\text {out }}(G)$ of a graph $G$ is defined as

$$
h_{\text {out }}(G)=\min _{0<|S| \leq \frac{|V|}{2}} \frac{\left|\partial_{\text {out }}(S)\right|}{|S|},
$$

where $\partial_{\text {out }}(S)$ is the outer boundary of $S$, i.e., the set of vertices in $V(G) \backslash S$ with at least one neighbor in $S$.

```
sage: G = PSL(2, 5)
sage: X = G.cayley_graph()
sage: V = X.vertices()
sage: S = [V[1], V [3], V[7], V[10], V[13], V[14], V[23]]
sage: delS = X.edge_boundary(S)
sage: edge_expan_XS = len(delS)/len(S); RR(edge_expan_XS)
1.00000000000000
sage: S = [V[1], V[3], V[7], V[12], V[24], V [37]]
sage: delS = X.edge_boundary(S)
sage: edge_expan_XS = len(delS)/len(S); RR(edge_expan_XS)
1.500000000000000
sage: S = [V[2], V [8], V [13], V [27], V[32], V [44], V [57]]
sage: delS = X.edge_boundary(S)
sage: edge_expan_XS = len(delS)/len(S); RR(edge_expan_XS)
1.42857142857143
sage: S = [V [0], V [6], V [11], V [16], V[21], V [29], V [35], V [45],V [53]]
sage: delS = X.edge_boundary(S)
sage: edge_expan_XS = len(delS)/len(S); RR(edge_expan_XS)
1.777777777777778
sage: n = len(X.vertices())
sage: J = range(n)
sage: J30 = Subsets(J, int(n/2))
sage: K = J30.random_element()
sage: K
{0, 2, 3, 4, 5, 6, 8, 9, 11, 13, 16, 18, 19, 21, 24, 25, 26, 28, 29,
30, 36, 37, 38, 40, 42, 45, 46, 49, 53, 57}
sage: S = [V[i] for i in K] # 30 vertices, randomly selected
sage: delS = [v for v in V if min([X.distance(a,v) for a in S]) == 1]
sage: RR(len(delS))/RR(len(S))
0.800000000000000
```

A family $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots\right\}$ of $d$-regular graphs is an edge expander family if there is a constant $c>0$ such that $h(G) \geq c$ for each $G \in \mathcal{G}$. A vertex expander family is defined similarly, using $h_{\text {out }}(G)$ instead.

### 5.8.1 Ramanujan graphs

Let $G$ be a connected $d$-regular graph with $n$ vertices, and let $\lambda_{0} \geq \lambda_{1} \geq \ldots \geq \lambda_{n-1}$ be the eigenvalues of the adjacency matrix of $G$. Because $G$ is connected and $d$-regular, its eigenvalues satisfy $d=\lambda_{0}>\lambda_{1} \geq \ldots \geq \lambda_{n-1} \geq-d$. Whenever there exists $\lambda_{i}$ with $\left|\lambda_{i}\right|<d$, define

$$
\lambda(G)=\max _{\left|\lambda_{i}\right|<d}\left|\lambda_{i}\right| .
$$

A $d$-regular graph $G$ is a Ramanujan graph if $\lambda(G)$ is defined and $\lambda(G) \leq 2 \sqrt{d-1}$.

Let $q$ be a prime power such that $q \equiv 1(\bmod 4)$. Note that this implies that the finite field $G F(q)$ contains a square root of -1 .

Now let $V=G F(q)$ and $\left.E=\left\{\{a, b\} \in G F(q) \times G F(q) \mid(a-b) \in G F(q)^{\times}\right)^{2}\right\}$. This set is well defined since $a-b=(-1) \cdot(b-a)$, and since -1 is a square, it follows that $a-\mathrm{b}$ is a square if and only if $b-a$ is a square.

By definition $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is the Paley graph of order $q$.
The following facts are known about Paley graphs.

- The eigenvalues of Paley graphs are $\frac{q-1}{2}$ (with multiplicity 1 ) and $\frac{-1 \pm \sqrt{q}}{2}$ (both with multiplicity $\frac{q-1}{2}$ ).
- It is known that a Paley graph is a Ramanujan graph.
- It is known that the family of Paley graphs of prime order is a vertex expander graph family.
- If $q=p^{r}$, where $p$ is prime, then $\operatorname{Aut}(G)$ has order $q(q-1) / 2$.

Here is Sage code for the Paley graph ${ }^{1}$ :

```
def Paley(q):
```

    \(\mathrm{K} .<\mathrm{a}>=\mathrm{GF}(\mathrm{q})\)
    return \(\operatorname{Graph}([K, \quad\) lambda \(i, j: i \quad!=j\) and (i-j).is_square()])
    Below is an example.

```
sage: X = Paley(13)
sage: X.vertices()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
sage: X.is_vertex_transitive()
True
sage: X.degree_sequence()
[6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
sage: X.spectrum()
[6, 1.302775637731995?, 1.302775637731995?, 1.302775637731995?,
1.302775637731995?, 1.302775637731995?, 1.302775637731995?,
-2.302775637731995?, -2.302775637731995?, -2.302775637731995?,
-2.302775637731995?, -2.302775637731995?,, -2.302775637731995?]
sage: G = X.automorphism_group()
sage: G.cardinality()
7
sage: 13*12/2
78
```


### 5.9 Problems

When you don't share your problems, you resent hearing the problems of other people.

- Chuck Palahniuk, Invisible Monsters, 1999
5.1. Let $G=(V, E)$ be an undirected, unweighted simple graph. Show that $V$ and the distance function on $G$ form a metric space if and only if $G$ is connected.
5.2. Let $u$ and $v$ be two distinct vertices in the same connected component of $G$. If $P$ is a $u-v$ path such that $d(u, v)=\epsilon(u)$, we say that $P$ is an eccentricity path for $u$.
(a) If $r$ is the root of a tree, show that the end-vertex of an eccentricity path for $r$ is a leaf.

[^10](b) If $v$ is a vertex of a tree distinct from the root $r$, show that any eccentricity path for $v$ must contain $r$ or provide an example to the contrary.
(c) A vertex $w$ is said to be an eccentric vertex of $v$ if $d(v, w)=\epsilon(v)$. Intuitively, an eccentric vertex of $v$ can be considered as being as far away from $v$ as possible. If $w$ is an eccentric vertex of $v$ and vice versa, then $v$ and $w$ are said to be mutually eccentric. See Buckley and Lau [45] for detailed discussions of mutual eccentricity. If $w$ is an eccentric vertex of $v$, explain why $v$ is also an eccentric vertex of $w$ or show that this does not in general hold.
5.3. If $u$ and $v$ are vertices of a connected graph $G$ such that $d(u, v)=\operatorname{diam}(G)$, show that $u$ and $v$ are mutually eccentric.
5.4. If $u v$ is an edge of a tree $T$ and $w$ is a vertex of $T$ distinct from $u$ and $v$, show that $|d(u, w)-d(w, v)|=W(u v)$ with $W(u v)$ being the weight of $u v$.
5.5. If $u$ and $v$ are vertices of a tree $T$ such that $d(u, v)=\operatorname{diam}(T)$, show that $u$ and $v$ are leaves.
5.6. Let $v_{1}, v_{2}, \ldots, v_{k}$ be the leaves of a tree $T$. Show that $\operatorname{per}(T)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$.
5.7. Show that all the eccentric vertices of a tree are leaves.
5.8. If $G$ is a connected graph, show that $\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2 \cdot \operatorname{rad}(G)$.
5.9. Let $T$ be a tree of order $\geq 3$. If the center of $T$ has one vertex, show that $\operatorname{diam}(T)=$ $2 \cdot \operatorname{rad}(T)$. If the center of $T$ has two vertices, show that $\operatorname{diam}(T)=2 \cdot \operatorname{rad}(T)-1$.
5.10. Let $G=(V, E)$ be a simple undirected, connected graph. Define the distance of a vertex $v \in V$ by
$$
d(v)=\sum_{x \in V} d(v, x)
$$
and define the distance of the graph $G$ itself by
$$
d(G)=\frac{1}{2} \sum_{v \in V} d(v)
$$

For any vertex $v \in V$, show that $d(G) \leq d(v)+d(G-v)$ with $G-v$ being a vertex deletion subgraph of $G$. This result appeared in Entringer et al. [70, p.284].
5.11. Determine the sequence of distance matrices for the graphs in Figure 5.4.
5.12. If $G=(V, E)$ is an undirected connected graph and $v \in V$, prove the following vertex connectivity inequality:

$$
\kappa(G)-1 \leq \kappa(G-v) \leq \kappa(G)
$$

5.13. If $G=(V, E)$ is an undirected connected graph and $e \in E$, prove the following edge connectivity inequality:

$$
\lambda(G)-1 \leq \lambda(G-e) \leq \lambda(G)
$$



Figure 5.11: Network of common grape cultivars.

| code | name | code | name | code | name |
| ---: | :--- | ---: | :--- | ---: | :--- |
| 0 | Alicante Bouschet | 1 | Aramon | 2 | Bequignol |
| 3 | Cabernet Franc | 4 | Cabernet Sauvignon | 5 | Carignan |
| 6 | Chardonnay | 7 | Chenin Blanc | 8 | Colombard |
| 9 | Donzillinho | 10 | Ehrenfelser | 11 | Fer Servadou |
| 12 | Flora | 13 | Gamay | 14 | Gelber Ortlieber |
| 15 | Grüner Veltliner | 16 | Kemer | 17 | Merlot |
| 18 | Meslier-Saint-Francois | 19 | Müller-Thurgau | 20 | Muscat Blanc |
| 21 | Muscat Hamburg | 22 | Muscat of Alexandria | 23 | Optima |
| 24 | Ortega | 25 | Osteiner | 26 | Péagudo |
| 27 | Perle | 28 | Perle de Csaba | 29 | Perlriesling |
| 30 | Petit Manseng | 31 | Petite Bouschet | 32 | Pinot Noir |
| 33 | Reichensteiner | 34 | Riesling | 35 | Rotberger |
| 36 | Roter Veltliner | 37 | Rotgipfler | 38 | Royalty |
| 39 | Ruby Cabernet | 40 | Sauvignon Blanc | 41 | Schönburger |
| 42 | Semillon | 43 | Siegerrebe | 44 | Sylvaner |
| 45 | Taminga | 46 | Teinturier du Cher | 47 | Tinta Madeira |
| 48 | Traminer | 49 | Trincadeiro | 50 | Trollinger |
| 51 | Trousseau | 52 | Verdelho | 53 | Wittberger |

Table 5.2: Numeric code and actual name of common grape cultivars.
5.14. Figure 5.11 depicts how common grape cultivars are related to one another; the graph is adapted from Myles et al. [149]. The numeric code of each vertex can be interpreted according to Table 5.2. Compute various distance and connectivity measures for the graph in Figure 5.11.
5.15. Prove the characterizations of 2-connected graphs as stated in Theorem 5.13.
5.16. Let $G=(V, E)$ be an undirected connected graph of order $n$ and suppose that $\operatorname{deg}(v) \geq(n+k-2) / 2$ for all $v \in V$ and some fixed positive integer $k$. Show that $G$ is $k$-connected.
5.17. A vertex (or edge) separating set $S$ of a connected graph $G$ is minimum if $S$ has the smallest cardinality among all vertex (respectively edge) separating sets in $G$. Similarly $S$ is said to be maximum if it has the greatest cardinality among all vertex (respectively edge) separating sets in $G$. For the graph in Figure 5.7(a), determine the following:
(a) A minimum vertex separating set.
(b) A minimum edge separating set.
(c) A maximum vertex separating set.
(d) A maximum edge separating set.
(e) The number of minimum vertex separating sets.
(f) The number of minimum edge separating sets.

## Chapter 6

## Centrality and prestige

6.1 Vertex centrality
6.2 Edge centrality
6.3 Ranking web pages
6.4 Hub and authority
6.5 Problems
6.1. A.

## Chapter 7

## Optimal graph traversals

### 7.1 Eulerian graphs

- Motivation: tracing out all the edges of a graph without lifting your pencil.
- multigraphs and simple graphs
- Eulerian tours
- Eulerian trails


### 7.2 Hamiltonian graphs


— Randall Munroe, xkcd, http://xkcd.com/230/

- Motivation: the eager tourist problem: visiting all major sites of a city in the least time/distance.
- Hamiltonian paths (or cycles)
- Hamiltonian graphs

Theorem 7.1. Ore 1960. Let $G$ be a simple graph with $n \geq 3$ vertices. If $\operatorname{deg}(u)+$ $\operatorname{deg}(v) \geq n$ for each pair of non-adjacent vertices $u, v \in V(G)$, then $G$ is Hamiltonian.

Corollary 7.2. Dirac 1952. Let $G$ be a simple graph with $n \geq 3$ vertices. If $\operatorname{deg}(v) \geq$ $n / 2$ for all $v \in V(G)$, then $G$ is Hamiltonian.

### 7.3 The Chinese Postman Problem

See section 6.2 of Gross and Yellen [91].

- de Bruijn sequences
- de Bruijn digraphs
- constructing a $(2, n)$-de Bruijn sequence
- postman tours and optimal postman tours
- constructing an optimal postman tour


### 7.4 The Traveling Salesman Problem



- Randall Munroe, xkcd, http://xkcd.com/399/

See section 6.4 of Gross and Yellen [91], and section 35.2 of Cormen et al. [57].

- Gray codes and $n$-dimensional hypercubes
- the Traveling Salesman Problem (TSP)
- nearest neighbor heuristic for TSP
- some other heuristics for solving TSP


## Chapter 8

## Graph coloring



- Spiked Math, http://spikedmath.com/210.html
- See Jensen and Toft [108] for a survey of graph coloring problems.
- See Dyer and Frieze [66] for an algorithm on randomly colouring random graphs.

Graph coloring problems originated with the coloring of maps. For example, regard each state in the United States as a vertex, and connect two vertices by an edge if and only if they share a boundary, i.e., are neighbors. If you can color the United States map using $k$ colors in such a way that no two neighboring states have the same color then we say the map has a $k$-coloring. While a student in London in the mid-1800's, the South African mathematician Francis Guthrie conjectured to his mathematics professor Augustus de Morgan that four colors suffice to color any map. It was an open problem for over 100 years (only proven by Appel and Haken in 1976).

### 8.1 Vertex coloring

When used without any qualification, a coloring of an undirected graph $G=(V, E)$ is intended to mean a vertex coloring, namely a labelling of the graph's vertices with colors such that no two vertices sharing an edge have the same color.

A coloring using at most $k$ colors is called a (proper) $k$-coloring. For example, the 2-colorable graphs are exactly the bipartite graphs.

Remark 8.1. For each $k=3,4, \ldots$, the corresponding decision problem of deciding if a given graph can be $k$-colored is NP-hard (see [106]).

The smallest number of colors needed to color a graph G is called its (vertex) chromatic number, and is here denoted $\chi_{v}(G)$. A subset of $V$ assigned to the same color is called a color-class. A subset $S$ of $V$ is called an independent set if no two vertices in $S$ are adjacent in $G$. By definition, every color-class forms an independent set. The set of $t$-colorings is in one-to-one correspondence with the partitions of $V$ into $t$ independent sets.

Example 8.2. The Dyck graph, shown in Figure 8.1, is named after Walther von Dyck. It is a 3-regular graph with 32 vertices and 48 edges. The graph is Hamiltonian with 120 distinct Hamiltonian cycles. It has chromatic number 2 (in other words, is bipartite), chromatic index 3 , radius 5 , diameter 5 and girth 6 . It is also a 3 -vertex-connected and a 3 -edge-connected graph.

```
sage: G = graphs.LCFGraph(32, [5,-5,13,-13], 8)
sage: G.is_bipartite()
True
sage: G.coloring()
[[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31]
 [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30]]
sage: G.is_vertex_transitive()
True
```



Figure 8.1: A Dyck graph example.
A clique in $G$ is a subset of the vertex set $S \subset V$, such that for every two vertices in $S$, there exists an edge connecting the two. The clique number $\omega(G)$ of a graph $G$ is the number of vertices in a maximal clique (a clique which cannot be extended to a clique of larger size by adding a vertex to it) in $G$. From the definitions, we see that the chromatic number is at least the clique number:

$$
\chi_{v}(G) \geq \omega(G)
$$

It is also not hard to give a non-trivial upper bound.
Theorem 8.3. Every simple graph can be colored with one more color than the maximum vertex degree,

$$
\chi_{v}(G) \leq \Delta(G)+1
$$

We give two proofs.
Proof. (proof 1) We prove this by induction on the number $n$ of vertices.
It is obvious in the case $n=1$.
Assume the result is true for all graphs with $k-1$ vertices and let $G=(V, E)$ be a graph with $k$ vertices. We want to chow that $G$ has a coloring with $1+\Delta(G)$ colors. Let $v \in V$ and consider the graph $G-v$. By hypothesis, this graph has a coloring with $1+\Delta(G-v)$ colors. Since there are at most $\Delta(G)$ neighbors of $v$, no more than $\Delta(G)$ colors could be used for these adjacent vertices. There are two cases.

Case $1+\Delta(G-v)<1+\Delta(G)$. In this case, we create a new color for $v$ to obtain a coloring for $G$ with $2+\Delta(G-v) \leq 1+\Delta(G)$ colors.

Case $1+\Delta(G-v)=1+\Delta(G)$. In this case, the vertices adjacent to $v$ have been colored with at most $\Delta(G)$ colors, leaving us with at least one unused color. We can use that color for $v$.

Proof. (proof 2) The fact that the graph coloring (decision) problem is NP-complete must not prevent one from trying to color it greedily. One such method would be to iteratively pick, in a graph $G$, an uncolored vertex $v$, and to color it with the smallest color available which is not yet used by one of its neighbors. Such a coloring algorithm will never use more than $\Delta(G)+1$ different colors (where $\Delta(G)$ is the maximal degree of $G$ ), as no vertex in the procedure will ever exclude more than $\Delta(G)$ colors.

Such a greedy algorithm can be written in Sage in a few lines:

```
sage: g = graphs.RandomGNP (100,5/100)
sage: C = Set(xrange(100))
sage: color = {}
sage: for u in g:
 interdits = Set([color[v] for v in g.neighbors(u) if color.has_key(v)])
... color[u] = min(C-interdits)
```

Example 8.4. A Frucht graph, shown in Figure 8.2, has 12 nodes and 18 edges. It is 3 -regular, planar and Hamiltonian. It is named after Robert Frucht. The Frucht graph has no nontrivial symmetries. It has chromatic number 3, chromatic index 3, radius 3, diameter 4 and girth 3 . It is 3 -vertex-connected and 3 -edge-connected graph.

```
sage: G = graphs.FruchtGraph()
sage: G.show(dpi=300)
sage: vc = G.coloring()
sage: G.chromatic_number()
3
sage: d = {'blue':vc[0], 'red':vc[1], 'green':vc[2]}
sage: G.show(vertex_colors=d)
sage: G.automorphism_group().order()
1
```

- Brook's Theorem


Figure 8.2: Frucht graph vertex-coloring example.

- heuristics for vertex coloring

Theorem 8.5. (Brooks' inequality) If $G$ is not a complete graph and is not an odd cycle graph then

$$
\chi_{v}(G) \leq \Delta(G) .
$$

### 8.2 Edge coloring

Edge coloring is the direct application of vertex coloring to the line graph of a graph $G$. (Recall, $L(G)$ is the graph whose vertices are the edges of $G$, two vertices being adjacent if and only if their corresponding edges share an endpoint). We write $\chi_{v}(L(G))=\chi_{e}(G)$ for the chromatic index of $G$. (This is also called the edge chromatic number. An edge coloring of a graph is an assignment of colors to edges so that no vertex is incident to two edges of the same color. An edge coloring with $k$ colors is called a $k$-edge-coloring.

Example 8.6. The Heawood graph, shown in Figure 8.4, is named after Percy John Heawood. It is an undirected graph with 14 vertices and 21 edges. It is a 3 -regular, distance-transitive, distance-regular graph. It has chromatic number 2 and chromatic index 3. An edge-coloring is shown in Figure 8.3. A vertex-coloring is shown in Figure 8.4.

Recall that a graph is vertex-transitive if its automorphism group acts transitively upon its vertices. The automorphism group of the Heawood graph is isomorphic to the projective linear group PGL 2(7), a group of order 336. It acts transitively on the vertices and on the edges of the graph. Therefore, this graph is vertex-transitive.

```
sage: G = graphs.HeawoodGraph()
sage: ec = edge_coloring(G)
sage: d = {'blue':ec[0], 'green':ec[1], 'red':ec[2]}
sage: G.show(edge_colors = d)
sage: G.line_graph().chromatic_number() # chromatic index
```



Figure 8.3: The Heawood graph and an edge-coloring example.

```
sage: G = graphs.HeawoodGraph()
sage: vc = G.coloring()
sage: vc
[[1, 3, 5, 7, 9, 11, 13], [0, 2, 4, 6, 8, 10, 12]]
sage: d = {',blue':vc[0], 'red':vc[1]}
sage: G.show(vertex_colors = d)
sage: G.chromatic_number()
2
```

Example 8.7. The Icosahedral graph, shown in Figure 8.5, is a particular projection of the edges of the solid icosahedron onto the plane. It is a 4 -regular graph with 30 edges and 12 vertices. It has chromatic number 4 and chromatic index 5 . An edge-coloring is shown in Figure 8.6. A vertex-coloring is shown in Figure 8.5.

```
sage: G = graphs.IcosahedralGraph()
sage: G.chromatic_number()
4
sage: vc = G.coloring()
sage: d = {'blue':vc[0], 'red':vc[1], 'green':vc[2],'orange':vc[3]}
sage: G.show(vertex_colors = d)
sage: G.is_hamiltonian()
True
sage: G.is_regular()
True
sage: G.is_vertex_transitive()
True
```



Figure 8.4: The Heawood graph and an vertex-coloring example.


Figure 8.5: An icosahedral graph vertex-coloring example.

```
sage: G.is_perfect()
False
sage: G.is_planar()
True
sage: G.is_clique()
False
sage: G.is_bipartite()
False
sage: G.line_graph().chromatic_number()
5
sage: ec = edge_coloring(G)
sage: d = {'blue':ec[0], 'red':ec[1], 'green':ec[2],'orange':ec[3],'yellow':ec[4]}
sage: G.show(edge_colors = d)
```



Figure 8.6: An icosahedral graph edge-coloring example.
As in the case of vertex-coloring, the edge-coloring decision problem is still NPcomplete. However, it is much better understood through Vizing's theorem.

Theorem 8.8. (Vizing's theorem) The edges of a graph $G$ can be properly colored using at least $\Delta(G)$ colors and at most $\Delta(G)+1$,

$$
\Delta(G) \leq \chi_{e}(G) \leq \Delta(G)+1
$$

Notice that the lower bound can be easily proved : if a vertex $v$ has a degree $d(v)$, then at least $d(v)$ colors are required to color $G$ as all the edges incident to $v$ must receive different colors.

Note the upper bound of $\Delta(G)+1$ cannot be deduced from the greedy algorithm given in the previous section, as the maximal degree of the line graph $L(G)$ is not equal to $\Delta(G)$ but to $\max _{u \sim v} d(u)+d(v)-2$, which can reach $2 \Delta(G)-2$ in regular graphs.

Example 8.9. The Pappus graph, shown in Figure 8.7, is named after Pappus of Alexandria. It is 3-regular, symmetric, and distance-regular with 18 vertices and 27 edges. The Pappus graph has girth 6, diameter 4, radius 4, chromatic number 2 (i.e. is bipartite), chromatic index 3 and is both 3-vertex-connected and 3-edge-connected.

```
sage: G = graphs.PappusGraph()
sage: G.coloring()
[[1, 3, 5, 6, 8, 10, 12, 14, 16], [0, 2, 4, 7, 9, 11, 13, 15, 17]]
sage: G.is_regular()
```

```
True
sage: G.is_planar()
False
sage: G.is_vertex_transitive()
True
sage: G.is hamiltonian()
True
sage: G.girth()
6
sage: G.is_bipartite()
True
sage: G.show(dpi=300)
sage: G.line_graph().chromatic_number()
3
sage: ec = edge_coloring(G)
sage: ec
[[(0, 1), (2, 3), (4, 5), (6, 17), (7, 14), (8, 13), (9, 16), (10, 15), (11, 12)],
 [(0, 5), (1, 2), (3, 4), (6, 13), (7, 12), (8, 15), (9, 14), (10, 17), (11, 16)],
 [(0, 6), (1, 7), (2, 8), (3, 9), (4, 10), (5, 11), (12, 15), (13, 16), (14, 17)]]
sage: d = {'blue':ec[0], 'red':ec[1], 'green':ec[2]}
sage: G.plot(edge_colors = d).show()
```



Figure 8.7: A Pappas graph edge-coloring example.

- algorithm for edge coloring by maximum matching
- algorithm for sequential edge coloring


### 8.3 The chromatic polynomial

George David Birkhoff introduced the chromatic polynomial in 1912. The chromatic polynomial is defined as the unique interpolating polynomial of degree $n$ through the points $\left(k, P_{G}(k)\right)$ for $k=0,1, \ldots n$, where $n$ is the number of vertices in $G$. For natural
numbers $t$, the chromatic polynomial is the function that counts the number of $t$-colorings of $G$.

As the name indicates, for a given $G$ the function is indeed a polynomial in $t$.
For a complex number $x$, let $x_{(k)}=\prod_{i=0}^{k-1}(x-i)$.
Lemma 8.10. If $m_{k}(G)$ denotes the number of distinct partitions of $V$ into $k$ different color-classes then

$$
P_{G}(t)=\sum_{k=1}^{n} m_{k}(G) t_{(k)}
$$

Proof. Given a partition of $V$ into $k$ color-classes, we can assign $t$ colors to the colorclasses in $t(t-1) \ldots(t-k+1)=t_{(k)}$ ways. For each $k$ with $1 \leq k \leq n$, there are $m_{k}(G)$ distinct partitions of $V$ into $k$ such color-classes. Therefore, the number of colorings with $t$ colors is $\sum_{k=1}^{n} m_{k}(G) t_{(k)}$, as desired.

Theorem 8.11. A graph $G$ with $n$ vertices is a tree if and only if $P(G, t)=t(t-1)^{n-1}$.
Proof. We prove this by induction on $n$. The statement is clearly true when $n=1$.
Assume the statement holds for any tree of $n-1$ vertices and let $G$ be a tree with $n$ vertices. There is a vertex $v$ of $G$ having degree 1 . The graph $G-v$ is a tree having $n-1$ vertices, so has $t(t-1)^{n-2} t$-colorings. The number of $t$-colorings of $G$ is the number of $t$-colorings of $G-v$ times the number of ways to color $v$. Since we may color $v$ using any color not used for its one neighbor, there are $t-1$ colorings of $v$. Therefore, $G$ has $t(t-1)^{n-1} t$-colorings.

The theorem above gives examples of non-isomorphic graphs which have the same chromatic polynomial.

Two graphs are said to be chromatically equivalent if they have the same chromatic polynomial. For example, two trees having the same number of vertices are chromatically equivalent.

It is also an open problem to find necessary and sufficient conditions for two arbitrary graphs to be chromatically equivalent.

Theorem 8.12. If $G$ has $n$ vertices, $m$ edges, and $k$ components $G_{1}, G_{2}, \ldots, G_{k}$, then

$$
P(G, t)=P\left(G_{1}, t\right) P\left(G_{2}, t\right) \cdots P\left(G_{k}, t\right)
$$

This is proven by induction on $k$ and the proof is left to the interested reader.
Fix a pair of vertices $u, v \in V$. Recall that the (edge contraction) graph $G / u v$ is obtained by merging the two vertices and removing any edges between them. Recall that the (edge deletion) graph $G-u v$ is obtained by merging the the edge $u v$ but not the two vertices $u, v$.

Theorem 8.13. (Fundamental Reduction Theorem) The chromatic polynomial satisfies the recurrence relation

$$
P(G, t)=P(G-u v, t)-P(G / u v, t)
$$

For example, if $G$ is a tree then $G / u v$ is another tree but $G-u v$ is a non-connected graph.

A root (or zero) of a chromatic polynomial, called a chromatic root is a value $x$ where $P_{G}(x)=0$.

Theorem 8.14. $\chi_{v}(C)$ is the smallest positive integer that is not a chromatic root:

$$
\chi_{v}(G)=\min \{k \mid P(G, k)>0\} .
$$

Birkhoff noted that one could establish the four color theorem by showing $P(G, 4)>0$ for all planar graphs $G$. This lead to the following statement, which is still an open problem today.

Conjecture 8.15. (Birkhoff-Lewis Conjecture) As a function of a real variable $t, P(g, t)$ is zero-free in the interval $t \geq 4$.

### 8.4 Applications of graph coloring

- assignment problems
- scheduling problems
- matching problems
- map coloring and the Four Color Problem


### 8.4.1 Application to scheduling

Assume that we have a finite set of different people (for example, students) and a finite set of distinct one-hour meetings they could attend (for example, classes). Construct the graph $G$ as follows. The vertices $V$ of $G$ are given by the set of meetings. We connect two meetings with an edge if some person needs to attend both meetings.

Example 8.16. Suppose the $\times$ in the table below indicated that the student in that column is attending the class in that row.

|  | Bob | Carol | Ted | Zoe |
| :---: | :---: | :---: | :---: | :---: |
| Calculus |  | $\times$ | $\times$ |  |
| Chemistry | $\times$ | $\times$ | $\times$ | $\times$ |
| English | $\times$ | $\times$ | $\times$ | $\times$ |
| History | $\times$ |  |  | $\times$ |
| Physics |  | $\times$ | $\times$ |  |

Let $0=$ Calculus, $1=$ Chemistry, $2=$ English, $3=$ History, and $4=$ Physics. Then the corresponding graph can be constructed and drawn in Sage using the following commands (see Figure 8.8).

```
sage: G = Graph({0:[1,2,4], 1:[2,3,4], 2:[3,4]})
sage: G.show()
sage: G.coloring()
[[2], [4], [0, 3], [1]]
```



Figure 8.8: An application of graph coloring to scheduling.

Theorem 8.17. The minimum number of hours required for the schedule of meetings in our scheduling problem is $\chi_{v}(G)$.

Proof. Suppose we can schedule the meetings in $k$ hours. In other words, each person attends the meetings they need to and they can do so in at most $k$ kours. Order the meeting times $1,2, \ldots, k$. Each meeting must occur in one and only one of these time slots (although a given time slot may have several meetings). We color the graph $G$ as follows: if a meeting occurs in hour $i$ then use color $i$ for all the meetings that meet at that hour. Consider two adjacent vertices. These vertices correspond to two meetings which share one or more people. Since a person cannot be in two places at the same time, these two meetings by have different meeting times, hence the vertices must have different colors. This implies $\chi_{v}(G) \leq k$.

Conversely, suppose that $G$ has a $k$-coloring. The meetings with color $i$ (where $1 \leq i \leq k$ ) can be held at the same time since any two such meetings correspond to non-adjacnt vertices, hence have no person in common. Therefore, the minimum number of hours requires for the meeting schedule is less than or equal to $\chi_{v}(G)$.
8.1. What is the number of hours required for a schedule in Example 8.16?

### 8.2. Draw the Dyck graph in Example 8.2 as a bipartite graph.

8.3. Draw the Pappas graph in Example 8.9 as a bipartite graph.

### 8.4.2 Map coloring

Theorem 8.18. (Four Color Theorem) Every planar graph can be 4-colored.

## Chapter 9

## Network flows

See Jungnickel [114], and chapter 12 of Gross and Yellen [91].

### 9.1 Flows and cuts

- single source-single sink networks
- feasible networks
- maximum flow and minimum cut

Let $G=(V, E, i, h)$ be an unweighted multidigraph, as in Definition 1.6.
If $F$ is a field such as $\mathbb{R}$ or $G F(q)$ or a ring such as $\mathbb{Z}$, let

$$
C^{0}(G, F)=\{f: V \rightarrow F\}, \quad C^{1}(G, F)=\{f: E \rightarrow F\},
$$

be the sets of $F$-valued functions defined on $V$ and $E$, respectively. If $F$ is a field then these are $F$-inner product spaces with inner product

$$
\begin{equation*}
(f, g)=\sum_{x \in X} f(x) g(x), \quad(X=V, \quad \text { resp. } \quad X=E) \tag{9.1}
\end{equation*}
$$

and

$$
\operatorname{dim} C^{0}(G, F)=|V|, \quad \operatorname{dim} C^{1}(G, F)=|E| .
$$

If you index the sets $V$ and $E$ in some arbitrary but fixed way and define, for $1 \leq i \leq|V|$ and $1 \leq j \leq|E|$,

$$
f_{i}(v)=\left\{\begin{array}{ll}
1, & v=v_{i}, \\
0, & \text { otherwise },
\end{array} \quad g_{j}(e)= \begin{cases}1, & e=e_{j}, \\
0, & \text { otherwise }\end{cases}\right.
$$

then $\mathcal{F}=\left\{f_{i}\right\} \subset C^{0}(G, F)$ is a basis of $C^{0}(G, F)$ and $\mathcal{G}=\left\{g_{j}\right\} \subset C^{1}(G, F)$ is a basis of $C^{1}(G, F)$.

We order the edges

$$
E=\left\{e_{1}, e_{2}, \ldots, e_{|E|}\right\}
$$

in some arbitrary but fixed way. A vector representation (or characteristic vector or incidence vector) of a subgraph $G^{\prime}=\left(V, E^{\prime}\right)$ of $G=(V, E), E^{\prime} \subset E$, is a binary $|E|$-tuple

$$
\operatorname{vec}\left(G^{\prime}\right)=\left(a_{1}, a_{2}, \ldots, a_{|E|}\right) \in G F(2)^{|E|}
$$

where

$$
a_{i}=a_{i}\left(E^{\prime}\right)= \begin{cases}1, & \text { if } e_{i} \in E^{\prime} \\ 0, & \text { if } e_{i} \notin E^{\prime}\end{cases}
$$

In particular, this defines a mapping

$$
\text { vec : }\{\text { subgraphs of } G=(V, E)\} \rightarrow G F(2)^{|E|} \text {. }
$$

For any non-trivial partition

$$
V=V_{1} \cup V_{2}, \quad V_{i} \neq \emptyset, \quad V_{1} \cap V_{2}=\emptyset,
$$

the set of all edges $e=\left(v_{1}, v_{2}\right) \in E$, with $v_{i} \in V_{i}(i=1,2)$, is called a cocycle ${ }^{1}$ of $G$. A cocycle with a minimal set of edges is a bond (or cut set) of $G$. An Euler subgraph is either a cycle or a union of edge-disjoint cycles.

The set of cycles of $G$ is denoted $Z(G)$ and the set of cocycles is denoted $Z^{*}(G)$.
The $F$-vector space spanned by the vector representations of all the cycles is called the cycle space of $G$, denoted $\mathcal{Z}(G)=\mathcal{Z}(G, F)$. This is the kernel of the incidence matrix of $G$ ( $\S 14.2$ in Godsil and Royle [87]). Define

$$
\begin{gathered}
D: C^{1}(G, F) \rightarrow C^{0}(G, F), \\
(D f)(v)=\sum_{h(e)=v} f(e)-\sum_{t(e)=v} f(e) .
\end{gathered}
$$

With respect to these bases $\mathcal{F}$ and $\mathcal{G}$, the matrix representing the linear transformation $D: C^{1}(G, F) \rightarrow C^{0}(G, F)$ is the incidence matrix. An element of the kernel of $D$ is sometimes called a flow (see Biggs [25]) or circulation (see below). Therefore, this is sometimes also referred to as the space of flows or the circulation space.

It may be regarded as a subspace of $C^{1}(G, F)$ of dimension $n(G)$. When $F$ is a finite field, sometimes ${ }^{2}$ the cycle space is called the cycle code of $G$.

Let $F$ be a field such as $\mathbb{R}$ or $G F(q)$, for some prime power $q$. Let $G$ be a digraph. Some define a circulation (or flow) on $G=(V, E)$ to be a function

$$
f: E \rightarrow F,
$$

satisfying ${ }^{3}$

- $\sum_{u \in V,(u, v) \in E} f(u, v)=\sum_{w \in V,(v, w) \in E} f(v, w)$.
(Note: this is simply the condition that $f$ belongs to the kernel of $D$.)
Suppose $G$ has a subgraph $H$ and $f$ is a circulation of $G$ such that $f$ is a constant function on $H$ and 0 elsewhere. We call such a circulation a characteristic function of $H$. For example, if $G$ has a cycle $C$ and if $f$ is the characteristic function on $C$, then $f$ is a circulation.

The circulation space $\mathcal{C}$ is the $F$-vector space of circulation functions. The cycle space "clearly" may be identified with a subspace of the circulation space, since the $F$-vector

[^11]space spanned by the characteristic functions of cycles may be identified with the cycle space of $G$. In fact, these spaces are isomorphic. Under the inner product (9.1), i.e.,
\[

$$
\begin{equation*}
(f, g)=\sum_{e \in E} f(e) g(e), \tag{9.2}
\end{equation*}
$$

\]

this vector space is an inner product space.
Example 9.1. This example is not needed but is presented for its independent interest. Assume $G=(V, E)$ is a strongly connected directed graph. Define the transition probability matrix $P$ for a digraph $G$ by

$$
P(x, y)= \begin{cases}d_{x}, & \text { if }(x, y) \in E \\ 0, & \text { otherwise }\end{cases}
$$

where $d_{x}$ denotes the out-degree. The Perron-Frobenius Theorem states that there exists a unique left eigenvector $\phi$ such that (when regarded as a function $\phi: V \rightarrow \mathbb{R}) \phi(v)>0$, for all $v \in V$ and $\phi P=\rho \phi$, where $\rho$ is the spectral radius of $G$. We scale $\phi$ so that $\sum_{v \in V} \phi(v)=1$. (This vector is sometimes called the Perron vector.) Let $F_{\phi}(u, v)=$ $\phi(v) P(u, v)$. Fact: $F_{\phi}$ is a circulation. For a proof, see F. Chung [54].

If the edges of $E$ are indexed in some arbitrary but fixed way then a circulation function restricted to a subgraph $H$ of $G$ may be identified with a vector representation of $H$, as described above. Thefore, the circulation functions gives a coordinate-free version of the cycle space.

The $F$-vector space spanned by the vector representations of all the segs is called the cocycle space (or the cut space) of $G$, denoted $\mathcal{Z}^{*}(G)=\mathcal{Z}^{*}(G, F)$. This is the column space of the transpose of the incidence matrix of $G$ (§14.1 in Godsil and Royle [87]). It may be regarded as a subspace of $C^{1}(G, F)$ of dimension the rank of $G, r(G)$. When $F$ is a finite field, sometimes the cocycle space is called the cocycle code of $G$.

Lemma 9.2. Under the inner product (9.1) on $C^{1}(G, F)$, the cycle space is orthogonal to the cocycle space.

Solution. One proof follows from Theorem 8.3.1 in Godsil and Royle [87].
Here is another proof. By Theorem 2.3 in Bondy and Murty [33, p.27], an edge of $G$ is an edge cut if and only if it is contained in no cycle. Therefore, the vector representation of any cocycle is supported on a set of indices which is disjoint from the support of the vector representation of any cycle. Therefore, there is a basis of the cycle space which is orthogonal to a basis of the cocycle space.

Proposition 9.3. Let $F=G F(2)$. The cycle code of a graph $G=(V, E)$ is a linear binary block code of length $|E|$, dimension equal to the nullity of the graph, $n(G)$, and minimum distance equal to the girth of $G$. If $C \subset G F(2)^{|E|}$ is the cycle code associated to $G$ and $C^{*}$ is the cocycle code associated to $G$ then $C^{*}$ is the dual code of $C$. In particular, the cocycle code of $G$ is a linear binary block code of length $|E|$, and dimension $r(G)=|E|-n(G)$.

This follows from Hakimi-Bredeson [97] (see also Jungnickel-Vanstone [115]) in the binary case ${ }^{4}$.

[^12]Solution. Let $d$ denote the minimum distance of the code $C$. Let $\gamma$ denote the girth of $G$, i.e., the smallest cardinality of a cycle in $G$. If $K$ is a cycle in $G$ then the vector $\operatorname{vec}(K) \in G F(2)^{|E|}$ is an element of the cycle code $C \subset G F(2)^{|E|}$. This implies $d \leq \gamma$.

In the other direction, suppose $K_{1}$ and $K_{2}$ are cycles in $G$ with associated support vectors $v_{1}=\operatorname{vec}\left(K_{1}\right), v_{2}=\operatorname{vec}\left(K_{2}\right)$. Assume that at least one of these cycles is a cycle of minimum length, say $K_{1}$, so the weight of its corresponding support vector is equal to the girth $\gamma$. The only way that $\operatorname{wt}\left(v_{1}+v_{2}\right)<\min \left\{\operatorname{wt}\left(v_{1}\right), \operatorname{wt}\left(v_{2}\right)\right\}$ can occur is if $K_{1}$ and $K_{2}$ have some edges in common. In this case, the vector $v_{1}+v_{2}$ represents a subgraph which is either a cycle or it is a union of disjoint cycles. In either case, by minimality of $K_{1}$, these new cycles must be at least as long. Therefore, $d \geq \gamma$, as desired.

Consider a spanning tree $T$ of a graph $G$ and its complementary subgraph $\bar{T}$. For each edge $e$ of $\bar{T}$ the graph $T \cup e$ contains a unique cycle. The cycles which arise in this way are called the fundamental cycles of $G$, denoted $\operatorname{cyc}(T, e)$.

Example 9.4. Consider the graph below, with edges labeled as indicated, together with a spanning tree, depicted to its right, in Figure 9.4.


Figure 9.1: A graph and a spanning tree for it.

You can see from Figure 9.4 that:

- by adding edge 2 to the tree, you get a cycle $0,1,2$ with vector representation

$$
g_{1}=(1,1,1,0,0,0,0,0,0,0,0),
$$

- by adding edge 6 to the tree, you get a cycle $4,5,6$ with vector representation

$$
g_{2}=(0,0,0,0,1,1,1,0,0,0,0),
$$

- by adding edge 10 to the tree, you get a cycle $8,9,10$ with vector representation

$$
g_{3}=(0,0,0,0,0,0,0,0,1,1,1)
$$

The vectors $\left\{g_{1}, g_{2}, g_{3}\right\}$ form a basis of the cycle space of $G$ over $G F(2)$.
The cocycle space of a graph $G$ (also known as the bond space of $G$ or the cut-set space of $G$ ) is the $F$-vector space spanned by the characteristic functions of bonds.

Example 9.5. Consider the graph below, with edges labeled as indicated, together with an example of a bond, depicted to its right, in Figure 9.5.

You can see from Figure 9.5 that:


Figure 9.2: A graph and a bond of it.

- by removing edge 3 from the graph, you get a bond with vector representation

$$
b_{1}=(0,0,0,1,0,0,0,0,0,0,0),
$$

- by removing edge 7 from the graph, you get a bond with vector representation

$$
b_{2}=(0,0,0,0,0,0,0,1,0,0,0),
$$

- by removing edges 0,1 from the graph, you get a bond with vector representation

$$
b_{3}=(1,1,0,0,0,0,0,0,0,0,0),
$$

- by removing edges 1,2 from the graph, you get a bond with vector representation

$$
b_{4}=(0,1,1,0,0,0,0,0,0,0,0),
$$

- by removing edges 4,5 from the graph, you get a bond with vector representation

$$
b_{5}=(0,0,0,0,1,1,0,0,0,0,0)
$$

- by removing edges 4,6 from the graph, you get a bond with vector representation

$$
b_{6}=(0,0,0,0,1,0,1,0,0,0,0) \text {, }
$$

- by removing edges 8,9 from the graph, you get a bond with vector representation

$$
b_{7}=(0,0,0,0,0,0,0,0,1,1,0),
$$

- by removing edges 9,10 from the graph, you get a bond with vector representation

$$
b_{8}=(0,0,0,0,0,0,0,0,0,1,1) .
$$

The vectors $\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}\right\}$ form a basis of the cocycle space of $G$ over $G F(2)$.
Note that these vectors are orthogonal to the basis vectors of the cycle space in Example 9.4. Note also that the xor sum of two cuts is not a cut.For example, if you xor the bond 4,5 with the bond 4,6 then you get the subgraph foormed by the edges 5,6 and that is not a disconnecting cut of $G$.

### 9.1.1 Electrical networks

We present, as an application of circuit matrices and incidence matrices, and abstract definition of an electrical network.

We define an electrical network abstractly as follows. Let $G=(V, E)$ be a simple connected directed graph having $n$ vertices and $m$ edges. We have a current function

$$
i: E \rightarrow \mathbb{R}
$$

and a voltage function

$$
v: E \rightarrow \mathbb{R}
$$

subject to three conditions. If we index the edges, say as $E=\left\{e_{1}, \ldots, e_{m}\right\}$, then these functions may (and sometimes will) be regarded as column vectors in $\mathbb{R}^{m}$.

The conditions satisfied by the current function are the following.

- Kirchhoff's current law,

$$
\begin{equation*}
A i=\overrightarrow{0}, \tag{9.3}
\end{equation*}
$$

where $A$ is the incidence matrix and $i$ is regarded as a column vector. This equation comes from the fact that the algebraic sum of the currents going into a node is zero.

- Kirchhoff's voltage law,

$$
\begin{equation*}
C v=\overrightarrow{0} \tag{9.4}
\end{equation*}
$$

where $C$ is the circuit matrix and $v$ is regarded as a column vector. This equation comes from the fact that the algebraic sum of the voltage drops around a closed loop is zero.

- In a network with resistors but no inductors or capacitors, there is a relationship between $i$ and $v$ given by

$$
R i=v+b
$$

where $b$ is a vector of external "battery" sources and $R$ is a "resistor matrix."

### 9.2 Chip firing games

Chip firing games on graphs (which are just pure fun) relate to "abelian sandpile models" from physics to "rotor-routing models" from theoretical computer scientists (designing efficient computer multiprocessor circuits) to "self-organized criticality" (a subdiscipline of dynamical systems) to "algebraic potential theory" on a graph [25] to cryptography (via the Biggs cryptosystem). Moreover, it relates the concepts of the Laplacian of the graph to the tree number to the circulation space of the graph to the incidence matrix, as well as many other ideas. Some good references are [65], [159], [160], [100] and [26].

## Basic set-up

A chip firing game always starts with a directed multigraph $G$ having no loops. A configuration is a vertex-weighting, i.e., a function $s: V \rightarrow \mathbb{R}$. The players are represented by the vertices of $G$ and the vertex-weights represent the number of chips each player (represented by that vertex) has. The initial vertex-weighting is called the starting configuration of $G$. Let vertex $v$ have outgoing degree $d_{+}(v)$. If the weight of vertex $v$ is $\geq d_{+}(v)$ (so that player can afford to give away all their chips) then that vertex is called active.

Here is some SAGE/Python code for determining the active vertices.

```
def active_vertices(G, s):
 Returns the list of active vertices.
 INPUT:
 G - a graph
 s - a configuration (implemented as a list
 or a dictionary keyed on
 the vertices of the graph)
 EXAMPLES:
 sage: A = matrix([[0,1,1,0,0],[1,0,1,0,0],[1,1,0,1,0],[0,0,0,0,1],[0,0,0,0,0]])
 sage: G = Graph(A, format = "adjacency_matrix", weighted = True)
 sage: s = {0: 3, 1: 1, 2: 0, 3: 1, 4: 1}
 sage: active_vertices(G, s)
 [0, 4]
 """
 V = G.vertices()
 degs = [G.degree(v) for v in V]
 active = [v for v in V if degs[V.index(v)]<=s[v]]
 return active
```

If $v$ is active then when you fire $v$ you must also change the configuration. The new configuration $s^{\prime}$ will satisfy $s^{\prime}(v)=s(v)-d_{+}(v)$ and $s^{\prime}\left(v^{\prime}\right)=s\left(v^{\prime}\right)+1$ for each neighbor $v^{\prime}$ of $v$. In other words, $v$ will give away one chip to each of its $d_{+}(v)$ neighbors. If $x: V \rightarrow\{0,1\}^{|V|} \subset \mathbb{R}^{|V|}$ is the representation vector ("characteristic function") of a vertex then this change can be expressed more compactly as

$$
\begin{equation*}
s^{\prime}=s-L \circ x, \tag{9.5}
\end{equation*}
$$

where $L$ is the vertex Laplacian. It turns out that the column sums of $L$ are all 0 , so this operation does not change the total number of chips. We use the notation

$$
s \xrightarrow{v} s^{\prime},
$$

to indicate that the configuration $s^{\prime}$ is the result of firing vertex $v$ in configuration $s$.
Example 9.6. Consider the graph
This graph has incidence matrix

$$
D=\left(\begin{array}{ccccc}
-1 & -1 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 \\
1 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$



Figure 9.3: A graph with 5 vertices.
and Laplacian

$$
L=D \cdot{ }^{t} D=\left(\begin{array}{ccccc}
2 & -1 & 0-1 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
-1 & -1 & 3 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right)
$$

Suppose the initial configuration is $s=(3,1,0,1,1)$, i.e.,

- player 0 has 3 dollars,
- player 1 has 1 dollar,
- player 2 has nothing,
- player 3 has 1 dollar,
- player 4 has 1 dollar.

Notice player 0 is active. If we fire 0 then we get the new configuration $s^{\prime}=(1,2,1,1,1)$. Indeed, if we compute $s^{\prime}=s-L x(0)$, we get:

$$
s^{\prime}=\left(\begin{array}{l}
3 \\
1 \\
0 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{ccccc}
2 & -1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
-1 & -1 & 3 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
3 \\
1 \\
0 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{c}
2 \\
-1 \\
-1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
1 \\
1 \\
1
\end{array}\right) .
$$

This can be written more concisely as

$$
(3,1,0,1,1) \xrightarrow{0}(1,2,1,1,1)
$$

We have the cycle

$$
\begin{aligned}
(1,2,1,1,1) & \xrightarrow{1}(2,0,2,1,1) \xrightarrow{0}(0,1,3,1,1) \xrightarrow{2}(1,2,0,2,1) \\
& \xrightarrow{3}(1,2,1,0,2) \xrightarrow{4}(1,2,1,1,1) .
\end{aligned}
$$

## Chip-firing game variants

For simplicity, let $G=(V, E)$ be an undirected graph with an indexed set of vertices $V=\left\{v_{1}, \ldots, v_{m}\right\}$ and an indexed set of vertices $E=\left\{e_{1}, \ldots, e_{n}\right\}$.

One variant (the "sandpile model") has a special vertex, called "the sink," which has special firing properties. In the sandpile variant, the sink is never fired. Another variant
(the "dollar game") has a special vertex, called "the source," which has special firing properties. In the dollar game variant, the source is only fired when not other vertex is active. We shall consider the dollar game variant here, following Biggs [27].

We select a distinguished vertex $q \in V$, called the "source ${ }^{5}$," which has a special property to be described below. For the dollar game, a configuration is a function $s: V \rightarrow \mathbb{R}$ for which

$$
\sum_{v \in V} s(v)=0,
$$

and $s(v) \geq 0$ for all $v \in V$ with $v \neq q$. A vertex $v \neq q$ can be fired if and only if $\operatorname{deg}(v) \leq s(v)$ (i.e., it "has enough chips"). The equation (9.5) describes the new configuration after firing a vertex.

Here is some SAGE/Python code for determining the configuration after firing an active vertex.

```
def fire(G, s, v0):
 """
 Returns the configuration after firing the active vertex v.
 INPUT:
 G - a graph
 s - a configuration (implemented as a list
 or a dictionary keyed on
 the vertices of the graph)
 v - a vertex of the graph
 EXAMPLES:
 sage: A = matrix([[0,1,1,0,0],[1,0,1,0,0],[1,1,0,1,0],[0,0,0,0,1],[0,0,0,0,0]])
 sage: G = Graph(A, format = "adjacency_matrix", weighted = True)
 sage: s = {0: 3, 1: 1, 2: 0, 3: 1, 4: 1}
 sage: fire(G, s, 0)
 {0: 1, 1: 2, 2: 1, 3: 1, 4: 1}
 """
 V = G.vertices()
 j = V.index(v0)
 s1 = copy(s)
 if not(v0 in V):
 raise ValueError, "the last argument must be a vertex of the graph."
 if not(v0 in active_vertices(G, s)):
 raise ValueError, "the last argument must be an active vertex of the graph."
 degs = [G.degree(w) for w in V]
 for w in V:
 if w == v0:
 s1[v0] = s[v0] - degs[j]
 if w in G.neighbors(v0):
 s1[w] = s[w]+1
 return s1
```

We say $s: V \rightarrow \mathbb{R}$ is a stable configuration if $0 \leq s(v)<\operatorname{deg}(v)$, for all $v \neq q$. The source vertex $q$ can only be fired when no other vertex can be fired, that is only in the case when a stable configuration has been reached.

Here is some SAGE/Python code for determining the stable vertices.

```
def stable_vertices(G, s, source = None):
 Returns the list of stable vertices.
```

[^13]```
INPUT:
    G - a graph
s - a configuration (implemented as a list
                                    or a dictionary keyed on
                                    the vertices of the graph)
EXAMPLES:
    sage: A = matrix([[0,1,1,0,0],[1,0,1,0,0],[1,1,0,1,0],[0,0,0,0,1],[0,0,0,0,0]])
    sage: G = Graph(A, format = "adjacency_matrix", weighted = True)
    sage: s = {0: 3, 1: 1, 2: 0, 3: 1, 4: 1}
    sage: stable_vertices(G, s)
"""
V = G.vertices()
degs = [G.degree(v) for v in V]
if source==None:
    stable = [v for v in v if degs[V.index(v)]>s[v]]
else:
    stable = [v for v in V if degs[V.index(v)]>s[v] and v!=source]
return stable
```

Suppose we are in a configuration s_{1}. We say a sequence vertices $S=\left(w_{1}, w_{2}, \ldots, w_{k}\right)$, $w_{i} \in V$ not necessarily distinct, is legal if,

- w_{1} is active in configuration s_{1},
- for each i with $1 \leq i<k, s_{i+1}$ is obtained from s_{i} by firing w_{i} in configuration s_{i},
- for each i with $1 \leq i<k, w_{i+1}$ is active in the configuration s_{i+1} defined in the previous step,
- the source vertex q occurs in S only if it immediately follows a stable configuration.

We call s_{1} or w_{1} the start of S. A configuration s is recurrent if there is a legal sequence starting at s which leads back to s. A configuration is critical if it recurrent and stable.

Here is some SAGE/Python code for determining a stable vertex resulting from a legal sequence of firings of a given configuration s. I think it returns the unique critical configuration associated to s but have not proven this.

```
def stabilize(G, s, source, legal_sequence = False):
    """
    Returns the stable configuration of the graph originating from
    the given configuration s. If legal_sequence = True then the
    sequence of firings is also returned. By van den Heuvel [1],
    the number of firings needed to compute a critical configuration
    is < 3(S+2|E|)|V|^2, where S is the sum of the positive
    weights in the configuration.
    EXAMPLES:
        sage: A = matrix([[0,1,1,0,0],[1,0,1,0,0],[1,1,0,1,0],[0,0,1,0,1],[0,0,0,1,0]])
        sage: G = Graph(A, format="weighted_adjacency_matrix")
        sage: s = {0: 3, 1: 1, 2: 0, 3: 1, 4: -5}
        sage: stabilize(G, s, 4)
        {0: 0, 1: 1, 2: 2, 3: 1, 4: -4}
    REFERENCES:
        [1] J. van den Heuvel, "Algorithmic aspects of a chip-firing
            game," preprint.
    """
    V = G.vertices()
    E = G.edges()
    fire_number = 3*len(V)^ 2*(sum([s[v] for v in V if s[v]>0])+2*len(E))+len(V)
```

```
if legal_sequence:
    seq = []
stab = []
ac = active_vertices(G,s)
for i in range(fire_number):
    if len(ac)>0:
        s = fire(G,s,ac[0])
        if legal_sequence:
                seq.append(ac[0])
    else:
        stab.append(s)
        break
    ac = active_vertices(G,s)
if len(stab)==0:
    raise ValueError, "No stable configuration found."
if legal_sequence:
    return stab[0], seq
else:
    return stab[0]
```

The incidence matrix D and its transpose ${ }^{t} D$ can be regarded as homomorphisms

$$
D: C^{1}(G, \mathbb{Z}) \rightarrow C^{0}(G, \mathbb{Z}) \quad \text { and } \quad{ }^{t} D: C^{0}(G, \mathbb{Z}) \rightarrow C^{1}(G, \mathbb{Z})
$$

We can also regard the Laplacian $L=D \cdot{ }^{t} D$ as a homomorphism $C^{0}(G, \mathbb{Z}) \rightarrow C^{0}(G, \mathbb{Z})$. Denote by $\sigma: C^{0}(G, \mathbb{Z}) \rightarrow \mathbb{Z}$ the homomorphism defined by

$$
\sigma(f)=\sum_{v \in V} f(v) .
$$

Denote by $K(G)$ the set of critical configurations on a graph G.
Lemma 9.7. (Biggs [2ヶ]) The set $K(G)$ of critical configurations on a connected graph G is in bijective correspondence with the abelian $\operatorname{group} \operatorname{Ker}(\sigma) / \operatorname{Im}(Q)$.

If you accept this lemma (which we do not prove here) then you must believe that there is a bijection $f: K(G) \rightarrow \operatorname{Ker}(\sigma) / \operatorname{Im}(Q)$. Now, a group operation • on $K(G)$ an be defined by

$$
a \bullet b=f^{-1}(f(a)+f(b)),
$$

for all $a, b \in \operatorname{Ker}(\sigma) / \operatorname{Im}(Q)$.
Example 9.8. Consider again the graph

Figure 9.4: A graph with 5 vertices.

This graph has incidence matrix

$$
D=\left(\begin{array}{ccccc}
-1 & -1 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 \\
1 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and Laplacian

$$
L=D \cdot{ }^{t} D=\left(\begin{array}{ccccc}
2 & -1 & 0-1 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
-1 & -1 & 3 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right)
$$

Suppose the initial configuration is $s=(3,1,0,1,-5)$, i.e.,

- player 0 has 3 dollars,
- player 1 has 1 dollar,
- player 2 has nothing,
- player 3 has 1 dollar,
- player 4 is the source vertex q.

The legal sequence $(0,1,0,2,1,0,3,2,1,0)$ leads to the stable configuration $(0,1,2,1,-4)$. If q is fired then the configuration $(0,1,2,2,-5)$ is achieved. This is recurrent since it is contained in the cyclic legal sequence

$$
\begin{gathered}
\quad(0,1,2,2,-5) \xrightarrow{3}(0,1,3,0,-4) \xrightarrow{2}(1,2,0,1,-4) \\
\xrightarrow{1}(2,0,1,1,-4) \xrightarrow{0}(0,1,2,1,-4) \xrightarrow{q}(0,1,2,2,-5) .
\end{gathered}
$$

In particular, the configuration $(0,1,2,1,-4)$ is also recurrent. Since it is both stable and recurrent, it is critical.

The following result is of basic importance but I'm not sure who proved it first. It is quoted in many of the papers on this topic in one form or another.

Theorem 9.9. (Biggs [26], Theorem 3.8) If s is an configuration and G is connected then there is a unique critical configuration s^{\prime} which can be obtained by a sequence of legal firings for starting at s.

The map defined by the above theorem is denoted

$$
\gamma: C^{0}(G, \mathbb{R}) \rightarrow K(G)
$$

Another way to define multiplication \bullet on on $K(G)$ is

$$
\gamma\left(s_{1}\right) \bullet \gamma\left(s_{2}\right)=\gamma\left(s_{1}+s_{2}\right),
$$

where $s_{1}+s_{2}$ is computed using addition on $C^{0}(G, \mathbb{R})$. According to Perkinson [159], Theorem 2.16, the critical group satisfies the following isomorphism:

$$
K(G) \cong \mathbb{Z}^{m-1} / \mathcal{L},
$$

where \mathcal{L} is the integer lattice generated by the columns of the reduced Laplacian matrix ${ }^{6}$.

If s is a configuration then we define

$$
\mathrm{wt}(s)=\sum_{v \in V, v \neq q} s(q)
$$

to be the weight of the configuration. The level of the configuration is defined by

$$
\operatorname{level}(s)=\mathrm{wt}(s)-|E|+\operatorname{deg}(q)
$$

Lemma 9.10. (Merino [144]) If s is a critical configuration then

$$
0 \leq \operatorname{level}(s) \leq|E|-|V|+1
$$

This is proven in Theorem 3.4.5 in [144]. What is also proven in [144] is a statement whcih computes the number of critical configurations of a given level in terms of the Tutte polynomial of the associated graph.

9.3 Ford-Fulkerson theorem

The Ford-Fulkerson Theorem, or "Max-flow/Min-cut Theorem," was proven by P. Elias, A. Feinstein, and C.E. Shannon in 1956, and, independently, by L.R. Ford, Jr. and D.R. Fulkerson in the same year. So it should be called the "Elias-Feinstein-Ford-FulkersonShannon Theorem," to be precise about the authorship.

To explain the meaning of this theorem, we need to introduce some notation and terminology.

Consider an edge-weighted simple digraph $G=(V, E, i, h)$ without negative weight cycles. Here $E \subset V^{(2)}, i$ is an incidence function as in (??), which we regard as the identity function, and h is an orientation function as in (??). Let G be a network, with two distinguished vertices, the "source" and the "sink." Let s and t denote the source and the sink of G, respectively. The capacity (or edge capacity)) is a mapping $c: E \rightarrow \mathbf{R}$, denoted by $c_{u v}$ or $c(u, v)$, for $(u, v) \in E$ and $h(e)=u$. If $(u, v) \in E$ and $h(e)=v$ then we set, by convention, $c(v, u)=-c(u, v)$. Thinking of a graph as a network of pipes (representing the edges) transporting water with various junctions (representing vertices), the capacity function represents the maximum amount of "flow" that can pass through an edge.

A flow is a mapping $f: E \rightarrow \mathbf{R}$, denoted by $f_{u v}$ or $f(u, v)$, subject to the following two constraints:

- $f(u, v) \leq c(u, v)$, for each $(u, v) \in V$ (the "capacity constraint"),
- $\sum_{u \in V,(u, v) \in E} f(u, v)=\sum_{u \in V,(v, u) \in E} f(v, u)$, for each $v \in V$ (conservation of flows).

[^14]An edge $(u, v) \in E$ is f-saturated if $f(u, v)=c(u, v)$. An edge $(u, v) \in E$ is f-zero if $f(u, v)=0$. A path with available capacity is called an "augmenting path." More precisely, a directed path form s to t is f-augmenting, or f-unsaturated, if no forward edge is f-saturated and no backward edge is f-zero.

The value of the flow is defined by

$$
|f|=\sum_{v \in V} f(s, v)-\sum_{v \in V} f(v, s),
$$

where s is the source. It represents the amount of flow passing from the source to the sink. The maximum flow problem is to maximize $|f|$, that is, to route as much flow as possible from s to t.

Example 9.11. Consider the digraph having adjacency matrix

$$
\left(\begin{array}{cccccc}
0 & 1 & 1 & 0 & 0 & 0 \\
-1 & 0 & -1 & 1 & 0 & 1 \\
-1 & 1 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 & 0 & 1 \\
0 & -1 & 0 & -1 & -1 & 0
\end{array}\right)
$$

depicted in Figure 9.5.

Figure 9.5: A digraph with 6 vertices.
Suppose that each edge has capacity 1. A maximum flow f is obtained by taking a flow value of 1 along each edge of the path

$$
p_{1}:(0,1),(1,5),
$$

and a flow value of 1 along each edge of the path

$$
p_{2}:(0,2),(2,4),(4,5)
$$

The maximum value of the flow in this case is $|f|=2$.
This graph can be created in Sage using the commands

```
sage: B = matrix ([ [0,1,1,0,0,0], [0,0,0,1,0,1],[0,1,0,0,1,0],[0,0,0,0,0,1],[0,0,0,0,0,1],[0,0
sage: H = DiGraph(B, format = "adjacency_matrix", weighted=True)
```

Type H.show (edge_labels=True) if you want to see the graph with the capacities labeling the edges.

Given a capacitated digraph with capacity c and flow f, we define the residual digraph $G_{f}=(V, E)$ to be the digraph with capacity $c_{f}(u, v)=c(u, v)-f(u, v)$ and no flow. In other words, G_{f} is the same graph but it has a different capacity c_{f} and flow 0 . This is also called a residual network.

Define an $s-t$ cut in our capacitated digraph G to be a partition $C=(S, T)$ of V such that $s \in S$ and $t \in T$. Recall the cut-set of C is the set

$$
\{(u, v) \in E \mid u \in S, v \in T\}
$$

Lemma 9.12. Let $G=(V, E)$ be a capacitated digraph with capacity $c: E \rightarrow \mathbf{R}$, and let s and t denote the source and the sink of G, respectively. If C is an $s-t$ cut and if the edges in the cut-set of C are removed, then $|f|=0$.

Exercise 9.13. Prove Lemma 9.12.
The capacity of an $s-t$ cut $C=(S, T)$ is defined by

$$
c(S, T)=\sum_{(s, t) \in(S, T)} c(u, v) .
$$

The minimum cut problem is to minimize the amount of capacity of an $s-t$ cut.
The following theorem is due to P. Elias, A. Feinstein, L.R. Ford, Jr., D.R. Fulkerson, C.E. Shannon.

Theorem 9.14. (max-flow min-cut theorem) The maximum value of an s - t flow is equal to the minimum capacity of an s - t cut.

See [155] for a simple proof of the max-flow min-cut theorem. The intuitive explanation of this result is as follows.

Suppose that $G=(V, E)$ is a graph where each edge has capacity 1 . Let $s \in V$ be the source and $t \in V$ be the sink. The maximum flow from s to t is the maximum number of independent paths from s to t. Denote this maximum flow by m. Each s - t cut must intersect each s - t path at least once. In fact, if S is a minimal s - t cut then for each edge e in S there is an $s-t$ path containing e. Therefore, $|S| \leq e$.

On the other hand, since each edge has unit capacity, the maximum flow value can't exceed the number of edges separating s from t, so $m \leq|S|$.

Remark 9.15. Although the notion of an independent path is important for the networktheoretic proof of Menger's theorem (which we view as a corollary to the Ford-Fulkerson theorem on network flows on networks having capacity 1 on all edges), its significance is less important for networks having arbitrary capacities. One must use caution in generalizing the above intuitive argument to establish a rigorous proof of the general version of the MFMC theorem.

Remark 9.16. This theorem can be generalized as follows. In addition to edge capacity, suppose there is capacity at each vertex, that is, a mapping $c: V \rightarrow \mathbf{R}$, denoted by $v \mapsto c(v)$, such that the flow f has to satisfy not only the capacity constraint and the conservation of flows, but also the vertex capacity constraint

$$
\sum_{w \in V} f(w, v) \leq c(v),
$$

for each $v \in V-\{s, t\}$. Define an $s-t$ cut to be the set of vertices and edges such that for any path from s to t, the path contains a member of the cut. In this case, the capacity of the cut is the sum the capacity of each edge and vertex in it. In this new definition, the generalized max-flow min-cut theorem states that the maximum value of an $s-t$ flow is equal to the minimum capacity of an $s-t$ cut..

The idea behind the Ford-Fulkerson algorithm is very simple: As long as there is a path from the source to the sink, with available capacity on all edges in the path, we send as much flow as we can alone along each of these paths. This is done inductively, one path at a time.

```
Algorithm 9.1 Ford-Fulkerson algorithm.
Input Graph \(G=(V, E)\) with flow capacity \(c\), source \(s\), and \(\operatorname{sink} t\).
Output A flow \(f\) from \(s\) to \(t\) which is a maximum for all edges in \(E\).
    \(f(u, v) \leftarrow 0\) for each edge \(u v \in E\)
    while there is an s-t path \(p\) in \(G_{f}\) such that \(c_{f}(e)>0\) for each edge \(e \in E\) do
        find \(c_{f}(p)=\min \left\{c_{f}(u, v) \mid(u, v) \in p\right\}\)
        for each edge \(u v \in\) do
            \(f(u, v)=f(u, v)+c_{f}(p)\)
            \(f(v, u)=f(v, u)-c_{f}(p)\)
```

To prove the max-flow/min-cut theorem we will use the following lemma.
Lemma 9.17. Let $G=(V, E)$ be a directed graph with edge capacity $c: E \rightarrow \mathbf{Z}$, a source $s \in V$, and a sink $t \in V$. A flow $f: E \rightarrow \mathbf{Z}$ is a maximum flow if and only if there is no f-augmenting path in the graph.

In other words, a flow f in a capacitated network is a maximum flow if and only if there is no f-augmenting path in the network.

Solution. One direction is easy. Suppose that the flow is a maximum. If there is an f-augmenting path then the current flow can be increased using that path, so the flow would not be a maximum. This contradiction proves the "only if" direction.

Now, suppose there is no f-augmenting path in the network. Let S be the set of vertices v such that there is an f-unsaturated path from the source s to v. We know $s \in S$ and (by hypothesis) $t \notin S$. Thus there is a cut of the form (S, T) in the network. Let $e=(v, w)$ be any edge in this cut, $v \in S$ and $w \in T$. Since there is no f-unsaturated path from s to w, e is f-saturated. Likewise, any edge in the cut (T, S) is f-zero. Therefore, the current flow value is equal to the capacity of the cut (S, T). Therefore, the current flow is a maximum.

We can now prove the max-flow/min-cut theorem.
Solution. Let f be a maximum flow. If

$$
S=\{v \in V \mid \text { there exists an } f-\text { saturated path from } s \text { to } v\},
$$

then by the previous lemma, $S \neq V$. Since $T=V-S$ is non-empty, there is a cut $C=(S, T)$. Each edge of this cut C in the capacitated network G is f-saturated.

Here is some Python code ${ }^{7}$ which implements this. The class FlowNetwork is basically a Sage Graph class with edge weights and an extra data structure representing the flow on the graph.

```
class Edge:
    def __init__(self,U,V,w):
        self.source = U
        self.to = V
        self.capacity = w
    def __repr__(self):
        return str(self.source) + "->" + str(self.to) + " : " + str(self.capacity)
class FlowNetwork(object):
    This is a graph structure with edge capacities.
    EXAMPLES:
        g=FlowNetwork()
        map(g.add_vertex, ['s','o','p','q','r','t'])
        g.add_edge('s','o',}3
        g.add_edge('s','p',3)
        g. add_edge('o','p', 2)
        g. add_edge('0',''q',3)
        g. add_edge('p','r,',2)
        g.add_edge('r','t',3)
        g.add_edge('q','r',4)
        g. add_edge('q','t',2)
        print g.max_flow('s','t')
    """
    def __init__(self):
        self.adj, self.flow, = {},{}
    def add_vertex(self, vertex):
        self.adj[vertex] = []
    def get_edges(self, v):
        return self.adj[v]
    def add_edge(self, u,v,w=0):
        assert(u != v)
        edge = Edge(u,v,w)
        redge = Edge(v,u,0)
        edge.redge = redge
        redge.redge = edge
        self.adj[u].append (edge)
        self.adj[v].append (redge)
        self.flow[edge] = self.flow[redge] = 0
    def find_path(self, source, sink, path):
        if source == sink:
            return path
        for edge in self.get_edges(source):
            residual = edge.capacity - self.flow[edge]
            if residual > 0 and not (edge,residual) in path:
            result = self.find_path(edge.to, sink, path + [ (edge,residual) ])
            if result != None:
                        return result
    def max_flow(self, source, sink):
        path = self.find_path(source, sink, [])
        while path != None:
            flow = min(res for edge,res in path)
            for edge,res in path:
                self.flow[edge] += flow
                self.flow[edge.redge] -= flow
            path = self.find_path(source, sink, [])
        return sum(self.flow[edge] for edge in self.get_edges(source))
```

[^15]
9.4 Edmonds and Karp's algorithm

The objective of this section is to prove Edmond and Karp's algorithm for the maximum flow-minimum cut problem with polynomial complexity.

9.5 Goldberg and Tarjan's algorithm

The objective of this section is to prove Goldberg and Tarjan's algorithm for finding maximal flows with polynomial complexity.

Chapter 10

Algebraic graph theory

10.1 Laplacian and adjacency matrices
10.2 Eigenvalues and eigenvectors
10.3 Algebraic connectivity
10.4 Graph invariants
10.5 Cycle and cut spaces
10.6 Problems
10.1. A.

Chapter 11

Random graphs

A random graph can be thought of as being a member from a collection of graphs having some common properties. Recall that Algorithm 2.5 allows for generating a random binary tree having at least one vertex. Fix a positive integer n and let \mathcal{T} be a collection of all binary trees on n vertices. It can be infeasible to generate all members of \mathcal{T}, so for most purposes we are only interested in randomly generating a member of \mathcal{T}. A binary tree of order n generated in this manner is said to be a random graph.

This chapter is a digression into the world of random graphs and various models for generating different types of random graphs. Unlike other chapters in this book, our approach is rather informal and not as rigorous as in other chapters. We will discuss some common models of random graphs and a number of their properties without being bogged down in details of proofs. Along the way, we will demonstrate that random graphs can be used to model diverse real-world networks such as social, biological, technological, and information networks. The edited volume [150] provides some historical context for the "new" science of networks. Bollobás [30] and Kolchin [123] provide standard references on the theory of random graphs with rigorous proofs. For comprehensive surveys of random graphs and networks that do not go into too much technical details, see $[13,67,191,192]$. On the other hand, surveys that cover diverse applications of random graphs and networks and are geared toward the technical aspects of the subject include [4, 29, 47, 58, 59, 63, 154].

11.1 Network statistics

Numerous real-world networks are large, having from thousands up to millions of vertices and edges. Network statistics provide a way to describe properties of networks without concerning ourselves with individual vertices and edges. A network statistic should describe essential properties of the network under consideration, provide a means to differentiate between different classes of networks, and be useful in network algorithms and applications [38]. In this section, we discuss various common network statistics that can be used to describe graphs underlying large networks.

11.1.1 Degree distribution

The degree distribution of a graph $G=(V, E)$ quantifies the fraction of vertices in G having a specific degree k. If v is any vertex of G, we denote this fraction by

$$
\begin{equation*}
p=\operatorname{Pr}[\operatorname{deg}(v)=k] \tag{11.1}
\end{equation*}
$$

As indicated by the notation, we can think of (11.1) as the probability that a vertex $v \in V$ chosen uniformly at random has degree k. The degree distribution of G is consequently a histogram of the degrees of vertices in G. Figure 11.1 illustrates the degree distribution of the Zachary [203] karate club network. The degree distributions of many real-world networks have the same general curve as depicted in Figure 11.1(b), i.e. a peak at low degrees followed by a tail at higher degrees. See for example the degree distribution of the neural network in Figure 11.2, that of a power grid network in Figure 11.3, and the degree distribution of a scientific co-authorship network in Figure 11.4.

(a) Zachary karate club network.

(b) Linear scaling.

(c) Log-log scaling.

Figure 11.1: The friendship network within a 34 -person karate club. This is more commonly known as the Zachary [203] karate club network. The network is an undirected, connected, unweighted graph having 34 vertices and 78 edges. The horizontal axis represents degree; the vertical axis represents the probability that a vertex from the network has the corresponding degree.

11.1.2 Distance statistics

In chapter 5 we discussed various distance metrics such as radius, diameter, and eccentricity. To that distance statistics collection we add the average or characteristic distance \bar{d}, defined as the arithmetic mean of all distances in a graph. Let $G=(V, E)$ be a simple graph with $n=|V|$ and $m=|E|$, where G can be either directed or undirected. Then

Figure 11.2: Degree distribution of the neural network of the Caenorhabditis elegans. The network is a directed, not strongly connected, weighted graph with 297 vertices and 2,359 edges. The horizontal axis represents degree; the vertical axis represents the probability that a vertex from the network has the corresponding degree. The degree distribution is derived from dataset by Watts and Strogatz [193] and White et al. [194].

Figure 11.3: Degree distribution of the Western States Power Grid of the United States. The network is an undirected, connected, unweighted graph with 4,941 vertices and 6,594 edges. The horizontal axis represents degree; the vertical axis represents the probability that a vertex from the network has the corresponding degree. The degree distribution is derived from dataset by Watts and Strogatz [193].

Figure 11.4: Degree distribution of the network of co-authorships between scientists posting preprints on the condensed matter eprint archive at http://arxiv.org/archive/ cond-mat. The network is a weighted, disconnected, undirected graph having 40,421 vertices and 175,693 edges. The horizontal axis represents degree; the vertical axis represents the probability that a vertex from the co-authorship network has the corresponding degree. The degree distribution is derived from the 2005 update of the dataset by Newman [152].
G has size at most $n(n-1)$ because for any distinct vertex pair $u, v \in V$ we count the edge from u to v and the edge from v to u. The characteristic distance of G is defined by

$$
\bar{d}(G)=\frac{1}{n(n-1)} \sum_{u \neq v \in V} d(u, v)
$$

where the distance function d is given by

$$
d(u, v)= \begin{cases}\infty, & \text { if there is no path from } u \text { to } v \\ 0, & \text { if } u=v \\ k, & \text { where } k \text { is the length of a shortest } u-v \text { path. }\end{cases}
$$

If G is strongly connected (respectively, connected for the undirected case) then our distance function is of the form $d: V \times V \rightarrow \mathbf{Z}_{+} \cup\{0\}$, where the codomain is the set of nonnegative integers. The case where G is not strongly connected (respectively, disconnected for the undirected version) requires special care. One way is to compute the characteristic distance for each component and then find the average of all such characteristic distances. Call the resulting characteristic distance \bar{d}_{c}, where c means component. Another way is to assign a large number as the distance of non-existing shortest paths. If there is no $u-v$ path, we let $d(u, v)=n$ because $n=|V|$ is larger than the length of any shortest path between connected vertices. The resulting characteristic distance is denoted \bar{d}_{b}, where b means big number. Furthermore denote by d_{κ} the number of pairs (u, v) such that v is not reachable from u. For example, the Zachary [203] karate club network has $\bar{d}=2.4082$ and $d_{\kappa}=0$; the C. elegans neural network $[193,194]$ has $\bar{d}_{b}=71.544533, \bar{d}_{c}=3.991884$, and $d_{\kappa}=20,268$; the Western States Power Grid network [193] has $\bar{d}=18.989185$ and $d_{\kappa}=0$; and the condensed matter co-authorship network [152] has $\bar{d}_{b}=7541.74656, \bar{d}_{c}=5.499329$, and $d_{\kappa}=152,328,281$.

We can also define the concept of distance distribution similar to how the degree distribution was defined in section 11.1.1. If ℓ is a positive integer with u and v being connected vertices in a graph $G=(V, E)$, denote by

$$
\begin{equation*}
p=\operatorname{Pr}[d(u, v)=\ell] \tag{11.2}
\end{equation*}
$$

the fraction of ordered pairs of connected vertices in $V \times V$ having distance ℓ between them. As is evident from the above notation, we can think of (11.2) as the probability that a uniformly chosen connected pair (u, v) of vertices in G has distance ℓ. The distance distribution of G is hence a histogram of the distances between pairs of vertices in G. Figure 11.5 illustrates distance distributions of various real-world networks.

Figure 11.5: Distance distributions for various real-world networks. The horizontal axis represents distance and the vertical axis represents the probability that a uniformly chosen pair of distinct vertices from the network has the corresponding distance between them.

11.2 Binomial random graph model

In 1959, Gilbert [85] introduced a random graph model that now bears the name binomial (or Bernoulli) random graph model. First, we fix a positive integer n, a probability

```
Algorithm 11.1 Generate a random graph in \(\mathcal{G}(n, p)\).
Input Positive integer \(n\) and a probability \(0<p<1\).
Output A random graph from \(G(n, p)\).
    \(G \leftarrow \overline{K_{n}}\)
    \(V \leftarrow\{0,1, \ldots, n-1\}\)
    \(E \leftarrow\{2\)-combinations of \(V\}\)
    for each \(e \in E\) do
        \(r \leftarrow\) draw uniformly at random from interval \((0,1)\)
        if \(r<p\) then
            add edge \(e\) to \(G\)
    return \(G\)
```

p, and a vertex set $V=\{0,1, \ldots, n-1\}$. By $\mathcal{G}(n, p)$ we mean a probability space over the set of undirected simple graphs on n vertices. If G is any element of the probability space $\mathcal{G}(n, p)$ and $i j$ is any edge for distinct $i, j \in V$, then $i j$ occurs as an edge of G independently with probability p. In symbols, for any distinct pair $i, j \in V$ we have

$$
\operatorname{Pr}[i j \in E(G)]=p
$$

where all such events are mutually independent. Any graph G drawn uniformly at random from $\mathcal{G}(n, p)$ is a subgraph of the complete graph K_{n} and it follows from (1.6) that G has at most $\binom{n}{2}$ edges. Then the probability that G has m edges is given by

$$
\begin{equation*}
p^{m}(1-p)^{\binom{n}{2}-m} \tag{11.3}
\end{equation*}
$$

Notice the resemblance of (11.3) to the binomial distribution. By $G \in \mathcal{G}(n, p)$ we mean that G is a random graph of the space $\mathcal{G}(n, p)$ and having size distributed as (11.3).

To generate a random graph in $\mathcal{G}(n, p)$, start with G being a graph on n vertices but no edges. That is, initially G is $\overline{K_{n}}$, the complement of the complete graph on n vertices. Consider each of the $\binom{n}{2}$ possible edges in some order and add it independently to G with probability p. See Algorithm 11.1 for pseudocode of the procedure. The runtime of Algorithm 11.1 depends on an efficient algorithm for generating all 2-combinations of a set of n objects. We could adapt Algorithm ?? to our needs or search for a more efficient algorithm; see problem 11.3 for discussion of an algorithm to generate a graph in $\mathcal{G}(n, p)$ in quadratic time. Figure 11.6 illustrates some random graphs from $\mathcal{G}(25, p)$ with $p=i / 6$ for $i=0,1, \ldots, 5$. See Figure 11.7 for results for graphs in $\mathcal{G}\left(2 \cdot 10^{4}, p\right)$.

The expected number of edges of any $G \in \mathcal{G}(n, p)$ is

$$
\alpha=\mathrm{E}[|E|]=p \cdot\binom{n}{2}=\frac{p n(n-1)}{2}
$$

and the expected total degree is

$$
\beta=\mathrm{E}[\# \mathrm{deg}]=2 p \cdot\binom{n}{2}=p n(n-1) .
$$

Then the expected degree of each edge is $p(n-1)$. From problem 1.7 we know that the number of undirected simple graphs on n vertices is given by

$$
2^{n(n-1) / 2}
$$

where (11.3) is the probability of any of these graphs being the output of the above procedure. Let $\kappa(n, m)$ be the number of graphs from $\mathcal{G}(n, p)$ that are connected and have size m, and by $\operatorname{Pr}\left[G_{\kappa}\right]$ is meant the probability that $G \in \mathcal{G}(n, p)$ is connected. Apply expression (11.3) to see that

$$
\operatorname{Pr}\left[G_{\kappa}\right]=\sum_{i=n-1}^{\binom{n}{2}} \kappa(n, i) \cdot p^{i}(1-p)^{\binom{n}{2}-i}
$$

where $n-1$ is the least number of edges of any undirected connected graph on n vertices, i.e. the size of any spanning tree of a connected graph in $\mathcal{G}(n, p)$. Similarly define $\operatorname{Pr}\left[\kappa_{i j}\right]$ to be the probability that two distinct vertices i, j of $G \in \mathcal{G}(n, p)$ are connected. Gilbert [85] showed that as $n \rightarrow \infty$, then we have

$$
\operatorname{Pr}\left[G_{\kappa}\right] \sim 1-n(1-p)^{n-1}
$$

and

$$
\operatorname{Pr}\left[\kappa_{i j}\right] \sim 1-2(1-p)^{n-1} .
$$

```
Algorithm 11.2 Random oriented graph via \(\mathcal{G}(n, p)\).
Input Positive integer \(n\) and probability \(0<p<1\).
Output A random oriented graph on \(n\) vertices.
    \(G \leftarrow\) random graph in \(G(n, p)\) as per Algorithm 11.3
    \(E \leftarrow\) edge set of \(G\)
    \(G \leftarrow\) directed version of \(G\)
    cutoff \(\leftarrow\) draw uniformly at random from interval \((0,1)\)
    for each edge \(u v \in E\) do
        \(r \leftarrow\) draw uniformly at random from interval \((0,1)\)
        if \(r<\) cutoff then
            remove \(u v\) from \(G\)
        else
            remove \(v u\) from \(G\)
    return \(G\)
```

Example 11.1. Consider a digraph $D=(V, E)$ without self-loops or multiple edges. Then D is said to be oriented if for any distinct pair $u, v \in V$ at most one of $u v, v u$ is an edge of D. Provide specific examples of oriented graphs.

Solution. If $u, v \in V$ is any pair of distinct vertices of an oriented graph $D=(V, E)$, we have various possibilities:

1. $u v \notin E$ and $v u \notin E$.
2. $u v \in E$ and $v u \notin E$.
3. $u v \notin E$ and $v u \in E$.

Let $n>0$ be the number of vertices in D and let $0<p<1$. Generate a random oriented graph as follows. First we generate a binomial random graph $G \in \mathcal{G}(n, p)$ where G is simple and undirected. Then we consider the digraph version of G and proceed to randomly prune either $u v$ or $v u$ from G, for each distinct pair of vertices u, v. Refer to Algorithm 11.2 for pseudocode of our discussion. A Sage implementation follows:

(a) $p=0 ; \alpha=0,|E|=0 ; \beta=0, \# \operatorname{deg}=0$

(c) $p=1 / 3 ; \alpha=100,|E|=108 ; \beta=200$, \# deg $=212$

(e) $p=2 / 3 ; \alpha=200,|E|=185 ; \beta=400$, $\# \operatorname{deg}=370$

(b) $p=1 / 6 ; \alpha=50,|E|=44 ; \beta=100$, $\# \operatorname{deg}=88$

(d) $p=1 / 2 ; \alpha=150,|E|=156 ; \beta=300$, $\# \operatorname{deg}=312$

(f) $p=5 / 6 ; \alpha=250,|E|=255 ; \beta=500$, $\# \operatorname{deg}=510$

Figure 11.6: Binomial random graphs $\mathcal{G}(25, p)$ for various values of p.

Figure 11.7: Comparison of expected and experimental values of the number of edges and total degree of random simple undirected graphs in $\mathcal{G}(n, p)$. The horizontal axis represents probability points; the vertical axis represents the size and total degree (expected or experimental). Fix $n=20,000$ and consider $r=50$ probability points chosen as follows. Let $p_{\min }=0.000001, p_{\max }=0.999999$, and $F=\left(p_{\max } / p_{\min }\right)^{1 /(r-1)}$. For $i=1,2, \ldots, r=50$ the i-th probability point p_{i} is defined by $p_{i}=p_{\text {min }} F^{i-1}$. Each experiment consists in generating $M=500$ random graphs from $\mathcal{G}\left(n, p_{i}\right)$. For each $G_{i} \in \mathcal{G}\left(n, p_{i}\right)$, where $i=1,2, \ldots, 500$, compute its actual size α_{i} and actual total degree β_{i}. Then take the mean $\hat{\alpha}$ of the α_{i} and the mean $\hat{\beta}$ of the β_{i}.

```
sage: G = graphs.RandomGNP(20, 0.1)
sage: E = G.edges(labels=False)
sage: G = G.to_directed()
sage: cutoff = 0.5
sage: for u, v in E:
... r = random()
... if r<cutoff:
... G.delete_edge(u, v)
... else:
... G.delete_edge(v, u)
```

which produced the random oriented graph in Figure 11.8.

Efficient generation of sparse $G \in \mathcal{G}(n, p)$

The techniques discussed so far (Algorithms 11.1 and 11.9) for generating a random graph from $\mathcal{G}(n, p)$ can be unsuitable when the number of vertices n is in the hundreds of thousands or millions. In many applications of $\mathcal{G}(n, p)$ we are only interested in sparse random graphs. A linear time algorithm to generate a random sparse graph from $\mathcal{G}(n, p)$ is presented by Batagelj and Brandes [18].

The Batagelj-Brandes algorithm for generating a random sparse graph $G \in \mathcal{G}(n, p)$ uses what is known as a geometric method to skip over certain edges. Fix a probability $0<p<1$ that an edge will be in the resulting random sparse graph G. If e is an edge of G, we can consider the events leading up to the choice of e as

$$
e_{1}, e_{2}, \ldots, e_{k}
$$

where in the i-th trial the event e_{i} is a failure, for $1 \leq i<k$, but the event e_{k} is the first success after $k-1$ successive failures. In probabilistic terms, we perform a series of independent trials each having success probability p and stop when the first success

Figure 11.8: A random oriented graph generated using a graph in $G(20,0.1)$ and cutoff probability 0.5 .
occurs. Letting X be the number of trials required until the first success occurs, then X is a geometric random variable with parameter p and probability mass function

$$
\begin{equation*}
\operatorname{Pr}[X=k]=p(1-p)^{k-1} \tag{11.4}
\end{equation*}
$$

for integers $k \geq 1$, where

$$
\sum_{k=1}^{\infty} p(1-p)^{k-1}=1
$$

In other words, waiting times are geometrically distributed.
Suppose we want to generate a random number from a geometric distribution, i.e. we want to simulate X such that

$$
\operatorname{Pr}[X=k]=p(1-p)^{k-1}, \quad k=1,2,3, \ldots
$$

Note that

$$
\sum_{k=1}^{\ell} \operatorname{Pr}[X=k]=1-\operatorname{Pr}[X>\ell-1]=1-(1-p)^{\ell-1}
$$

In other words, we can simulate a geometric random variable by generating r uniformly at random from the interval $(0,1)$ and set X to that value of k for which

$$
1-(1-p)^{k-1}<r<1-(1-p)^{k}
$$

or equivalently for which

$$
(1-p)^{k}<1-r<(1-p)^{k-1}
$$

where $1-r$ and r are both uniformly distributed. Thus we can define X by

$$
\begin{aligned}
X & =\min \left\{k \mid(1-p)^{k}<1-r\right\} \\
& =\min \left\{k \left\lvert\, k>\frac{\ln (1-r)}{\ln (1-p)}\right.\right\} \\
& =1+\left\lfloor\frac{\ln (1-r)}{\ln (1-p)}\right\rfloor .
\end{aligned}
$$

That is, we can choose k to be

$$
k=1+\left\lfloor\frac{\ln (1-r)}{\ln (1-p)}\right\rfloor
$$

which is used as a basis of Algorithm 11.3. In the latter algorithm, note that the vertex set is $V=\{0,1, \ldots, n-1\}$ and candidate edges are generated in lexicographic order. The Batagelj-Brandes Algorithm 11.3 has worst-case runtime $O(n+m)$, where n and m are the order and size, respectively, of the resulting graph.

```
Algorithm 11.3 Linear generation of a random sparse graph in \(\mathcal{G}(n, p)\).
Input Positive integer \(n\) and a probability \(0<p<1\).
Output A random sparse graph from \(G(n, p)\).
    \(G \leftarrow \overline{K_{n}}\)
    \(u \leftarrow 1\)
    \(v \leftarrow-1\)
    while \(u<n\) do
        \(r \leftarrow\) draw uniformly at random from interval \((0,1)\)
        \(v \leftarrow v+1+\lfloor\ln (1-r) / \ln (1-p)\rfloor\)
        while \(v \geq u\) and \(u<n\) do
            \(v \leftarrow v-u\)
            \(u \leftarrow u+1\)
        if \(u<n\) then
            add edge \(u v\) to \(G\)
    return \(G\)
```


Degree distribution

Consider a random graph $G \in \mathcal{G}(n, p)$ and let v be a vertex of G. With probability p, the vertex v is incident with each of the remaining $n-1$ vertices in G. Then the probability that v has degree k is given by the binomial distribution

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{deg}(v)=k]=\binom{n-1}{k} p^{k}(1-p)^{n-1-k} \tag{11.5}
\end{equation*}
$$

and the expected degree of v is $\mathrm{E}[\operatorname{deg}(v)]=p(n-1)$. Setting $z=p(n-1)$, we can express (11.5) as

$$
\operatorname{Pr}[\operatorname{deg}(v)=k]=\binom{n-1}{k}\left(\frac{z}{n-1-z}\right)^{k}\left(1-\frac{z}{n-1}\right)^{n-1}
$$

and thus

$$
\operatorname{Pr}[\operatorname{deg}(v)=k] \rightarrow \frac{z^{k}}{k!} \exp (-z)
$$

as $n \rightarrow \infty$. In the limit of large n, the probability that vertex v has degree k approaches the Poisson distribution. That is, as n gets larger and larger any random graph in $\mathcal{G}(n, p)$ has a Poisson degree distribution.

11.3 Erdős-Rényi model

Let N be a fixed nonnegative integer. The Erdős-Rényi [72,73] (or uniform) random graph model, denoted $\mathcal{G}(n, N)$, is a probability space over the set of undirected simple graphs on n vertices and exactly N edges. Hence $\mathcal{G}(n, N)$ can be considered as a collection of $\binom{\binom{n}{N}}{N}$ undirected simple graphs on exactly N edges, each such graph being selected with equal probability. A note of caution is in order here. Numerous papers on random graphs refer to $\mathcal{G}(n, p)$ as the Erdős-Rényi random graph model, where in fact this binomial random graph model should be called the Gilbert model in honor of E. N. Gilbert who introduced [85] it in 1959. Whenever a paper makes a reference to the Erdős-Rényi model, one should question whether the paper is referring to $\mathcal{G}(n, p)$ or $\mathcal{G}(n, N)$.

To generate a graph in $\mathcal{G}(n, N)$, start with G being a graph on n vertices but no edges. Then choose N of the possible $\binom{n}{2}$ edges independently and uniformly at random and let the chosen edges be the edge set of G. Each graph $G \in \mathcal{G}(n, N)$ is associated with a probability

$$
1 /\left(\begin{array}{c}
n \\
2 \\
N
\end{array}\right)
$$

of being the graph resulting from the above procedure. Furthermore each of the $\binom{n}{2}$ edges has a probability

$$
1 /\binom{n}{2}
$$

of being chosen. Algorithm 11.4 presents a straightforward translation of the above procedure into pseudocode.

```
Algorithm 11.4 Generation of random graph in \(\mathcal{G}(n, N)\).
Input Positive integer \(n\) and integer \(N\) with \(0 \leq N \leq\binom{ n}{2}\).
Output A random graph from \(G(n, N)\).
    \(G \leftarrow \overline{K_{n}}\)
    \(E \leftarrow\left\{e_{0}, e_{1}, \ldots, e_{\binom{n}{2}-1}\right\}\)
    for \(i \leftarrow 0,1, \ldots, N-1\) do
        \(r \leftarrow\) draw uniformly at random from \(\left\{0,1, \ldots,\binom{n}{2}-1\right\}\)
        while \(e_{r}\) is an edge of \(G\) do
            \(r \leftarrow\) draw uniformly at random from \(\left\{0,1, \ldots,\binom{n}{2}-1\right\}\)
        add edge \(e_{r}\) to \(G\)
    return \(G\)
```

The runtime of Algorithm 11.4 is probabilistic and can be analyzed via the geometric distribution. If i is the number of edges chosen so far, then the probability of choosing
a new edge in the next step is

$$
\frac{\binom{n}{2}-i}{\binom{n}{2}} .
$$

We repeatedly choose an edge uniformly at random from the collection of all possible edges, until we come across the first edge that is not already in the graph. The number of trials required until the first new edge is chosen can be modeled using the geometric distribution with probability mass function (11.4). Given a geometric random variable X, we have the expectation

$$
\mathrm{E}[X]=\sum_{n=1}^{\infty} n \cdot p(1-p)^{n-1}=\frac{1}{p}
$$

Therefore the expected number of trials until a new edge be chosen is

$$
\frac{\binom{n}{2}}{\binom{n}{2}-i}
$$

from which the expected total runtime is

$$
\begin{aligned}
\sum_{i=1}^{N} \frac{\binom{n}{2}}{\binom{n}{2}-i} & \approx \int_{0}^{N} \frac{\binom{n}{2}}{\binom{n}{2}-x} d x \\
& =\binom{n}{2} \cdot \ln \frac{\binom{n}{2}}{\binom{n}{2}-N}+C
\end{aligned}
$$

for some constant C. The denominator in the latter fraction becomes zero when $\binom{n}{2}=N$, which can be prevented by adding one to the denominator. Then we have the expected total runtime

$$
\sum_{i=1}^{N} \frac{\binom{n}{2}}{\binom{n}{2}-i} \in \Theta\left(\binom{n}{2} \cdot \ln \frac{\binom{n}{2}}{\binom{n}{2}-N+1}\right)
$$

which is $O(N)$ when $N \leq\binom{ n}{2} / 2$, and $O(N \ln N)$ when $N=\binom{n}{2}$. In other words, Algorithm 11.4 has expected linear runtime when the number N of required edges satisfies $N \leq\binom{ n}{2} / 2$. But for $N>\binom{n}{2} / 2$, we obtain expected linear runtime by generating the complete graph K_{n} and randomly delete $\binom{n}{2}-N$ edges from the latter graph. Our discussion is summarized in Algorithm 11.5.

```
Algorithm 11.5 Generation of random graph in \(\mathcal{G}(n, N)\) in expected linear time.
Input Positive integer \(n\) and integer \(N\) with \(0 \leq N \leq\binom{ n}{2}\).
Output A random graph from \(G(n, N)\).
    if \(N \leq\binom{ n}{2} / 2\) then
        return result of Algorithm 11.4
    \(G \leftarrow K_{n}\)
    for \(i \leftarrow 1,2, \ldots,\binom{n}{2}-N\) do
        \(e \leftarrow\) draw uniformly at random from \(E(G)\)
        remove edge \(e\) from \(G\)
    return \(G\)
```


11.4 Small-world networks

Vicky: Hi, Janice.
Janice: Hi, Vicky.
Vicky: How are you?
Janice: Good.
Harry: You two know each other?
Janice: Yeah, I met Vicky at the mall today.
Harry: Well, what a small world! You know, I wonder who else I know knows someone I know that I don't know knows that person I know.

- from the TV series Third Rock from the Sun, season 5, episode 22, 2000.

Many real-world networks exhibit the small-world effect: that most pairs of distinct vertices in the network are connected by relatively short path lengths. The small-world effect was empirically demonstrated [146] in a famous 1960s experiment by Stanley Milgram, who distributed a number of letters to a random selection of people. Recipients were instructed to deliver the letters to the addressees on condition that letters must be passed to people whom the recipients knew on a first-name basis. Milgram found that on average six steps were required for a letter to reach its target recipient, a number now immortalized in the phrase "six degrees of separation" [93]. Figure 11.9 plots results of an experimental study of the small-world problem as reported in [183]. The small-world effect has been studied and verified for many real-world networks including

- social: collaboration network of actors in feature films [6,193], scientific publication authorship [48, 92, 151, 152];
- information: citation network [165], Roget's Thesaurus [121], word co-occurrence [62, 76];
- technological: internet [51,75], power grid [193], train routes [171], software [153, 185];
- biological: metabolic network [110], protein interactions [109], food web [105, 140], neural network $[193,194]$.

Watts and Strogatz [190, 191, 193] proposed a network model that produces graphs exhibiting the small-world effect. We will use the notation " \gg " to mean "much greater than". Let n and k be positive integers such that $n \gg k \gg \ln n \gg 1$ (in particular, $0<k<n / 2$) with k being even. Consider a probability $0<p<1$. Starting from an undirected k-circulant graph $G=(V, E)$ on n vertices, the Watts-Strogatz model proceeds to rewire each edge with probability p. The rewiring procedure, also called edge swapping, works as follows. Let V be uniformly distributed. For each $v \in V$, let $e \in E$ be an edge having v as an endpoint. Choose another $u \in V$ different from v. With probability p, delete the edge e and add the edge $v u$. The rewiring must produce a simple graph with the same order and size as G. As $p \rightarrow 1$, the graph G goes from k-circulant to exhibiting properties of graphs drawn uniformly from $\mathcal{G}(n, p)$. Small-world networks are intermediate between k-circulant and binomial random graphs (see Figure 11.10). The Watts-Strogatz model is said to provide a procedure for interpolating between the latter two types of graphs.

Figure 11.9: Frequency distribution of the number of intermediaries required for letters to reach their intended addressees. The distribution has a mean of 5.3 , interpreted as the average number of intermediaries required for a letter to reach its intended destination. The plot is derived from data reported in [183].

Figure 11.10: With increasing randomness, k-circulant graphs evolve to exhibit properties of random graphs in $\mathcal{G}(n, p)$. Small-world networks are intermediate between k-circulant graphs and random graphs in $\mathcal{G}(n, p)$.

The last paragraph contains an algorithm for rewiring edges of a graph. While the algorithm is simple, in practice it potentially skips over a number of vertices to be considered for rewiring. If $G=(V, E)$ is a k-circulant graph on n vertices and p is the rewiring probability, the candidate vertices to be rewired follow a geometric distribution with parameter p. This geometric trick, essentially the same speed-up technique used by the Batagelj-Brandes Algorithm 11.3, can be used to speed up the rewiring algorithm. To elaborate, suppose G has vertex set $V=\{0,1, \ldots, n-1\}$. If r is chosen uniformly at random from the interval $(0,1)$, the index of the vertex to be rewired can be obtained from

$$
1+\left\lfloor\frac{\ln (1-r)}{\ln (1-p)}\right\rfloor .
$$

The above geometric method is incorporated into Algorithm 11.6 to generate a WattsStrogatz network in worst-case runtime $O(n k+m)$, where n and k are as per the input of the algorithm and m is the size of the k-circulant graph on n vertices. Note that lines 7 to 12 are where we avoid self-loops and multiple edges.

```
Algorithm 11.6 Watts-Strogatz network model.
Input Positive integer \(n\) denoting the number of vertices. Positive even integer \(k\) for
    the degree of each vertex, where \(n \gg k \gg \ln n \gg 1\). In particular, \(k\) should satisfy
    \(0<k<n / 2\). Rewiring probability \(0<p \leq 1\).
Output A Watts-Strogatz network on \(n\) vertices.
    \(M \leftarrow n k \quad \triangleright\) sum of all vertex degrees \(=\) twice number of edges
    \(r \leftarrow\) draw uniformly at random from interval \((0,1)\)
    \(v \leftarrow 1+\lfloor\ln (1-r) / \ln (1-p)\rfloor\)
    \(E \leftarrow\) contiguous edge list of \(k\)-circulant graph on \(n\) vertices
    while \(v \leq M\) do
        \(u \leftarrow\) draw uniformly at random from \([0,1, \ldots, n-1]\)
        if \(v-1\) is even then
            while \(E[v]=u\) or \((u, E[v]) \in E\) do
                \(u \leftarrow\) draw uniformly at random from \([0,1, \ldots, n-1]\)
        else
            while \(E[v-2]=u\) or \((E[v-2], u) \in E\) do
                \(u \leftarrow\) draw uniformly at random from \([0,1, \ldots, n-1]\)
        \(E[v-1] \leftarrow u\)
        \(r \leftarrow\) draw uniformly at random from interval \((0,1)\)
        \(v \leftarrow v+1+\lfloor\ln (1-r) / \ln (1-p)\rfloor\)
    \(G \leftarrow \overline{K_{n}}\)
    add edges in \(E\) to \(G\)
    return \(G\)
```


Characteristic path length

Watts and Strogatz [193] analyzed the structure of networks generated by Algorithm 11.6 via two quantities: the characteristic path length ℓ and the clustering coefficient C. The characteristic path length quantifies the average distance between any distinct pair of vertices in a Watts-Strogatz network. The quantity $\ell(G)$ is thus said to be a global
property of G. Watts and Strogatz characterized as small-world those networks that exhibit high clustering coefficients and low characteristic path lengths.

Let $G=(V, E)$ be a Watts-Strogatz network as generated by Algorithm 11.6, where the vertex set is $V=\{0,1, \ldots, n-1\}$. For each pair of vertices $i, j \in V$, let $d_{i j}$ be the distance from i to j. If there is no path from i to j or $i=j$, set $d_{i j}=0$. Thus

$$
d_{i j}= \begin{cases}0, & \text { if there is no path from } i \text { to } j \\ 0, & \text { if } i=j, \\ k, & \text { where } k \text { is the length of a shortest path from } i \text { to } j\end{cases}
$$

Since G is undirected, we have $d_{i j}=d_{j i}$. Consequently when computing the distance between each distinct pair of vertices, we should avoid double counting by computing $d_{i j}$ for $i<j$. Then the characteristic path length of G is defined by

$$
\begin{align*}
\ell(G) & =\frac{1}{n(n-1) / 2} \cdot \frac{1}{2} \sum_{i \neq j} d_{i j} \\
& =\frac{1}{n(n-1)} \sum_{i \neq j} d_{i j} \tag{11.6}
\end{align*}
$$

which is averaged over all possible pairs of distinct vertices, i.e. the number of edges in the complete graph K_{n}.

It is inefficient to compute the characteristic path length via equation (11.6) because we would effectively sum $n(n-1)$ distance values. As G is undirected, note that

$$
\frac{1}{2} \sum_{i \neq j} d_{i j}=\sum_{i<j} d_{i j}=\sum_{i>j} d_{i j} .
$$

The latter equation holds for the following reason. Let $D=\left[d_{i j}\right]$ be a matrix of distances for G, where i is the row index, j is the column index, and $d_{i j}$ is the distance from i to j. The required sum of distances can be obtained by summing all entries above (or below) the main diagonal of D. Therefore the characteristic path length can be expressed as

$$
\begin{aligned}
\ell(G) & =\frac{2}{n(n-1)} \sum_{i<j} d_{i j} \\
& =\frac{2}{n(n-1)} \sum_{i>j} d_{i j}
\end{aligned}
$$

which requires summing $\frac{n(n-1)}{2}$ distance values.
Let $G=(V, E)$ be a Watts-Strogatz network with $n=|V|$. Set $k^{\prime}=k / 2$, where k is as per Algorithm 11.6. As the rewiring probability $p \rightarrow 0$, the average path length tends to

$$
\ell \rightarrow \frac{n}{4 k^{\prime}}=\frac{n}{2 k} .
$$

In the special case $p=0$, we have

$$
\ell=\frac{n(n+k-2)}{2 k(n-1)} .
$$

However as $p \rightarrow 1$, we have $\ell \rightarrow \frac{\ln n}{\ln k}$.

Clustering coefficient

The clustering coefficient of a simple graph G quantifies the "cliquishness" of vertices in $G=(V, E)$. This quantity is thus said to be a local property of G. Watts and Strogatz [193] defined the clustering coefficient as follows. Suppose $n=|V|>0$ and let n_{i} count the number of neighbors of vertex $i \in V$, a quantity that is equivalent to the degree of i, i.e. $\operatorname{deg}(i)=n_{i}$. The complete graph $K_{n_{i}}$ on the n_{i} neighbors of i has $n_{i}\left(n_{i}-1\right) / 2$ edges. The neighbor graph \mathcal{N}_{i} of i is a subgraph of G, consisting of all vertices $(\neq i)$ that are adjacent to i and preserving the adjacency relation among those vertices as found in the supergraph G. For example, given the graph in Figure 11.11(a) the neighbor graph of vertex 10 is shown in Figure 11.11(b). The local clustering coefficient C_{i} of i is the ratio

$$
C_{i}=\frac{N_{i}}{n_{i}\left(n_{i}-1\right) / 2}
$$

where N_{i} counts the number of edges in \mathcal{N}_{i}. In case i has degree $\operatorname{deg}(i)<2$, we set the local clustering coefficient of i to be zero. Then the clustering coefficient of G is defined by

$$
C(G)=\frac{1}{n} \sum_{i \in V} C_{i}=\frac{1}{n} \sum_{i \in V} \frac{N_{i}}{n_{i}\left(n_{i}-1\right) / 2} .
$$

(a) Graph on 11 vertices.

(b) \mathcal{N}_{10}

Figure 11.11: The neighbor graph of a vertex.

Consider the case where we have a k-circulant graph $G=(V, E)$ on n vertices and a rewiring probability $p=0$. That is, we do not rewire any edge of G. Each vertex of G has degree k. Let $k^{\prime}=k / 2$. Then the k neighbors of each vertex in G has $3 k^{\prime}\left(k^{\prime}-1\right) / 2$ edges between them, i.e. each neighbor graph \mathcal{N}_{i} has size $3 k^{\prime}\left(k^{\prime}-1\right) / 2$. Then the clustering coefficient of G is

$$
\frac{3\left(k^{\prime}-1\right)}{2\left(2 k^{\prime}-1\right)} .
$$

When the rewiring probability is $p>0$, Barrat and Weigt [17] showed that the clustering coefficient of any graph G^{\prime} in the Watts-Strogatz network model (see Algorithm 11.6) can be approximated by

$$
C\left(G^{\prime}\right) \approx \frac{3\left(k^{\prime}-1\right)}{2\left(2 k^{\prime}-1\right)}(1-p)^{3} .
$$

Degree distribution

For a Watts-Strogatz network without rewiring, each vertex has the same degree k. It easily follows that for each vertex v, we have the degree distribution

$$
\operatorname{Pr}[\operatorname{deg}(v)=i]= \begin{cases}1, & \text { if } i=k \\ 0, & \text { otherwise }\end{cases}
$$

A rewiring probability $p>0$ introduces disorder in the network and broadens the degree distribution, while the expected degree is k. A k-circulant graph on n vertices has $n k / 2$ edges. With the rewiring probability $p>0$, a total of $p n k / 2$ edges would be rewired. However note that only one endpoint of an edge is rewired, thus after the rewiring process the degree of any vertex v is $\operatorname{deg}(v) \geq k / 2$. Therefore with $k>2$, a Watts-Strogatz network has no isolated vertices.

For $p>0$, Barrat and Weigt [17] showed that the degree of a vertex v can be written as $\operatorname{deg}(v)=k / 2+n_{i}$ with $n_{i} \geq 0$, where n_{i} can be divided into two parts α and β as follows. First $\alpha \leq k / 2$ edges are left intact after the rewiring process, the probability of this occurring is $1-p$ for each edge. Second $\beta=n_{i}-\alpha$ edges have been rewired towards i, each with probability $1 / n$. The probability distribution of α is

$$
P_{1}(\alpha)=\binom{k / 2}{\alpha}(1-p)^{\alpha} p^{k / 2-\alpha}
$$

and the probability distribution of β is

$$
P_{2}(\beta)=\binom{p n k / 2}{\beta}\left(\frac{1}{n}\right)^{\beta}\left(1-\frac{1}{n}\right)^{p n k / 2-\beta}
$$

where

$$
P_{2}(\beta) \rightarrow \frac{(p k / 2)^{\beta}}{\beta!} \exp (-p k / 2)
$$

for large n. Combine the above two factors to obtain the degree distribution

$$
\operatorname{Pr}[\operatorname{deg}(v)=\kappa]=\sum_{i=0}^{\min \{\kappa-k / 2, k / 2\}}\binom{k / 2}{i}(1-p)^{i} p^{k / 2-i} \frac{(p k / 2)^{\kappa-k / 2-i}}{(\kappa-k / 2-i)!} \exp (-p k / 2)
$$

for $\kappa \geq k / 2$.

11.5 Scale-free networks

The networks covered so far-Gilbert $\mathcal{G}(n, p)$ model, Erdős-Rényi $\mathcal{G}(n, N)$ model, WattsStrogatz small-world model-are static. Once a network is generated from any of these models, the corresponding model does not specify any means for the network to evolve over time. Barabási and Albert [14] proposed a network model based on two ingredients:

1. Growth: at each time step, a new vertex is added to the network and connected to a pre-determined number of existing vertices.
2. Preferential attachment: the newly added vertex is connected to an existing vertex in proportion to the latter's existing degree.

Preferential attachment also goes by the colloquial name of the "rich-get-richer" effect due to the work of Herbert Simon [176]. In sociology, preferential attachment is known as the Matthew effect due to the following verse from the Book of Matthew, chapter 25 verse 29, in the Bible: "For to every one that hath shall be given but from him that hath not, that also which he seemeth to have shall be taken away." Barabási and Albert observed that many real-world networks exhibit statistical properties of their proposed model. One particularly significant property is that of power-law scaling, hence the Barabási-Albert model is also called a model of scale-free networks. Note that it is only the degree distributions of scale-free networks that are scale-free. In their empirical study of the World Wide Web (WWW) and other real-world networks, Barabási and Albert noted that the probability that a web page increases in popularity is directly proportional to the page's current popularity. Thinking of a web page as a vertex and the degree of a page as the number of other pages that the current page links to, the degree distribution of the WWW follows a power law function. Power-law scaling has been confirmed for many real-world networks:

- actor collaboration network [14]
- citation [60, 165, 170] and co-authorship networks [152]
- human sexual contacts network $[112,135]$
- the Internet $[51,75,186]$ and the WWW $[5,16,39]$
- metabolic networks [109,110]
- telephone call graphs $[2,3]$

Figure 11.12 illustrates the degree distributions of various real-world networks, plotted on log-log scales. Corresponding distributions for various simulated Barabási-Albert networks are illustrated in Figure 11.13.

But how do we generate a scale-free graph as per the description in Barabási and Albert [14]? The original description of the Barabási-Albert model as contained in [14] is rather ambiguous with respect to certain details. First, the whole process is supposed to begin with a small number of vertices. But as the degree of each of these vertices is zero, it is unclear how the network is to grow via preferential attachment from the initial pool of vertices. Second, Barabási and Albert neglected to clearly specify how to select the neighbors for the newly added vertex. The above ambiguities are resolved by Bollobás et al. [32], who gave a precise statement of a random graph process that realizes the Barabási-Albert model. Fix a sequence of vertices v_{1}, v_{2}, \ldots and consider the case where each newly added vertex is to be connected to $m=1$ vertex already in a graph. Inductively define a random graph process $\left(G_{1}^{t}\right)_{t \geq 0}$ as follows, where G_{1}^{t} is a digraph on $\left\{v_{i} \mid 1 \leq i \leq t\right\}$. Start with the null graph G_{1}^{0} or the graph G_{1}^{1} with one vertex and one self-loop. Denote by $\operatorname{deg}_{G}(v)$ the total (in and out) degree of vertex v in the graph G. For $t>1$ construct G_{1}^{t} from G_{1}^{t-1} by adding the vertex v_{t} and a directed edge from v_{t} to v_{i}, where i is randomly chosen with probability

$$
\operatorname{Pr}[i=s]= \begin{cases}\operatorname{deg}_{G_{1}^{t-1}}\left(v_{s}\right) /(2 t-1), & \text { if } 1 \leq s \leq t-1 \\ 1 /(2 t-1), & \text { if } s=t\end{cases}
$$

Figure 11.12: Degree distributions of various real-world networks on log-log scales. The horizontal axis represents degree and the vertical axis is the corresponding probability of a vertex having that degree. The US patent citation network [133] is a directed graph on $3,774,768$ vertices and $16,518,948$ edges. It covers all citations made by patents granted between 1975 and 1999. The Google web graph [134] is a digraph having 875, 713 vertices and $5,105,039$ edges. This dataset was released in 2002 by Google as part of the Google Programming Contest. The LiveJournal friendship network [10,134] is a directed graph on $4,847,571$ vertices and $68,993,773$ edges. The actor collaboration network [14], based on the Internet Movie Database (IMDb) at http://www.imdb.com, is an undirected graph on 383,640 vertices and $16,557,920$ edges. Two actors are connected to each other if they have starred in the same movie. In all of the above degree distributions, self-loops are not taken into account and, where a graph is directed, we only consider the in-degree distribution.

Figure 11.13: Degree distributions of simulated graphs in the classic Barabási-Albert model. The horizontal axis represents degree; the vertical axis is the corresponding probability of a vertex having a particular degree. Each generated graph is directed and has minimum out-degree $m=5$. The above degree distributions are only for in-degrees and do not take into account self-loops.

The latter process generates a forest. For $m>1$ the graph evolves as per the case $m=1$; i.e. we add m edges from v_{t} one at a time. This process can result in selfloops and multiple edges. We write \mathcal{G}_{m}^{n} for the collection of all graphs on n vertices and minimal degree m in the Barabási-Albert model, where a random graph from \mathcal{G}_{m}^{n} is denoted $G_{m}^{n} \in \mathcal{G}_{m}^{n}$.

Now consider the problem of translating the above procedure into pseudocode. Fix a positive integer $n>1$ for the number of vertices in the scale-free graph to be generated via preferential attachment. Let $m \geq 1$ be the number of vertices that each newly added vertex is to be connected to; this is equivalent to the minimum degree that any new vertex will end up possessing. At any time step, let M be the contiguous edge list of all edges created thus far in the above random graph process. It is clear that the frequency (or number of occurrences) of a vertex is equivalent to the vertex's degree. We can thus use M as a pool to sample in constant time from the degree-skewed distribution. Batagelj and Brandes [18] used the latter observation to construct an algorithm for generating scalefree networks via preferential attachment; pseudocode is presented in Algorithm 11.7. Note that the algorithm has linear runtime $O(n+m)$, where n is the order and m the size of the graph generated by the algorithm.

```
Algorithm 11.7 Scale-free network via preferential attachment.
Input Positive integer \(n>1\) and minimum degree \(d \geq 1\).
Output Scale-free network on \(n\) vertices.
    \(G \leftarrow \overline{K_{n}} \quad \triangleright\) vertex set is \(V=\{0,1, \ldots, n-1\}\)
    \(M \leftarrow\) list of length \(2 n d\)
    for \(v \leftarrow 0,1, \ldots, n-1\) do
        for \(i \leftarrow 0,1, \ldots, d-1\) do
            \(M[2(v d+i)] \leftarrow v\)
            \(r \leftarrow\) draw uniformly at random from \(\{0,1, \ldots, 2(v d+i)\}\)
            \(M[2(v d+i)+1] \leftarrow M[r]\)
    add edge \((M[2 i], M[2 i+1])\) to \(G\) for \(i \leftarrow 0,1, \ldots, n d-1\)
    return \(G\)
```

On the evidence of computer simulation and various real-world networks, it was suggested $[14,15]$ that $\operatorname{Pr}[\operatorname{deg}(v)=k] \sim k^{-\gamma}$ with $\gamma=2.9 \pm 0.1$. Letting n be the number of vertices, Bollobás et al. [32] obtained $\operatorname{Pr}\left[\operatorname{deg}(v)=k\right.$ asymptotically for all $k \leq n^{1 / 15}$ and showed as a consequence that $\gamma=3$. In the process of doing so, Bollobás et al. proved various results concerning the expected degree. Denote by $\#_{m}^{n}(k)$ the number of vertices of G_{m}^{n} with in-degree k (and consequently with total degree $m+k$). For the case $m=1$, we have the expectation

$$
\mathrm{E}\left[\operatorname{deg}_{G_{1}^{t}}\left(v_{t}\right)\right]=1+\frac{1}{2 t-1}
$$

and for $s<t$ we have

$$
\mathrm{E}\left[\operatorname{deg}_{G_{1}^{t}}\left(v_{s}\right)\right]=\frac{2 t}{2 t-1} \mathrm{E}\left[\operatorname{deg}_{G_{1}^{t-1}}\left(v_{s}\right)\right]
$$

Taking the above two equations together, for $1 \leq s \leq n$ we have

$$
\mathrm{E}\left[\operatorname{deg}_{G_{1}^{n}}\left(v_{s}\right)\right]=\prod_{i=s}^{n} \frac{2 i}{2 i-1}=\frac{4^{n-s+1} n!^{2}(2 s-2)!}{(2 n)!(s-1)!^{2}}
$$

Furthermore for $0 \leq k \leq n^{1 / 15}$ we have

$$
\mathrm{E}\left[\#_{m}^{n}(k)\right] \sim \frac{2 m(m+1) n}{(k+m)(k+m+1)(k+m+2)}
$$

uniformly in k.
As regards the diameter, with n as per Algorithm 11.7, computer simulation by Barabási, Albert, and Jeong [5, 16] and heuristic arguments by Newman et al. [156] suggest that a graph generated by the Barabási-Albert model has diameter approximately $\ln n$. As noted by Bollobás and Riordan [31], the approximation $\operatorname{diam}\left(G_{m}^{n}\right) \approx \ln n$ holds for the case $m=1$, but for $m \geq 2$ they showed that as $n \rightarrow \infty$ then $\operatorname{diam}\left(G_{m}^{n}\right) \rightarrow$ $\ln / \ln \ln n$.

11.6 Problems

Where should I start? Start from the statement of the problem. What can I do? Visualize the problem as a whole as clearly and as vividly as you can.

- G. Polya, from page 33 of [162]
11.1. Algorithm 11.8 presents a procedure to construct a random graph that is simple and undirected; the procedure is adapted from pages $4-7$ of Lau [130]. Analyze the time complexity of Algorithm 11.8. Compare and contrast your results with that for Algorithm 11.5.
11.2. Modify Algorithm 11.8 to generate the following random graphs.
(a) Simple weighted, undirected graph.
(b) Simple digraph.
(c) Simple weighted digraph.
11.3. Algorithm 11.1 can be considered as a template for generating random graphs in $\mathcal{G}(n, p)$. The procedure does not specify how to generate all the 2 -combinations of a set of $n>1$ objects. Here we discuss how to construct all such 2 -combinations and derive a quadratic time algorithm for generating random graphs in $\mathcal{G}(n, p)$.
(a) Consider a vertex set $V=\{0,1, \ldots, n-1\}$ with at least two elements and let E be the set of all 2-combinations of V, where each 2-combination is written $i j$. Show that $i j \in E$ if and only if $i<j$.
(b) From the previous exercise, we know that if $0 \leq i<n-1$ then there are $n-(i+1)$ pairs $j k$ where either $i=j$ or $i=k$. Show that

$$
\sum_{i=0}^{n-2}(n-i-1)=\frac{n^{2}-n}{2}
$$

and conclude that Algorithm 11.9 has worst-case runtime $O\left(\left(n^{2}-n\right) / 2\right)$.
11.4. Modify the Batagelj-Brandes Algorithm 11.3 to generate the following types of graphs.
(a) Directed simple graphs.

```
Algorithm 11.8 Random simple undirected graph.
Input Positive integers \(n\) and \(m\) specifying the order and size, respectively, of the output
    graph.
Output A random simple undirected graph with \(n\) vertices and \(m\) edges. If \(m\) exceeds
    the size of \(K_{n}\), then \(K_{n}\) is returned.
    if \(n=1\) then
        return \(K_{1}\)
    \(\max \leftarrow n(n-1) / 2\)
    if \(m>\max\) then
    return \(K_{n}\)
    \(G \leftarrow\) null graph
    \(A \leftarrow n \times n\) adjacency matrix with entries \(a_{i j}\)
    \(a_{i j} \leftarrow\) false for \(0 \leq i, j<n\)
    \(i \leftarrow 0\)
    while \(i<m\) do
        \(u \leftarrow\) draw uniformly at random from \(\{0,1, \ldots, n-1\}\)
        \(v \leftarrow\) draw uniformly at random from \(\{0,1, \ldots, n-1\}\)
        if \(u=v\) then
            continue with next iteration of loop
        if \(u>v\) then
            swap values of \(u\) and \(v\)
        if \(a_{u v}=\) false then
            add edge \(u v\) to \(G\)
            \(a_{u v} \leftarrow\) true
            \(i \leftarrow i+1\)
    return \(G\)
```

```
Algorithm 11.9 Quadratic generation of a random graph in \(\mathcal{G}(n, p)\).
Input Positive integer \(n\) and a probability \(0<p<1\).
Output A random graph from \(G(n, p)\).
    \(G \leftarrow \overline{K_{n}}\)
    \(V \leftarrow\{0,1, \ldots, n-1\}\)
    for \(i \leftarrow 0,1, \ldots, n-2\) do
        for \(j \leftarrow i+1, i+2, \ldots, n-1\) do
            \(r \leftarrow\) draw uniformly at random from interval \((0,1)\)
            if \(r<p\) then
                    add edge \(i j\) to \(G\)
    return \(G\)
```

```
Algorithm 11.10 Briggs' algorithm for random graph in \(\mathcal{G}(n, N)\).
Input Positive integers \(n\) and \(N\) such that \(1 \leq N \leq\binom{ n}{2}\).
Output A random graph from \(G(n, N)\).
    \(\max \leftarrow\binom{n}{2}\)
    if \(n=1\) or \(N=\max\) then
        return \(K_{n}\)
    \(G \leftarrow \overline{K_{n}}\)
    \(u \leftarrow 0\)
    \(v \leftarrow 1\)
    \(t \leftarrow 0 \quad \triangleright\) number of candidates processed so far
    \(k \leftarrow 0 \quad \triangleright\) number of edges selected so far
    while true do
        \(r \leftarrow\) draw uniformly at random from \(\{0,1, \ldots, \max -t\}\)
        if \(r<N-k\) then
            add edge \(u v\) to \(G\)
            \(k \leftarrow k+1\)
            if \(k=N\) then
                    return \(G\)
        \(t \leftarrow t+1\)
        \(v \leftarrow v+1\)
        if \(v=n\) then
            \(u \leftarrow u+1\)
            \(v \leftarrow u+1\)
```

(b) Directed acyclic graphs.
(c) Bipartite graphs.
11.5. Repeat the previous problem for Algorithm 11.5.
11.6. In 2006, Keith M. Briggs provided [37] an algorithm that generates a random graph in $\mathcal{G}(n, N)$, inspired by Knuth's Algorithm S (Selection sampling technique) as found on page 142 of Knuth [122]. Pseudocode of Briggs' procedure is presented in Algorithm 11.10. Provide runtime analysis of Algorithm 11.10 and compare your results with those presented in section 11.3. Under which conditions would Briggs' algorithm be more efficient than Algorithm 11.5?
11.7. Briggs' Algorithm 11.10 follows the general template of an algorithm that samples without replacement n items from a pool of N candidates. Here $0<n \leq N$ and the size N of the candidate pool is known in advance. However there are situations where the value of N is not known beforehand, and we wish to sample without replacement n items from the candidate pool. What we know is that the candidate pool has enough members to allow us to select n items. Vitter's algorithm R [187], called reservoir sampling, is suitable for the situation and runs in $O(n(1+\ln (N / n)))$ expected time. Describe and provide pseudocode of Vitter's algorithm, prove its correctness, and provide runtime analysis.
11.8. Repeat Example 11.1 but using each of Algorithms 11.1 and 11.5.
11.9. Diego Garlaschelli introduced [84] in 2009 a weighted version of the $\mathcal{G}(n, p)$ model, called the weighted random graph model. Denote by $\mathcal{G}_{W}(n, p)$ the weighted random graph model. Provide a description and pseudocode of a procedure to generate a graph in $\mathcal{G}_{W}(n, p)$ and analyze the runtime complexity of the algorithm. Describe various statistical physics properties of $\mathcal{G}_{W}(n, p)$.
11.10. Latora and Marchiori [129] extended the Watts-Strogatz model to take into account weighted edges. A crucial idea in the Latora-Marchiori model is the concept of network efficiency. Describe the Latora-Marchiori model and provide pseudocode of an algorithm to construct Latora-Marchiori networks. Explain the concepts of local and global efficiencies and how these relate to clustering coefficient and characteristic path length. Compare and contrast the Watts-Strogatz and LatoraMarchiori models.
11.11. The following model for "growing" graphs is known as the CHKNS model [46], ${ }^{1}$ named for its original proponents. Start with the trivial graph G at time step $t=1$. For each subsequent time step $t>1$, add a new vertex to G. Furthermore choose two vertices uniformly at random and with probability δ join them by an undirected edge. The newly added edge does not necessarily have the newly added vertex as an endpoint. Denote by $d_{k}(t)$ the expected number of vertices with degree k at time t. Assuming that no self-loops are allowed, show that

$$
d_{0}(t+1)=d_{0}(t)+1-2 \delta \frac{d_{0}(t)}{t}
$$

and

$$
d_{k}(t+1)=d_{k}(t)+2 \delta \frac{d_{k-1}(t)}{t}-2 \delta \frac{d_{k}(t)}{t}
$$

As $t \rightarrow \infty$, show that the probability that a vertex be chosen twice decreases as t^{-2}. If v is a vertex chosen uniformly at random, show that

$$
\operatorname{Pr}[\operatorname{deg}(v)=k]=\frac{(2 \delta)^{k}}{(1+2 \delta)^{k+1}}
$$

and conclude that the CHKNS model has an exponential degree distribution. The size of a component counts the number of vertices in the component itself. Let $N_{k}(t)$ be the expected number of components of size k at time t. Show that

$$
N_{1}(t+1)=N_{1}(t)+1-2 \delta \frac{N_{1}(t)}{t}
$$

and for $k>1$ show that

$$
N_{k}(t+1)=N_{k}(t)+\delta\left(\sum_{i=1}^{k-1} \frac{i N_{i}(t)}{t} \cdot \frac{(k-i) N_{k-i}(t)}{t}\right)-2 \delta \frac{k N_{k}(t)}{t}
$$

11.12. Algorithm 11.7 can easily be modified to generate other types of scale-free networks. Based upon the latter algorithm, Batagelj and Brandes [18] presented a procedure for generating bipartite scale-free networks; see Algorithm 11.11 for

[^16]pseudocode. Analyze the runtime efficiency of Algorithm 11.11. Fix positive integer values for n and d, say $n=10,000$ and $d=4$. Use Algorithm 11.11 to generate a bipartite graph with your chosen values for n and d. Plot the degree distribution of the resulting graph using a log-log scale and confirm that the generated graph is scale-free.

```
Algorithm 11.11 Bipartite scale-free network via preferential attachment.
Input Positive integer \(n>1\) and minimum degree \(d \geq 1\).
Output Bipartite scale-free multigraph. Each partition has \(n\) vertices and each vertex
    has minimum degree \(d\).
    \(G \leftarrow \overline{K_{2 n}} \quad \triangleright\) vertex set is \(\{0,1, \ldots, 2 n-1\}\)
    \(M_{1} \leftarrow\) list of length \(2 n d\)
    \(M_{2} \leftarrow\) list of length \(2 n d\)
    for \(v=0,1, \ldots, n-1\) do
        for \(i=0,1, \ldots, d-1\) do
            \(M_{1}[2(v d+i)] \leftarrow v\)
            \(M_{2}[2(v d+i)] \leftarrow n+v\)
            \(r \leftarrow\) draw uniformly at random from \(\{0,1, \ldots, 2(v d+i)\}\)
            if \(r\) is even then
                \(M_{1}[2(v d+i)+1] \leftarrow M_{2}[r]\)
            else
                \(M_{1}[2(v d+i)+1] \leftarrow M_{1}[r]\)
            \(r \leftarrow\) draw uniformly at random from \(\{0,1, \ldots, 2(v d+i)\}\)
            if \(r\) is even then
                \(M_{2}[2(v d+i)+1] \leftarrow M_{1}[r]\)
            else
                \(M_{2}[2(v d+i)+1] \leftarrow M_{2}[r]\)
    add edges \(\left(M_{1}[2 i], M_{1}[2 i+1]\right)\) and \(\left(M_{2}[2 i], M_{2}[2 i+1]\right)\) to \(G\)
    for \(i=0,1, \ldots, n d-1\)
    return \(G\)
```

11.13. Find the degree and distance distributions, average path lengths, and clustering coefficients of the following network datasets:
(a) actor collaboration [14]
(b) co-authorship of condensed matter preprints [152]
(c) Google web graph [134]
(d) LiveJournal friendship $[10,134]$
(e) neural network of the C. elegans $[193,194]$
(f) US patent citation [133]
(g) Western States Power Grid of the US [193]
(h) Zachary karate club [203]
11.14. Consider the plots of degree distributions in Figures 11.12 and 11.13. Note the noise in the tail of each plot. To smooth the tail, we can use the cumulative degree
distribution

$$
P^{c}(k)=\sum_{i=k}^{\infty} \operatorname{Pr}[\operatorname{deg}(v)=i] .
$$

Given a graph with scale-free degree distribution $P(k) \sim k^{-\alpha}$ and $\alpha>1$, the cumulative degree distribution follows $P^{c}(k) \sim k^{1-\alpha}$. Plot the cumulative degree distribution of each network dataset in Problem 11.13.

Appendix A

Asymptotic growth

Name	Standard notation	Intuitive notation	Meaning
theta	$f(n)=\Theta(g(n))$	$f(n) \in \Theta(g(n))$	$f(n) \approx c \cdot g(n)$
big oh	$f(n)=O(g(n))$	$f(n) \leq O(g(n))$	$f(n) \leq c \cdot g(n)$
omega	$f(n)=\Omega(g(n))$	$f(n) \geq \Omega(g(n))$	$f(n) \geq c \cdot g(n)$
little oh	$f(n)=o(g(n))$	$f(n) \ll o(g(n))$	$f(n) \ll g(n)$
little omega	$f(n)=\omega(g(n))$	$f(n) \gg \omega(g(n))$	$f(n) \gg g(n)$
tilde	$f(n)=\tilde{\Theta}(g(n))$	$f(n) \in \tilde{\Theta}(g(n))$	$f(n) \approx \log ^{\Theta(1)} g(n)$

Table A.1: Meaning of asymptotic notations.

Class	$\lim _{n \rightarrow \infty} f(n) / g(n)=$	Equivalent definition
$f(n)=\Theta(g(n))$	a constant	$f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$
$f(n)=o(g(n))$	zero	$f(n)=O(g(n))$ but $f(n) \neq \Omega(g(n))$
$f(n)=\omega(g(n))$	∞	$f(n) \neq O(g(n))$ but $f(n)=\Omega(g(n))$

Table A.2: Asymptotic behavior in the limit of large n.

Appendix B

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

> http://www.fsf.org

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ
in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties-for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published on the MMC site.
"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.
"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

> Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no BackCover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with ... Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with the FrontCover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley Publishing Company, 1974.
[2] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. In TOC, pages 171-180. ACM, 2000.
[3] W. Aiello, F. Chung, and L. Lu. Handbook of Massive Data Sets, chapter Random evolution of massive graphs, pages 97-122. Kluwer Academic Publishers, 2002.
[4] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Rev. Mod. Phys., 74:47-97, 2002.
[5] R. Albert, H. Jeong, and A.-L. Barabási. Diameter of the World-Wide Web. Nature, 401:130-131, 1999.
[6] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley. Classes of small-world networks. PNAS, 97:11149-11152, 2000.
[7] J. V. Anna Bernasconi, Bruno Codenotti. A characterization of bent functions in terms of strongly regular graphs. IEEE Trans. Comp., 50:984-985, 2001.
[8] V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev. On economical construction of the transitive closure of a directed graph. Soviet Math. Doklady, 11:1209-1210, 1970.
[9] A. S. Asratian, T. M. J. Denley, and R. Häggkvist. Bipartite Graphs and their Applications. Cambridge University Press, 1998.
[10] L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and X. Lan. Group formation in large social networks: membership, growth, and evolution. In T. Eliassi-Rad, L. H. Ungar, M. Craven, and D. Gunopulos, editors, $K D D$, pages 44-54. ACM, 2006.
[11] M. Baker and X. Faber. Quantum Graphs and Their Applications, chapter Metrized Graphs, Laplacian Operators, and Electrical Networks, pages 15-33. AMS, 2006.
[12] W. W. R. Ball and H. S. M. Coxeter. Mathematical Recreations and Essays. Dover Publications, 13th edition, 1987.
[13] A.-L. Barabási. Linked: The New Science of Networks. Basic Books, 2002.
[14] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509-512, 1999.
[15] A.-L. Barabási, R. Albert, and H. Jeong. Mean-field theory for scale-free random networks. Phys. A, 272:173-187, 1999.
[16] A.-L. Barabási, R. Albert, and H. Jeong. Scale-free characteristics of random networks: The topology of the world wide web. Phys. A, 281:69-77, 2000.
[17] A. Barrat and M. Weigt. On the properties of small-world network models. Eur. Phys. J. B, 13:547-560, 2000.
[18] V. Batagelj and U. Brandes. Efficient generation of large random networks. Phys. Rev. E, 71:036113, 2005.
[19] R. A. Beezer. A First Course in Linear Algebra. Robert A. Beezer, University of Puget Sound, USA, 2009. http://linear.ups.edu.
[20] J. Bell and B. Stevens. A survey of known results and research areas for n-queens. Disc. Math., 309:1-31, 2009.
[21] R. Bellman. Dynamic Programming. Princeton University Press, 1957.
[22] A. T. Benjamin and C. R. Yerger. Combinatorial interpretations of spanning tree identities. Bull. Inst. Comb. App., 47:37-42, 2006.
[23] A. Bernasconi. Mathematical techniques for the analysis of Boolean functions. PhD thesis, Universit di Pisa-Udine, Pisa, Italy, 1998.
[24] A. Bernasconi and B. Codenotti. Spectral analysis of boolean functions as a graph eigenvalue problem. IEEE Trans. Comp., 48:345-351, 1999.
[25] N. L. Biggs. Algebraic potential theory on graphs. Bull. London Math. Soc., 29:641-682, 1997.
[26] N. L. Biggs. Chip firing and the critical groups of graphs. J. Alg. Combin., 9:25-45, 1999.
[27] N. L. Biggs. The critical group from a cryptographic perspective. Bull. London Math. Soc., 39:829-836, 2007.
[28] N. L. Biggs. Codes: An Introduction to Information, Communication, and Cryptography. Springer, 2009.
[29] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex networks: Structure and dynamics. Phys. Rep., 424:175-308, 2006.
[30] B. Bollobás. Random Graphs. Cambridge University Press, 2nd edition, 2001.
[31] B. Bollobás and O. Riordan. The diameter of a scale-free random graph. Combinatorica, 24:5-34, 2004.
[32] B. Bollobás, O. Riordan, J. Spencer, and G. E. Tusnády. The degree sequence of a scale-free random graph process. Rand. Struc. Alg., 18:279-290, 2001.
[33] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North-Holland, 1976.
[34] O. Borůvka. O jistém problému minimálním. Práce Mor. Přírodověd. Spol. v Brně III, 3:37-58, 1926.
[35] O. Borůvka. Příspěvek k řešení otázky ekonomické stavby elektrovodních sítí. Elektronický Obzor, 15:153-154, 1926.
[36] U. Brandes. A faster algorithm for betweenness centrality. J. Math. Soc., 25:163-177, 2001.
[37] K. M. Briggs. The very_nauty graph library (version 1.1), accessed 28th January 2011. http://keithbriggs.info/very_nauty.html.
[38] M. Brinkmeier and T. Schank. Network Analysis: Methodological Foundations, chapter Network Statistics, pages 293-317. Springer, 2005.
[39] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener. Graph structure in the web. Comp. Net., 33:309-320, 2000.
[40] A. Brouwer. The spectrum of a graph, 2003. http://www.win.tue.nl/~aeb/srgbk/srg1only. html.
[41] M. R. Brown. The Analysis of a Practical and Nearly Optimal Priority Queue. PhD thesis, Stanford University, USA, 1977.
[42] M. R. Brown. Implementation and analysis of binomial queue algorithms. SIAM J. Comp., 7:298-319, 1978.
[43] J. Buchmann, E. Dahmen, and M. Schneider. Merkle tree traversal revisited. In J. Buchmann and J. Ding, editors, PQCrypto, pages 63-78. Springer, 2008.
[44] F. Buckley and F. Harary. Distance in Graphs. Perseus Books, 1990.
[45] F. Buckley and W. Y. Lau. Mutually eccentric vertices in graphs. Ars Combinatoria, 67, 2003.
[46] D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman, and S. H. Strogatz. Are randomly grown graphs really random? Phys. Rev. E, 64:041902, 2001.
[47] C. Castellano, S. Fortunato, and V. Loreto. Statistical physics of social dynamics. Rev. Mod. Phys., 81:591-646, 2009.
[48] R. D. Castro and J. W. Grossman. Famous trails to Paul Erdős. Math. Intel., 21:51-53, 1999.
[49] B. Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type complexity. J. ACM, 47:1028-1047, 2000.
[50] B. Chazelle. The soft heap: An approximate priority queue with optimal error rate. J. ACM, 47:1012-1027, 2000.
[51] Q. Chen, H. Chang, R. Govindan, S. Jamin, S. Shenker, and W. Willinger. The origin of power-laws in internet topologies revisited. In INFOCOM, pages 608-617. IEEE, 2002.
[52] A. G. Chetwynd and A. J. W. Hilton. Star multigraphs with three vertices of maximum degree. Math. Proc. Camb. Phil. Soc., 100:303-317, 1986.
[53] G. Choquet. Étude de certains réseaux de routes. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 206:310-313, 1938.
[54] F. Chung. Laplacians and the Cheeger inequality for directed graphs. Ann. Comb., 9:1-19, 2005.
[55] D. Cohen. On holy wars and a plea for peace, 01st April 1980. http://www.ietf.org/rfc/ ien/ien137.txt.
[56] D. Cohen. On holy wars and a plea for peace. IEEE Comp. Mag., 14:48-54, 1981.
[57] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press and McGraw-Hill, 2nd edition, 2001.
[58] L. da F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas. Characterization of complex networks: A survey of measurements. Adv. Phys., 56:167-242, 2007.
[59] L. da Fontoura Costa, O. N. Oliveira Jr., G. Travieso, F. A. Rodrigues, P. R. Villas Boas, L. Antiqueira, M. P. Viana, and L. E. C. Rocha. Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys., 60:329-412, 2011.
[60] D. J. de Solla Price. Networks of scientific papers. Science, 149:510-515, 1965.
[61] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269-271, 1959.
[62] S. N. Dorogovtsev and J. F. F. Mendes. Language as an evolving word web. Proc. R. Soc. Lond. B, 268:2603-2606, 2001.
[63] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of networks. Adv. Phys., 51:1079-1187, 2002.
[64] H. Dörrie. 100 Great Problems of Elementary Mathematics: Their History and Solution. Translated by David Antin. Dover Publications, 1965.
[65] N. J. Durgin. Abelian sandpile model on symmetric graphs. 2009. Thesis, Harvey Mudd, 2009. Available: http://www.math.hmc.edu/seniorthesis/archives/2009/ndurgin/ ndurgin-2009-thesis.pdf.
[66] M. Dyer and A. Frieze. Randomly coloring random graphs. Rand. Struc. Alg., 36:251272, 2010.
[67] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 2010.
[68] M. Edelberg, M. R. Garey, and R. L. Graham. On the distance matrix of a tree. Disc. Math., 14:23-39, 1976.
[69] N. D. Elkies and R. P. Stanley. The mathematical knight. Math. Intel., 25:22-34, 2003.
[70] R. C. Entringer, D. E. Jackson, and D. A. Snyder. Distance in graphs. Czech. Math. J., 26:283-296, 1976.
[71] P. Erdős and T. Gallai. Graphs with prescribed degrees of vertices (in Hungarian). Matematikai Lopak, 11:264-274, 1960.
[72] P. Erdős and A. Rényi. On random graphs. Pub. Math., 6:290-297, 1959.
[73] P. Erdős and A. Rényi. On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl., 5:17-61, 1960.
[74] P. L. Erdős, I. Miklós, and Z. Toroczkai. A simple Havel-Hakimi type algorithm to realize graphical degree sequences of directed graphs. Elec. J. Comb., 17:R66, 2010.
[75] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the Internet topology. Comp. Comm. Rev., 29:251-262, 1999.
[76] R. Ferrer i Cancho and R. V. Solé. The small world of human language. Proc. R. Soc. Lond. B, 268:2261-2265, 2001.
[77] K. Florek, J. Łukaszewicz, J. Perkal, H. Steinhaus, and S. Zubrzycki. Sur la liaison et la division des points d'un ensemble fini. Colloquium Mathematicum, 2:282-285, 1951.
[78] R. W. Floyd. Algorithm 97: Shortest path. Comm. ACM, 5:345, 1962.
[79] L. R. Ford Jr. Network flow theory. Technical Report P-923, The Rand Corporation, USA, 1956.
[80] L. R. Foulds. Graph Theory Applications. Springer, 1992.
[81] G. N. Frederickson. An optimal algorithm for selection in a min-heap. Inf. Comp., 104:197-214, 1993.
[82] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM, 34:596-615, 1987.
[83] G. Gallo and S. Pallottino. Netflow at Pisa, chapter Shortest path methods: A unifying approach, pages 38-64. Springer, 1986.
[84] D. Garlaschelli. The weighted random graph model. New J. Phys., 11:073005, 2009.
[85] E. N. Gilbert. Random graphs. Ann. Math. Stat., 30:1141-1144, 1959.
[86] C. Godsil and R. Beezer. Explorations in algebraic graph theory with Sage, 2012. in preparation.
[87] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, 2004.
[88] R. L. Graham and P. Hell. On the history of the minimum spanning tree problem. Ann. Hist. Comp., 7:43-57, 1985.
[89] R. L. Graham and H. O. Pollak. On the addressing problem for loop switching. Bell Sys. Tech. J., 50:2495-2519, 1971.
[90] I. Gribkovskaia, Ø. Halskau Sr., and G. Laporte. The bridges of Königsberg - a historical perspective. Networks, 49:199-203, 2007.
[91] J. Gross and J. Yellen. Graph Theory and Its Applications. CRC Press, 1999.
[92] J. W. Grossman and P. D. F. Ion. On a portion of the well-known collaboration graph. Congressus Numerantium, 108:129-131, 1995.
[93] J. Guare. Six Degrees of Separation: A Play. Vintage, 1990.
[94] I. Gutman, Y.-N. Yeh, S.-L. Lee, and Y.-L. Luo. Some recent results in the theory of the Wiener number. Indian J. Chem., 32A:651-661, 1993.
[95] S. L. Hakimi. On realizability of a set of integers as degrees of the vertices of a linear graph I. SIAM J. App. Math., 10:496-506, 1962.
[96] S. L. Hakimi. On realizability of a set of integers as degrees of the vertices of a linear graph II: Uniqueness. SIAM J. App. Math., 11:135-147, 1963.
[97] S. L. Hakimi and J. Bredeson. Graph theoretic error-correcting codes. IEEE Trans. Inf. Theory, 14:584-591, 1968.
[98] V. Havel. Poznámka o existenci konečných grafů. Časopis pro Pěstování Matematiky, 80:477-480, 1955.
[99] K. Heinrich and P. Horák. Euler's theorem. Am. Math. Mont., 101:260-261, 1994.
[100] A. E. Holroyd, L. Levine, K. Meszaros, Y. Peres, J. Propp, and D. B. Wilson. Chip-firing and rotor-routing on directed graphs. 2008. http://arxiv.org/abs/0801.3306.
[101] J. E. Hopcroft and R. E. Tarjan. Algorithm 447: Efficient algorithms for graph manipulation. Comm. ACM, 16:372-378, 1973.
[102] B. Hopkins and R. Wilson. The truth about Königsberg. College Math. J., 35:198-207, 2004.
[103] S. Howard. C algorithms (version 1.2.0), accessed 20th December 2010. http:// c-algorithms.sourceforge.net.
[104] D. A. Huffman. A method for the construction of minimum-redundancy codes. In Proceedings of the I.R.E, volume 40, pages 1098-1102, 1952.
[105] M. Huxham, S. Beaney, and D. Raffaelli. Do parasites reduce the chances of triangulation in a real food web? Oikos, 76:284-300, 1996.
[106] F. Jaeger, D. L. Vertigan, and D. J. A. Welsh. On the computational complexity of the Jones and Tutte polynomials. Mathematical Proceedings of the Cambridge Philosophical Society, 108:35-53, 1990.
[107] V. Jarník. O jistém problému minimálním (Z dopisu panu O. Borůvkovi) (Czech). Práce Moravské Přírodovědecké Společnosti Brno, 6:57-63, 1930.
[108] T. R. Jensen and B. Toft. Graph Coloring Problems. John Wiley \& Sons, 1995.
[109] H. Jeong, S. Mason, A.-L. Barabási, and Z. N. Oltvai. Lethality and centrality in protein networks. Nature, 411:41-42, 2001.
[110] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási. The large-scale organization of metabolic networks. Nature, 407:651-654, 2000.
[111] D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. J. ACM, 24:1-13, 1977.
[112] J. H. Jones and M. S. Handcock. An assessment of preferential attachment as a mechanism for human sexual network formation. Proc. R. Soc. Lond. B, 270:1123-1128, 2003.
[113] C. Jordan. Sur les assemblages de lignes. Journal für die reine und angewandte Mathematik, 70:185-190, 1869.
[114] D. Jungnickel. Graphs, Networks and Algorithms. Springer, 3rd edition, 2008.
[115] D. Jungnickel and S. A. Vanstone. Graphical codes revisited. IEEE Trans. Inf. Theory, 43:136-146, 1997.
[116] D. Kalman. Marriages made in the heavens: A practical application of existence. Math. Mag., 72:94-103, 1999.
[117] H. Kaplan and U. Zwick. A simpler implementation and analysis of Chazelle's soft heaps. In C. Mathieu, editor, SODA, pages 477-485. SIAM, 2009.
[118] A. Kershenbaum and R. Van Slyke. Computing minimum spanning trees efficiently. In Proceedings of the ACM Annual Conference 25, pages 518-527. ACM, 1972.
[119] S. C. Kleene. Automata Studies, chapter Representation of Events in Nerve Nets and Finite Automata, pages 3-41. Princeton University Press, 1956.
[120] J. Kleinberg. The small-world phenomenon: An algorithmic perspective. In $S T O C$, pages 163-170. ACM, 2000.
[121] D. E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-Wesley, 1993.
[122] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming. Addison-Wesley, 3rd edition, 1998.
[123] V. F. Kolchin. Random Graphs. Cambridge University Press, 1999.
[124] L. G. Kraft. A device for quantizing, grouping, and coding amplitude-modulated pulses. Master's thesis, Massachusetts Institute of Technology, USA, 1949.
[125] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. AMS, 7:48-50, 1956.
[126] J. C. Lagarias. The $3 x+1$ problem and its generalizations. Am. Math. Mont., 92:3-23, 1985.
[127] J. C. Lagarias. The $3 x+1$ problem: An annotated bibliography (1963-1999), 03rd August 2009. arXiv:math/0309224, http://arxiv.org/abs/math.NT/0309224.
[128] J. C. Lagarias. The $3 x+1$ problem: An annotated bibliography, II (2000-2009), 27th August 2009. arXiv:math/0608208, http://arxiv.org/abs/math.NT/0608208.
[129] V. Latora and M. Marchiori. Economic small-world behavior in weighted networks. Eur. Phys. J. B, 32:249-263, 2003.
[130] H. T. Lau. A Java Library of Graph Algorithms and Optimization. Chapman \& Hall/CRC, 2007.
[131] C. Y. Lee. An algorithm for path connections and its applications. IRE Transactions on Electronic Computers, EC-10:346-365, 1961.
[132] D. H. Lehmer. Mathematical methods in large-scale computing units. In Proceedings of the Second Symposium on Large-Scale Digital Calculating Machinery, 1949.
[133] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs over time: Densification laws, shrinking diameters and possible explanations. In R. Grossman, R. J. Bayardo, and K. P. Bennett, editors, $K D D$, pages 177-187. ACM, 2005.
[134] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical properties of community structure in large social and information networks. In J. Huai, R. Chen, H.W. Hon, Y. Liu, W.-Y. Ma, A. Tomkins, and X. Zhang, editors, WWW, pages 695-704. ACM, 2008.
[135] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and Y. Åberg. The web of human sexual contacts. Nature, 411:907-908, 2001.
[136] M. Löbbing and I. Wegener. The number of knight's tours equals 33,439,123,484,294 counting with binary decision diagrams. Elec. J. Comb., 3:R5, 1996.
[137] H. Loberman and A. Weinberger. Formal procedures for connecting terminals with a minimum total wire length. J. $A C M$, 4:428-437, 1957.
[138] M. E. Lucas. Récréations Mathématiques. 4 volumes, Gauthier-Villars, Paris, 1882-94.
[139] M. Mareš. The saga of minimum spanning trees. Comp. Sci. Rev., 2:165-221, 2008.
[140] N. D. Martinez. Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecological Monographs, 61:367-392, 1991.
[141] B. McKay. Description of graph6 and sparse6 encodings, accessed 05th April 2010. http://cs.anu.edu.au/~bdm/data/formats.txt.
[142] B. D. McKay. Knight's tours of an 8×8 chessboard. Technical Report TR-CS-97-03, Department of Computer Science, Australian National University, Australia, February 1997.
[143] B. McMillan. Two inequalities implied by unique decipherability. IRE Transactions on Information Theory, 2:115-116, 1956.
[144] C. Merino. Matroids, the tuttle polynomial, and the chip firing game. 1999. http:// calli.matem.unam.mx/~merino/e_publications.html\#2, http://www.dmtcs.org/dmtcs-ojs/ index.php/proceedings/article/viewArticle/dmAA0118, (The first link is for the thesis (in ps format); the second is to a paper.).
[145] R. C. Merkle. A digital signature based on a conventional encryption function. In C. Pomerance, editor, CRYPTO, pages 369-378. Springer, 1988.
[146] S. Milgram. The small world problem. Psychology Today, 1:60-67, 1967.
[147] B. Mohar, D. Babić, and N. Trinajstić. A novel definition of the Wiener index for trees. J. Chem. Inf. Comp. Sci., 33:153-154, 1993.
[148] E. F. Moore. The shortest path through a maze. In Proceedings of the International Symposium on the Theory of Switching, pages 285-292, 1959.
[149] S. Myles, A. R. Boyko, C. L. Owens, P. J. Brown, F. Grassi, M. K. Aradhya, B. Prins, A. Reynolds, J.-M. Chia, D. Ware, C. D. Bustamante, and E. S. Buckler. Genetic structure and domestication history of the grape. PNAS, 108:3530-3535, 2011.
[150] M. Newman, A.-L. Barabási, and D. J. Watts, editors. The Structure and Dynamics of Networks. Princeton University Press, 2006.
[151] M. E. J. Newman. Scientific collaboration networks: I. Network construction and fundamental results. Phys. Rev. E, 64:016131, 2001.
[152] M. E. J. Newman. The structure of scientific collaboration networks. PNAS, 98:404-409, 2001.
[153] M. E. J. Newman. Mixing patterns in networks. Phys. Rev. E, 67:026126, 2003.
[154] M. E. J. Newman. The structure and function of complex networks. SIAM Rev., 45:167256, 2003.
[155] M. E. J. Newman. Analysis of weighted networks. Phys. Rev. E, 70:056131, 2004.
[156] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree distribution and their applications. Phys. Rev. E, 64:026118, 2001.
[157] E. Nuutila. Efficient Transitive Closure Computation in Large Digraphs. Finnish Academy of Technology, 1995. http://www.cs.hut.fi/~enu/thesis.html.
[158] J. Oxley. What is a matroid? Cubo Matemática Educacional, 5:179-218, 2003.
[159] D. Perkinson, J. Perlman, and J. Wilmes. Primer on the algebraic geometry of sandpiles. 2009. http://people.reed.edu/~davidp/412/handouts/primer091810.pdf.
[160] J. G. Perlman. Sandpiles: a bridge between graphs and toric ideals. 2009. Thesis, Reed College, http://people.reed.edu/~davidp/homepage/seniors/perlman.pdf.
[161] J. Petersen. Sur le théorème de tait. L’Intermédiaire des Mathématiciens, 5:225-227, 1898.
[162] G. Polya. How To Solve It: A New Aspect of Mathematical Method. Princeton University Press, 2nd edition, 1957.
[163] R. C. Prim. Shortest connection networks and some generalizations. Bell Sys. Tech. J., 36:1389-1401, 1957.
[164] R. Rasmussen. Algorithmic Approaches for Playing and Solving Shannon Games. PhD thesis, Queensland University of Technology, Australia, 2007. http://eprints.qut.edu.au/ 18616/.
[165] S. Redner. How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B, 4:131-134, 1998.
[166] K. H. Rosen. Elementary Number Theory and Its Applications. Addison Wesley Longman, 4th edition, 2000.
[167] B. Roy. Transitivité et connexité. Comptes Rendus des Séances de l'Académie des Sciences, 249:216-218, 1959.
[168] V. Runde. A Taste of Topology. Springer, 2005.
[169] R. Sedgewick. Algorithms in C. Addison-Wesley Publishing Company, 1990.
[170] P. O. Seglen. The skewness of science. J. Am. Soc. Inf. Sci., 43:628-638, 1992.
[171] P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. Mukherjee, and S. S. Manna. Small-world properties of the Indian railway network. Phys. Rev. E, 67:036106, 2003.
[172] A. Shimbel. Structure in communications nets. In Proceedings of the Symposium on Information Networks, pages 199-203, 1955.
[173] S. Shirali and H. L. Vasudeva. Metric Spaces. Springer, 2006.
[174] V. Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge University Press, 2nd edition, 2008. http://www.shoup.net/ntb.
[175] G. Sierksma and H. Hoogeveen. Seven criteria for integer sequences being graphic. J. Graph Theory, 15:223-231, 1991.
[176] H. A. Simon. On a class of skew distribution functions. Biometrika, 42:425-440, 1955.
[177] P. Stanica. Graph eigenvalues and Walsh spectrum of boolean functions. Integers, 7, 2007.
[178] M. Szydlo. Merkle tree traversal in log space and time. In C. Cachin and J. Camenisch, editors, EUROCRYPT, pages 541-554. Springer, 2004.
[179] T. Takaoka. $O(1)$ time algorithms for combinatorial generation by tree traversal. Comp. J., 42:400-408, 1999.
[180] T. Takaoka. Theory of 2-3 heaps. In T. Asano, H. Imai, D. T. Lee, S.-I. Nakano, and T. Tokuyama, editors, COCOON. Springer, 1999.
[181] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comp., 1:146-160, 1972.
[182] G. Tarry. Le problème des labyrinthes. Nouvelles Annales de Mathématique, 14:187-190, 1895.
[183] J. Travers and S. Milgram. An experimental study of the small world problem. Sociometry, 32:425-443, 1969.
[184] A. Tripathi and S. Vijay. A note on a theorem of Erdős \& Gallai. Disc. Math., 265:417420, 2003.
[185] S. Valverde, R. F. Cancho, and R. V. Solé. Scale-free networks from optimal design. Euro. Lett., 60:512-517, 2002.
[186] A. Vázquez, R. Pastor-Satorras, and A. Vespignani. Large-scale topological and dynamical properties of the Internet. Phys. Rev. E, 65:066130, 2002.
[187] J. S. Vitter. Random sampling with a reservoir. ACM Tran. Math. Soft., 11:37-57, 1985.
[188] J. Vuillemin. A data structure for manipulating priority queues. Comm. ACM, 21:309315, 1978.
[189] S. Warshall. A theorem on boolean matrices. J. ACM, 9:11-12, 1962.
[190] D. J. Watts. Networks, dynamics, and the small-world phenomenon. Am. J. Soc., 105:493-527, 1999.
[191] D. J. Watts. Small Worlds. Princeton University Press, 1999.
[192] D. J. Watts. Six Degrees: The Science of a Connected Age. W. W. Norton \& Company, 2004.
[193] D. J. Watts and S. H. Strogatz. Collective dynamics of 'small-world' networks. Nature, 393:440-442, 1998.
[194] J. G. White, E. Southgate, J. N. Thompson, and S. Brenner. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B, 314:1-340, 1986.
[195] H. Whitney. Congruent graphs and the connectivity of graphs. Am. J. Math., 54:150-168, 1932.
[196] H. Wiener. Structural determination of paraffin boiling points. J. Am. Chem. Soc., 69:17-20, 1947.
[197] J. W. J. Williams. Algorithm 232: Heapsort. Comm. ACM, 7:347-348, 1964.
[198] T. Yamada, S. Kataoka, and K. Watanabe. Listing all the minimum spanning trees in an undirected graph. Int. J. Comp. Math., 87:3175-3185, 2010.
[199] T. Yamada and H. Kinoshita. Finding all the negative cycles in a directed graph. Disc. App. Math., 118:279-291, 2002.
[200] J. Yang and Y. Chen. Fast computing betweenness centrality with virtual nodes on large sparse networks. PLoS ONE, 6:e22557, 2011.
[201] V. Yegnanarayanan. Graph theory to pure mathematics: Some illustrative examples. Resonance, 10:50-59, 2005.
[202] Y.-N. Yeh and I. Gutman. On the sum of all distances in composite graphs. Disc. Math., 135:359-365, 1994.
[203] W. W. Zachary. An information flow model for conflict and fission in small groups. J. Anth. Res., 33:452-473, 1977.

Index

$A(G), 21$
$C^{0}(G, F), 223$
$C^{1}(G, F), 223$
$C_{n}, 16$
$E_{n}, 46$
$G^{c}, 39$
$K_{n}, 15$
$K_{m, n}, 19$
$L_{n}, 41$
$P_{n}, 16,41$
$Q_{n}, 42$
$W_{n}, 35$
$\Delta, 35$
$\Delta(G), 10$
adj, 4
$\mathcal{L}, 27$
$\mathcal{L}(G), 8$
$\mathcal{N}_{i}, 259$
$\chi_{v}(G), 213$
$\cong 28$
deg, 5, 8
$\mathrm{deg}_{+}, 7$
deg $_{-}, 7$
$\delta(G), 10$
depth(v), 52
diam $(G), 185$
$\epsilon, 183$
$\gg, 255$
height(T), 52
iadj, 5
id, 5
$\kappa(G), 188$
$\kappa_{e}(G), 189$
$\kappa_{v}(G), 187$
$\lambda(G), 189$
lg, 154
oadj, 5
od, 5
$\omega, 14$
$\omega(G), 213$
$\bar{G}, 39$
$\operatorname{per}(G), 185$
$\operatorname{rad}(G), 185$
-, 41
td, 139
ع, 85, 88
$\varphi(n), 61$
f-augmenting, 236
f-saturated, 236
f-unsaturated, 236
f-zero, 236
k-coloring, 212
k-connected, 188
k-edge-connected, 189
n-queens problem, 145
n-space, 82
graph6, 104, 106, 108, 109
sparse6, 106, 108
Łukaszewicz, J., 70
edge expander family, 204
active vertex, 229
acyclic, 51, 63, 96
adjacency matrix, 21
reduced, 23
signed edge, 199
algorithm
greedy, 63, 66, 126, 127
optimization, 57
random, 48, 96-98, 148, 247, 248, 252254, 257, 264, 266, 267, 269
recursive, 101
alphabet, 79, 80, 85
binary, 85, 86
English, 79, 98
weighted, 80, 87
Altito, Noelie, 135
arcs, 3
ASCII, 79, 81, 106, 108
augmenting path, 236
Australian National University, 106
automata theory, 134
AVL tree, 181
backtrack, 116
algorithm, 145
Baker, Matthew, 183
balanced bracket problem, 142, 143
Barabási-Albert model, 261
Batagelj, Vladimir, 250, 268
Batagelj-Brandes algorithm, 250, 252
Baudot, E., 81
Bellman, Richard E., 127
Bellman-Ford algorithm, 123, 127-130, 135
Benjamin, Arthur T., 102
bent, 200
Bernoulli family, 53
BFS, 110-114, 116, 120
big-endian, 108, 109
Biggs, Norman, 87
binary heap, 150, 151
maximum, 178
minimum, 178
order property, 152, 180
sift-down, 157
sift-up, 155
structure property, 152
binary search, 138, 169
binary search tree, 150, 169, 171, 178
left subtree property, 169
property, 169, 180
recursion property, 169
right subtree property, 169
binary tree, 54, 56, 75, 77-79, 98, 150
complete, 77,78
nearly complete, 152
random, 80, 98
Binet
formula, 181
Jacques Philippe Marie, 181
binomial
coefficient, 162, 178
distribution, 247
random graph, 249
tree, 162
binomial heap, 150, 161, 162, 164, 179
maximum, 179
minimum, 179
order property, 164, 180
properties, 164
root-degree property, 164, 165
biology, 182
bipartite graph, 16, 20, 48, 268, 269
complete, 19, 20
Birkhoff-Lewis Conjecture, 221
bit, 79, 85, 108
least significant, 108
most significant, 108
parity, 108
bit vector, 106, 108, 109
length, 108
bond, 38, 57, 224
Borůvka
algorithm, 63, 70, 71, 95, 96, 101
Otakar, 63, 70
bowtie graph, 13
braille, 80
branch cut, 54, 56
Brandes, Ulrik, 250, 268
breadth-first search, 56, 90, 91, 110-114, $119,120,122-124,137,141$
tree, 110, 113
bridge, 38, 52, 58, 70, 74, 189
bridgeless, 189
Briggs
algorithm, 267
Keith M., 267
Brooks' inequality, 215
BST, 169
bubble sort, 140, 141
butterfly graph, 13
Caenorhabditis elegans, 244
canonical label, 30
Cantor-Schröder-Bernstein theorem, 48
capacity, 235
cut, 237
card, 116
cardinality, 8
Carroll, Lewis, 2
Cartesian product, 41
Catalan
number, 46, 47, 78
recursion, 78
Cayley graph of Boolean function, 199
characteristic polynomial, 198
Chazelle, Bernard, 179
check matrix, 23
chemistry, 133, 182
chess, 80, 114, 145
chessboard, 114
knight, 114
knight piece, 114
knight's tour, 114-116, 145, 146
queen, 145,146
child
left, $75,77,90,93$
right, $75,90,93$
Chinese ring puzzle, 81,82
chip firing game, 229
chip-firing game, 229
chip-firing games, 228
CHKNS model, 268
Choquet, G., 70
chromatic
index, 215
number, 213
polynomial, 220
root, 221
chromatically equivalent, 220
Chu Shi-Chieh, 179
Chvátal graph, 96, 97
circuit, 13
board, 110
electronic, 62
circuit matrix, 73
circulation, 224
circulation space, 224,225
classification tree, 52, 53, 57
claw graph, 188
clique, 213
maximal, 213
number, 213
closed form, 78
closeness centrality, 196
cocycle code, 225
cocycle space, 225
cocyle, 224
code, 79, 85
r-ary, 101
binary, 79, 85
block, 80
economy, 80
error-correcting, 23, 80
linear, 82
optimal, 87
prefix, 80
prefix-free, 80, 81, 86, 98
radix, 101
reliability, 80
security, 80
tree representation, 85,86
uniquely decodable, 86
variable-length, 80
codeword, 79, 85
length, 87
coding function, 80
Cohen, Danny, 108
Collatz
conjecture, 99
graph, 99, 100
length, 99
sequence, 99
tree, 99, 100
color code, 80
color-class, 213
combinatorial generation, 178
combinatorial graphs, 2
combinatorics, 82
communications network, 191
complement, 39
complete graph, $15,16,97,98,247,252$, $254,257,258,266,267$
component, 14, 34, 58
connected, 63
computer science, 90
condensed matter, 245
configuration, 229, 231
critical, 232
level, 235
recurrent, 232
stable, 231
starting, 229
weight, 235
connected graph, 14,57
connectivity, 141
cost, 121
Coward, Noel, 11
critical configurations, 233
critical group, 233, 234
cryptosystem, 80
current, 228
cut
set, 38, 59
cut set, 224
cut space, 225
cut-edge, 188, 189
cut-point, 187
cut-vertex, 187, 188
cutset, 74
matrix, 74
cycle, $13,51,52,58,60,122,123,136$
fundamental, 60, 98
negative, 122, 123, 128, 130, 135, 136, 148
cycle code, 224
cycle double cover conjecture, 189
cycle graph, 16, 17, 49
cycle matrix, 73
cycle space, 25,224
binary, 25
D'Angelo, Anthony J., 95
Dörrie, Heinrich, 47
data structure, 103, 149
de Moivre, Abraham, 181
de Montmort, Pierre Rémond, 145
decode, 79
degree, 5,8
matrix, 27
maximum, 10,56
minimum, 10, 61
sequence, 30, 61
weighted, 8
degree centrality, 196
degree distribution, 242-245, 252, 262, 263
depth-first search, 56, 92, 110, 114, 116120, 123, 137, 141
tree, 116, 119
de Moivre, Abraham, 145
DFS, 114, 116-120
diameter, 113, 114
Digital Signature Algorithm, 101
digraph, 5, 52
weighted, 121
Dijkstra
algorithm, 14, 124-128, 135, 149
E. W., 66, 124

Dirac's theorem, 195
disconnected graph, 14
disconnecting set, 38
distance, $52,103,113,114,121,122,124$, 126, 128, 130
characteristic, 245
function, 121, 122, 182, 183, 205
matrix, 28, 122
minimum, 124
total, 139
distance distribution, 246
distribution
binomial, 252
geometric, 251, 253
Poisson, 253
uniform, 252
divide and conquer, 148
dollar game, 231
Dryden, John, 110
dynamic programming, 130
eccentricity, 183, 184
mutual, 206
path, 205
vertex, 206
edge, 3
boundary, 204
capacity, 235
contraction, 39
cut, $38,57,193$
deletion, 38
deletion subgraph, 36
directed, 4
endpoint, 63
expansion, 204
head, 6
incident, 3
multigraph, 6
multiple, 3
tagging game, 57
tail, 6
weight, 6
edge chromatic number, 215
edge coloring, 215
edge cut subgraph, 224
edge cutset, 224
edge-cut, 188
Edmonds, Jack, 57
eigenvalue, 101
electrical network, 228
element
random, 79
Elkies, Noam D., 116
encode, 79
endianness, 108
England, 147
entropy
encoding, 80
function, 80
Erdős, Paul, 31
error rate, 80
Euler
Leonhard, 1, 10, 46, 61
phi function, 61, 98
phi sequence, 61,62
polygon division problem, 46
subgraph, 13
Euler subgraph, 224
Eulerian trail, 1
expander graph, 204
Faber, Xander, 183
family tree, 14, 15, 52, 53
fault-tolerant, 191
Fermat's little theorem, 48
Fibonacci
sequence, 181
tree, 181
FIFO, 111, 116
filesystem, 52
hierarchy, 52
finite automaton, 49
first in, first out, 111
flag semaphore, 80
Florek, K., 70
flow, 224, 235
value, 236
flow chart, 103
flow space, 224
Floyd, Robert, 130
Floyd-Roy-Warshall algorithm, 128, 130132, 134, 186, 187
football, 80
forbidden minor, 43
Ford, Lester Randolph, Jr., 127
forest, 51, 52
Franklin graph, 29
Frederickson, Greg N., 179
FreeBSD, 103
frequency distribution, 256
friendship graph, 197
FRW, 128, 130
function plot, 2
fundamental cycles, 226
Gallai, Tibor, 31
Garlaschelli, Diego, 268
genetic code, 80
Gilbert, E. N., 253
girth, 13
Goldbach, Christian, 46
Goldberg, R., 128
golden ratio, 102, 181
Graham, Ronald L., 187
graph, 3
connected, 14, 120, 121
cube, 76
dense, 105, 130
Desargues, 76, 77
directed, 5
disconnected, 14
Dyck, 213
Foster, 18
Franklin, 17
Frucht, 215
Gray, 20
Heawood, 217
icosahedral, 218
intersection, 34, 35
join, 35
line, 8
nonisomorphic, 46
Pappas, 219
simple, 8
sparse, 21, 105, 130, 135
traversal, 110
trivial, 61, 70
undirected, 3
union, 34, 35
unweighted, 3
weighted, $6,63,66,121$
graph isomorphism, 28, 30
graph minor, 43
graphical sequence, 31, 33
Gray code, 81, 82
m-ary, 81
binary, 81,82
reflected, 82,84
Gray, Frank, 81
Gribkovskaia, Irina, 1
grid, 42
graph, 52, 54, 65, 66, 96, 98, 148
Gros, L., 81
group theory
computational, 82
Gulliver's Travels, 108
Hadamard transform, 200
Hakimi, S. L., 31
Halskau Sr., Øyvind, 1
Hamming distance, 42
Hampton Court Palace, 147
handshaking lemma, 10
Havel, Václav, 31
Havel-Hakimi
test, 33
theorem, 31
heap
2-heap, 66
k-ary, 127
binary, 127
binary minimum, 88
Fibonacci, 66, 127, 135
heapsort, 151
Heawood graph, 215
hierarchical structure, 14, 51, 52
Hopcroft, John E., 114
Hopkins, Brian, 1
house graph, 3
Huffman
David, 87
tree, 149
Huffman code, 85, 87-89, 91, 98
binary, 87
encoding, 90
tree construction, 87
tree representation, 88, 89, 91
Humpty Dumpty, 2
hypercube graph, 42, 82, 83
in-neighbor, 5
incidence
function, 6
matrix, 24
incidence matrix
oriented, 24
unoriented, 24
indegree, 5
unweighted, 7
independent set, 213
induction, 58, 61, 77, 86, 87, 96
structural, 96
infix notation, 142
information channel, 80
Internet, 261
topology, 262
invariant, 29, 33
isomorphism, 61
isoperimetric number, 204
Jarník, V., 66
Johnson
algorithm, 123, 135
Donald B., 135
join, 60
Jordan, Camille, 186

Königsberg, 1
graph, 2, 6
seven bridges puzzle, 1,10
Kaliningrad, 1
Kaplan, Haim, 179
Kataoka, Seiji, 95
Kinoshita, Harunobu, 148
Kirchhoff's current law, 228
Kirchhoff's voltage law, 228
Kleene
algorithm, 134
Stephen, 134
Klein, Felix, 2
Kneser graph, 104-106
Knuth
Algorithm S, 267
Donald E., 81, 267
Kraft
inequality, 101, 102
Leon Gordon, 102
theorem, 102
Kruskal
algorithm, 63-66, 95, 96, 101
Joseph B., 63
ladder graph, 41
Lagarias, Jeffrey C., 99
Laplacian, 233
reduced, 235
Laplacian matrix, 27, 101, 198
Laporte, Gilbert, 1
last in, first out, 116
Latora, V., 268
Latora-Marchiori model, 268
lattice, 42
Lee, C. Y., 110
legal firing sequence, 232
Lehman, A., 57
Lehmer, D. H., 47
level
binary tree, 152
tree, 180
LIFO, 116
line graph, 8
linear search, 138
Linux, 52
list, $88,104,111,113,116,127$
adjacency, 27, 104, 105, 113
contiguous edge, 106, 257
edge, 106
element, 104
empty, 104
length, 104
little-endian, 108
Loberman, H., 63
Loebbing, Martin, 116
Lucas
M. Édouard, 102, 114
number, 102
Marchiori, M., 268
matrix, 21
adjacency, 22, 104, 105, 109
bi-adjacency, 23
cutset, 76
distance, 187
incidence, 26
main diagonal, 109
transpose, 45
upper triangle, 109
Matthew effect, 261
max-flow min-cut theorem, 237
generalized, 238
maximum flow problem, 236
maze, 110, 114, 147
McKay, Brendan D., 106, 116

McMillan
Brockway, 101
theorem, 101
Menger's theorem, 192-194
merge sort, 166
Merkle, Ralph C., 101
Merris-McKay theorem, 99
mesh, 42, 43
message, 85
metabolic network, 261
metric, 122, 183
function, 121
metric graph, 183
metric space, 122
finite, 122
Milgram, Stanley, 255
minimum cut problem, 237
minimum spanning tree problem, 63
molecular graph, 132
Montmort-Moivre strategy, 145
Moore, Edward F., 110, 127
Morse code, 81, 86, 98
MST, 63
multi-undirected graph, 5
multidigraph, 5
multigraph, 5
adjacency, 7
in-neighbor, 7
out-neighbor, 7
Munroe, Randall, 51, 103, 114, 124, 127, 149, 210, 211
musical score, 80
neighbor graph, 259
network, 235
biological, 244, 255
citation, 262
collaboration, 262
communication, 57
information, 255
social, 245, 255, 262
technological, 244, 255
Zachary karate club, 243
node, 3
noisy channel, 80
null graph, 4, 261
Nuutila, Esko, 134
order, 3
organism, 53,57
orientation, 6, 24
oriented graph, 248
random, 248, 251
out-neighbor, $5,111,119,123,124$
outdegree, 5
unweighted, 7,8
outer boundary, 204
overfull graph, 45
Oxley, James, 57
Paley graph, 205
parallel forest-merging, 70
parallelization, 70
partition, 48
Pascal
formula, 164, 178
path, $12,13,51,52$
closed, 13
distance, 121
even, 13
geodesic, 14
graph, 41
Hamiltonian, 82, 83
internally disjoint, 191
length, 52, 121, 122
odd, 13
shortest, 103, 121-124, 126, 128, 130, 135
tree, 59, 60
weighted, 135
path graph, 16
pendant, 8,60
perfect square, 53
Perkal, J., 70
permutation
equivalent, 30
random, 98
Petersen
graph, 119, 120, 188, 189
Julius, 119
planar graph, 47
plane, 148
Pollak, O., 187
postfix notation, 142
power grid, 244
preferential attachment, 260, 261, 264
prefix-free condition, 80

Pregel River, 1
Prim
algorithm, 63, 66-69, 95, 96, 101, 149
R. C., 63,66
priority queue, 149, 150
probability, 87
expectation, 87
sample space, 79
space, 247
pseudorandom number, 47, 251
Python, 21
queue, $92,111,113,116,120,124$
dequeue, 91, 93, 111, 113
end, 111
enqueue, 91, 93, 111, 113
front, 111
length, 111
minimum-priority, 66, 88, 135
priority, 88
rear, 111
start, 111
Ramanujan graph, 204
random graph, 242
Bernoulli, 246
binomial, 246, 255
Erdős-Rényi, 253
uniform, 253
weighted, 268
random variable
geometric, 251
Rasmussen, Rune, 57
recurrence relation, 181
recursion, 57, 58, 70, 71, 87, 93, 96, 130
reduced Laplacian, 235
regular graph, 10, 48
k-circulant, 49, 255, 257
r-regular, 10, 49
relative complement, 39
remainder, 108
reservoir sampling, 267
residual digraph, 237
residual network, 237
reverse Polish notation, 142
rich-get-richer effect, 261
river crossing problem, 141
Robertson, Neil, 43
Robertson-Seymour theorem, 43

Roget's Thesaurus, 255
root directory, 52
root list, 165
rotor-routing model, 228
Roy, Bernard, 130
RSA, 101
Runde, Volker, 122
Russia, 1
sandpile model, 231
saturated edge, 236
scale-free network, 264, 268, 269
scatterplot, 2, 62, 84
Schulz, Charles M., 176
scientific collaboration, 245
seg, 224
selection sort, 140, 141
self-complementary graph, 39
self-loop, 4
separating set, 38, 193
set, 104
n-set, 2
totally ordered, 150
Seymour
Paul, 43, 189
Shannon
Claude E., 8, 57
multigraphs, 8,9
switching game, 57, 58
Shimbel, A., 127
Shirali, Satish, 122
shortest path, 14
Simon, Herbert, 261
simple graph, $8,98,255$
random, 247, 252-254, 266, 267
single-source shortest path, 124, 127
six degrees of separation, 255
size, 3
component, 268
tree, 58-60
small-world, 49, 114, 257
algorithm, 257
characteristic path length, 257
clustering coefficient, 257, 259
effect, 255
experimental results, 256
network, 257
social network, 182
spanning forest, 70
spanning subgraph, 15
spanning tree, 52, 54, 57, 62-64, 96, 98, 102
maximum, 95
minimum, 62-64, 66-71, 96
randomized construction, 96, 97, 101
sparse graph, 250
spectrum, 198
Laplacian, 198
stack, $92,116,119,120$
length, 116
pop, 92, 93, 95, 116, 119
push, 92, 93, 95, 116, 119
Stanley, Richard P., 116
star graph, 19, 20
state
final, 141
initial, 141
Steinhaus, H., 70
string, 79, 85
empty, 88
Strogatz, Steven H., 255
strongly regular graph, 200
subgraph, 11, 15 edge-deletion, 62, 63, 99
subtree, 57, 93
left, 77, 93
right, 77, 93
supergraph, 15
Swift, Jonathan, 108
Sylvester's Law of Nullity, 73
symbol, 85
symbolic computation, 142
symmetric difference, 35
Szekeres, G., 189
Takaoka, Tadao, 178, 179
Tanner graph, 23
Tarjan, Robert Endre, 114
Tarry, Gaston, 114
telegraph, 81
The Brain puzzle, 82
Thoreau, Henry David, 8
Through the Looking Glass, 2
topology, 122
total order, 150
Tower of Hanoi puzzle, 82
trail, 12, 13
closed, 13
transition probability matrix, 225
transitive closure, 133, 134
trapdoor function, 80
traveling salesman problem, 103
traversal
bottom-up, 93, 94, 101
in-order, 93, 94, 101, 169
level-order, 90, 91, 93, 101
post-order, 92, 93, 101
pre-order, 92, 101
treasure map, 1
tree, $14,51,52,60,110$
2-ary, 75
n-ary, 52
binary, 52, 85, 88, 93
complete, 52, 57
depth, 52
directed, 52
expression, 52, 53
height, 52
nonisomorphic, 52, 54, 55
ordered, 52, 90
recursive definition, $57,58,96$
rooted, $15,52,56,75,110,119$
subtree, 58
traversal, 90, 92
triangle inequality, 122, 136, 183
Tripathi, Amitabha, 31
trivial graph, 16, 52, 268
tuple, 2
union
digraph, 61, 62
union-find, 96
Unix, 52
unweighted degree, 7
USA, 244, 262
value of flow, 236
Vandermonde
Alexandre-Théophile, 179
convolution, 179
Vasudeva, Harkrishan L., 122
vertex, 3
adjacent, 3
child, 52, 56
cut, 38, 193
degree, 10
deletion, 37, 93
deletion subgraph, 35, 187
endpoint, 51, 52
expansion, 204
head, 4
internal, 52, 191
isolated, 8, 57, 104
isoperimetric number, 204
leaf, 51, 52, 85, 93
multigraph, 6
parent, 52
root, $15,52,54,56,85$
set, 3
source, 124, 136
tail, 4
union, 34
vertex connectivity, 187
vertex-cut, 187
Vijay, Sujith, 31
Vitter
algorithm, 267
Jeffrey Scott, 267
Vizing's theorem, 218
voltage, 228
Vuillemin, Jean, 164

Wagner
conjecture, 43
Klaus, 43
walk, 11, 13
closed, 13
length, 11, 12
trivial, 11
Walsh transform, 200
Warshall, Stephen, 130, 134
Watanabe, Kohtaro, 95
Watts, Duncan J., 255
Watts-Strogatz model, 255, 257, 268
Wegener, Ingo, 116
weight, $63,121,122,130$
correcting, 122, 123
function, $63,122,136$
graph, 6
minimum, 63, 66, 70, 126
multigraph, 6
negative, $122,123,127,128$
nonnegative, 121-124, 126, 135
path, 182
positive, 122
reweight, 135, 136
setting, 122, 123
unit, 121, 122
Weinberger, A., 63
wheel graph, 35, 102
Whitney
Hassler, 191
inequality, 190
theorem, 195
Wiener
Harold, 99, 132
number, 99, 101, 132
Williams, J. W. J., 151
Wilson, Robin, 1
wine, 197, 202, 203, 207, 208
word, 85
World Wide Web, 261
Yamada, Takeo, 95, 148
Yerger, Carl R., 102
Zachary, Wayne W., 243
zero padding, 108
Zubrzycki, S., 70
Zwick, Uri, 179

[^0]: 1 "Everyone knows what a curve is, until he has studied enough mathematics to become confused through the countless number of possible exceptions."

[^1]: ${ }^{2}$ However, we always assume that $E \subseteq \mathbf{R} \times V^{(2)}$, where the \mathbf{R}-component is called the weight of the edge.

[^2]: ${ }^{3}$ A cycle in a graph is sometimes also called a "circuit". Since that terminology unfortunately conflicts with the closely related notion of a circuit of a matroid, we do not use it here.

[^3]: ${ }^{4}$ A Python dictionary is basically an indexed set. See the reference manual at http://www.python.org for further details.

[^4]: ${ }^{5}$ In other words, the Hamming distance between v and w is equal to 1 .

[^5]: ${ }^{1}$ In other words, a codeword $s=s_{1} \cdots s_{m}$ is a prefix of a codeword $t=t_{1} \cdots t_{n}$ if and only if $m \leq n$ and $s_{1}=t_{1}, \ldots, s_{m}=t_{m}$. Codes that are prefix-free are easier to decode than codes that are not prefix-free.

[^6]: ${ }^{2}$ This history comes from an unpublished section 7.2.1.1 ("Generating all n-tuples") in volume 4 of Donald Knuth's The Art of Computer Programming.

[^7]: ${ }^{3}$ In probability terminology, this is the expected value $\mathrm{E}(X)$ of the random variable X, which assigns to a randomly selected symbol in \mathcal{A} the length of the associated codeword in c.

[^8]: ${ }^{4}$ You can find this on the Internet or in the literature. Part of this exercise is finding this frequency distribution yourself.

[^9]: sage: Gamma.spectrum ()
 $[4,2,0,0,0,-2,-2,-2]$

[^10]: ${ }^{1}$ Thanks to Chris Godsil; see [86].

[^11]: ${ }^{1}$ Also called an edge cut subgraph or disconnecting set or seg or edge cutset.
 ${ }^{2}$ Jungnickel and Vanstone in [115] call this the even graphical code of G.
 ${ }^{3}$ Note: In addition, some authors add the condition $f(e) \geq 0$ - see e.g., Chung [54].

[^12]: ${ }^{4}$ It is likely true in the non-binary case as well, but no proof seems to be in the literature.

[^13]: ${ }^{5}$ Biggs humorously calls q "the government."

[^14]: ${ }^{6}$ The reduced Laplacian matrix is obtained from the Laplacian matrix by removing the row and column associated to the source vertex.

[^15]: ${ }^{7}$ Please see http://en.wikipedia.org/wiki/Ford-Fulkerson_algorithm.

[^16]: ${ }^{1}$ Or the "chickens" model, depending on how you pronounce "CHKNS".

