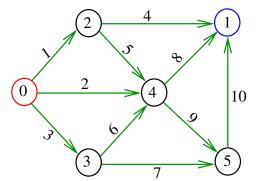
Saldos

O saldo em v é a diferença

$$ef(v) - inf(v)$$

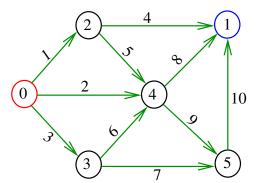
entre o efluxo de v e o influxo em v.

Exemplo: o saldo do vértice 4 é 17-13=4



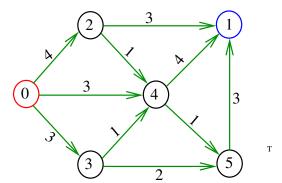
Fluxos

Num digrafo com vértice inicial s e vértice final t, um fluxo (= flow) é uma função f que atribui valores em \mathbb{Z}_{\geq} aos arcos de tal modo que o saldo em todo vértice distinto de s e t é nulo e em s é ≥ 0 . Exemplo: não é um fluxo



Fluxos

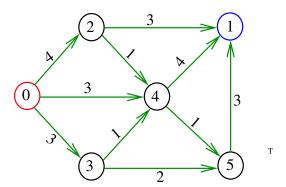
Num digrafo com vértice inicial s e vértice final t, um **fluxo** (= flow) é uma função f que atribui valores em \mathbb{Z}_{\geq} aos arcos de tal modo que o saldo em todo vértice distinto de s e t é nulo e em s é ≥ 0 . Exemplo: é um fluxo onde s=0 e t=1



Intensidade de fluxos

A intensidade de um fluxo f é o saldo de f em s. Em geral (mas nem sempre) o influxo em s é nulo e o efluxo de t é nulo.

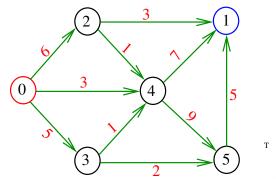
Exemplo: fluxo de intensidade 10



Redes capacitadas

Uma rede capacitada é um digrafo com vértice inicial e vértice final em que a cada um arcos está associado um número em \mathbb{Z}_{\geq} que chamaremos capacidade do arco.

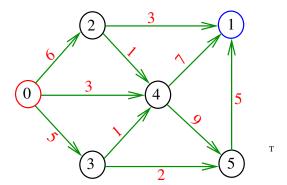
Exemplo:



Problema do fluxo máximo

Problema. Dada uma rede capacitada, encontrar um fluxo de intensidade máxima dentre os que respeitam as capacidades dos arcos.

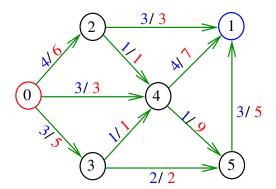
Exemplo: rede capacitada



Problema do fluxo máximo

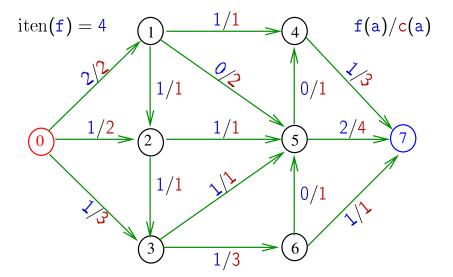
Problema. Dada uma rede capacitada, encontrar um fluxo de intensidade máxima dentre os que respeitam as capacidades dos arcos.

Exemplo: fluxo que respeita as capacidades

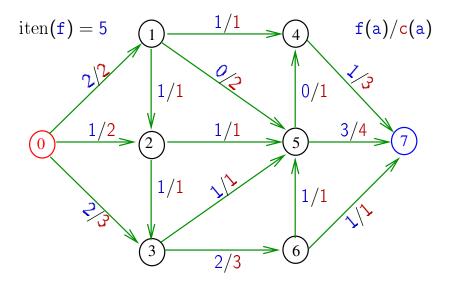


S 22.2

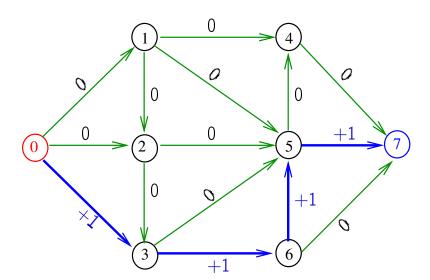
Fluxo é máximo?



E agora? Fluxo é máximo?



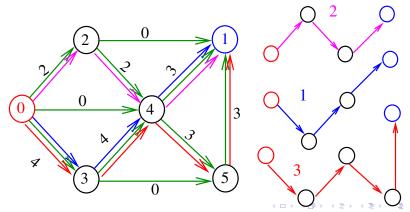
Onde mudou?



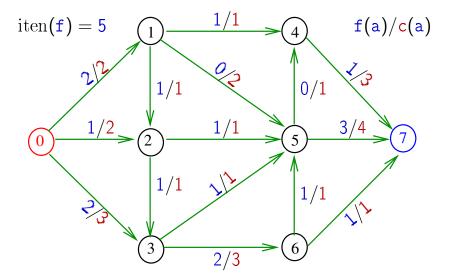
Decomposição de fluxos

Fluxos podem ser representados por caminhos de sa t. A soma das quantidades de fluxo conduzidas por cada caminho é igual à intensidade do fluxo.

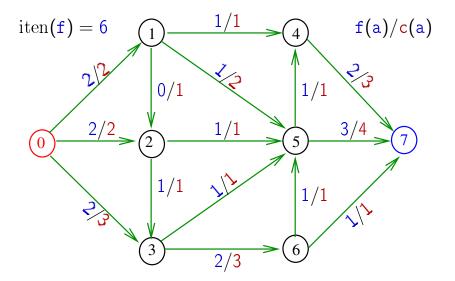
Exemplo:



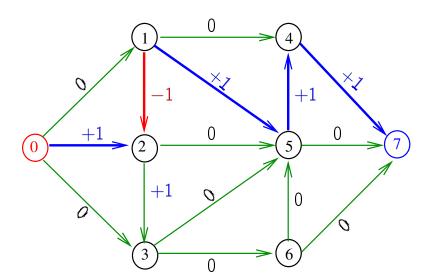
Fluxo é máximo?



E agora? Fluxo é máximo?

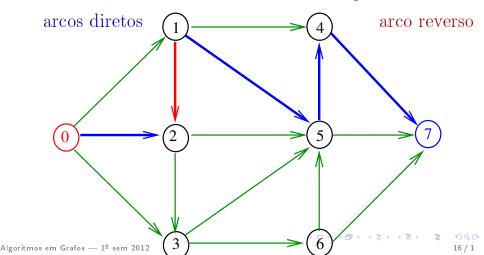


Onde mudou?



Pseudo-caminhos

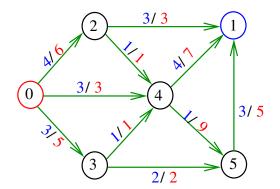
Um **pseudo-caminho** num digrafo é uma seqüência de vértices tal que para cada par (u,v) de vértices consecutivos, u-v ou v-u é um arco do digrafo.



Arcos cheios e vazios

Dizemos que um arco u-v está cheio se o fluxo no arco é igual à capacidade do arco. Dizemos que um arco u-v está vazio se o fluxo no arco é nulo.

Exemplo: 2-1 está cheio e 4-1 não está cheio

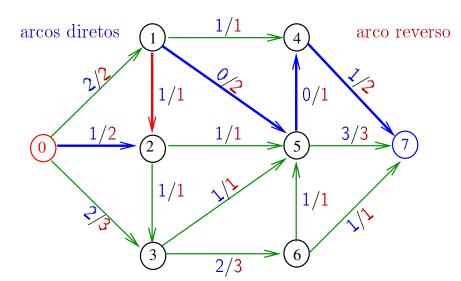


Caminho de aumento

Um caminho de aumento (= augmenting path) é um pseudo-caminho do vértice inicial ao final onde:

- os arcos diretos não estão cheios e
- os arcos reversos não estão vazios.

Exemplo

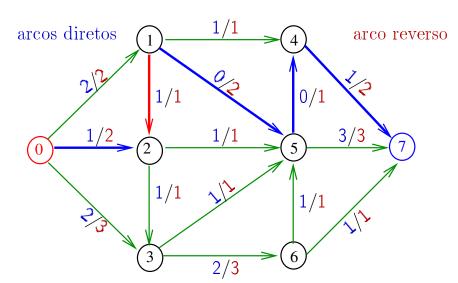


Enviar fluxo através de caminhos de aumento

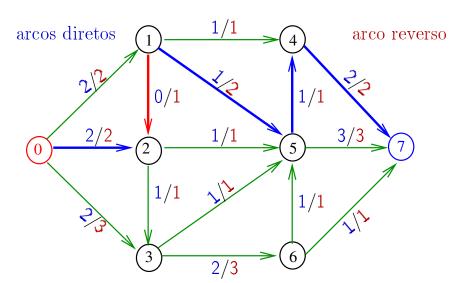
A operação de **enviar** d unidades de fluxo ao longo de um caminho de aumento consiste de:

- para cada arco direto, some d ao fluxo
- para cada arco reverso, subtraia d do fluxo.

Exemplo



Exemplo



Capacidade residual

A capacidade residual de um arco direto a é

$$c(a) - f(a)$$
.

A capacidade residual de um arco reverso b é f(b).

A capacidade residual de um caminho de aumento é a menor das capacidades residuais dos arcos do caminho.

Na rede a seguir, a capacidade residual do:

- arco reverso 2-1 é 1;
- arco direto 1-5 é 2; e
- arco direto 4-7 é 1.

Grafo residual

Dada uma rede capacitada G e um fluxo f, o digrafo residual tem os mesmos vértices que G e arcos

- a de G tais que c(a) f(a) > 0
- reversos de arcos a de G tais que f(a) > 0

Existe caminho de aumento em G para f se e só se existe caminho de s a t no digrafo residual correspondente.

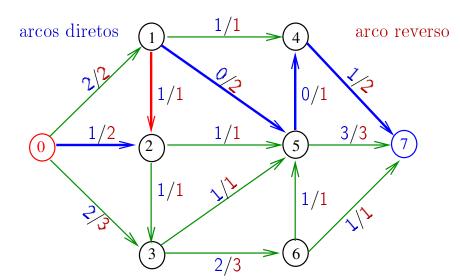
Grafo residual

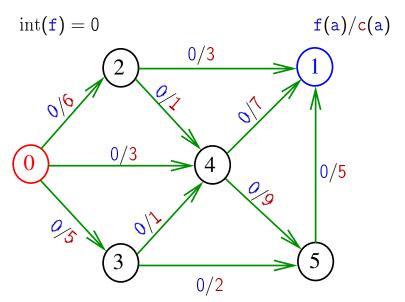
Dada uma rede capacitada G e um fluxo f, o digrafo residual tem os mesmos vértices que G e arcos

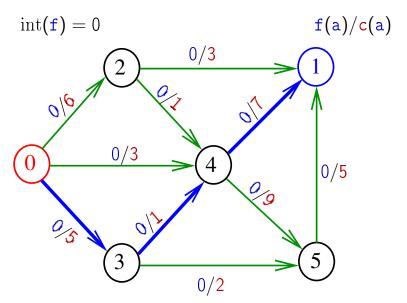
- a de G tais que c(a) f(a) > 0
- reversos de arcos a de G tais que f(a) > 0

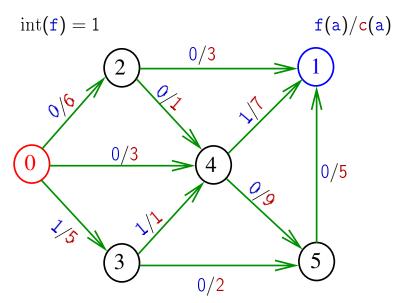
Existe caminho de aumento em G para f se e só se existe caminho de s a t no digrafo residual correspondente.

Exemplo

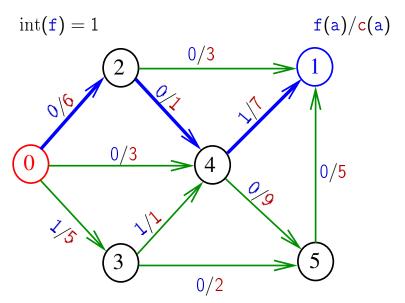


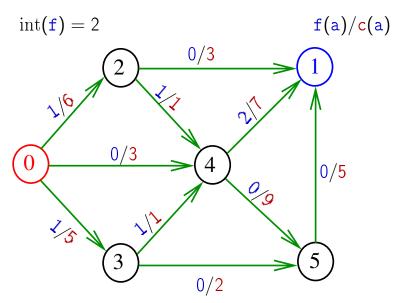


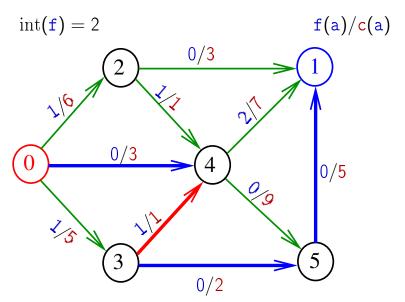




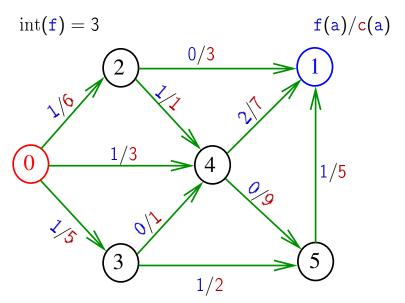


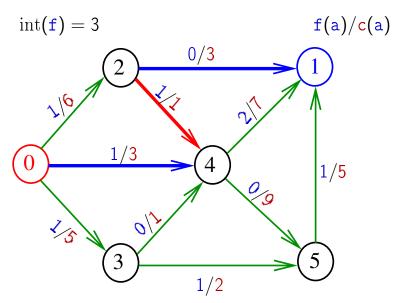


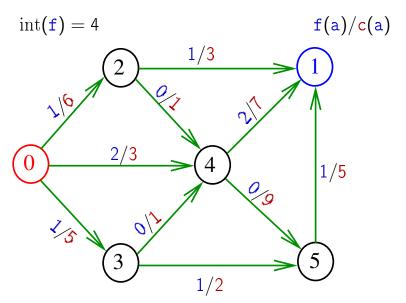


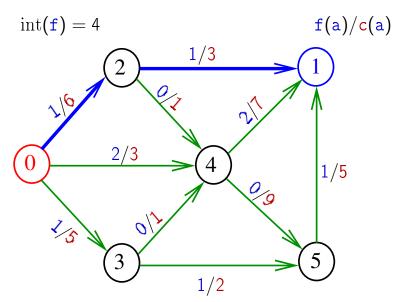


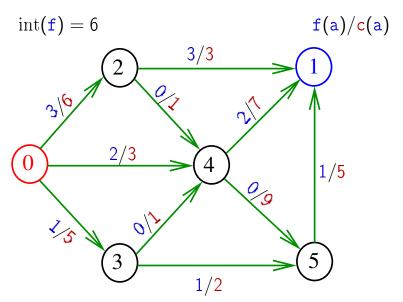


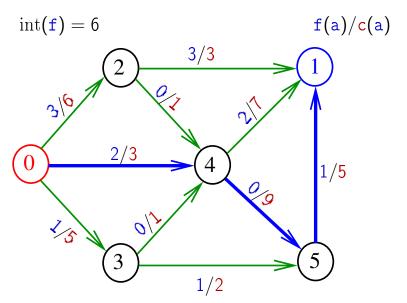




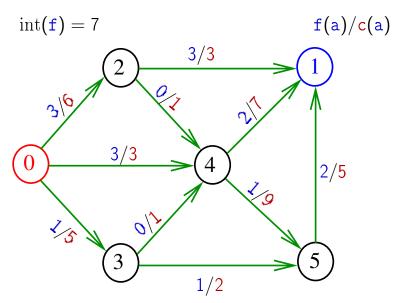


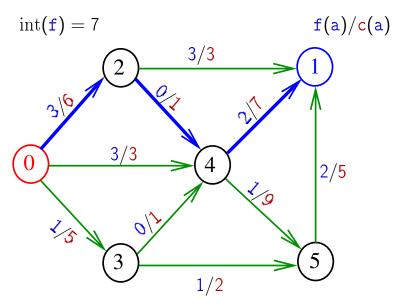


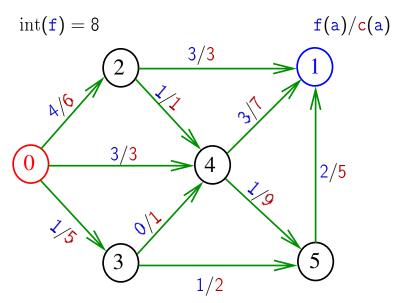


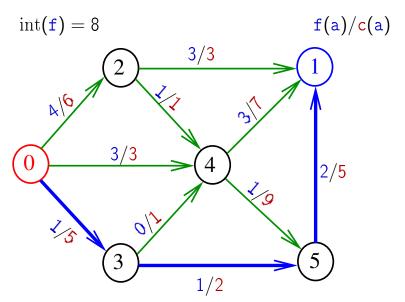




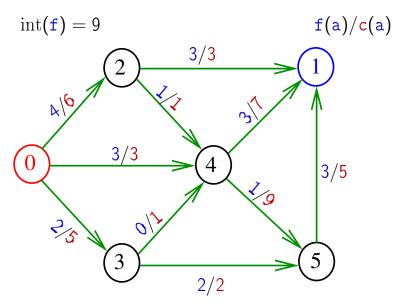




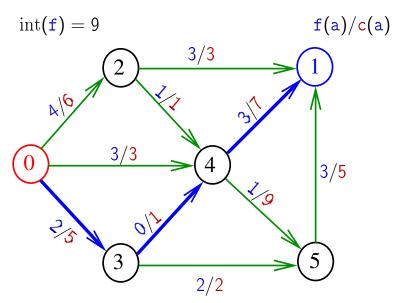


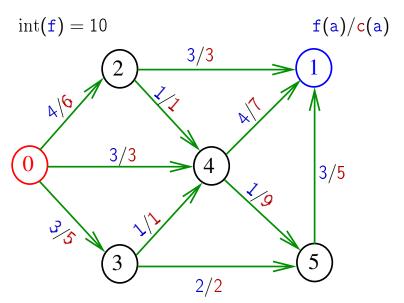


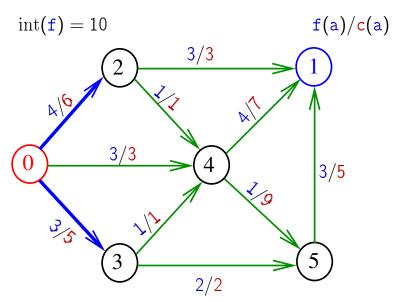














O método é iterativo. Cada iteração começa com uma fluxo f que respeita as capacidades.

No início da primeira iteração f é o fluxo nulo.

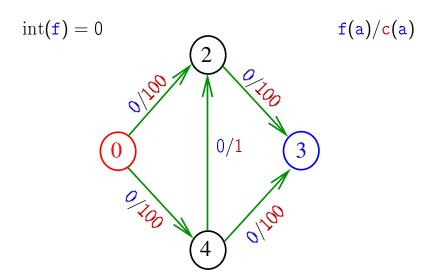
Cada iteração consiste em:

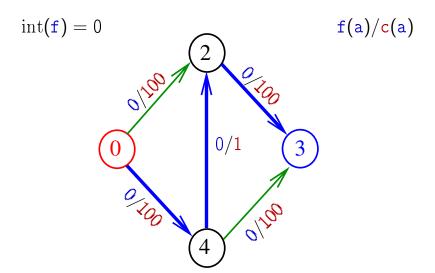
- Caso 1: **não existe** um caminho de aumento Devolva **f** e pare
- Caso 2: existe uma caminho de aumento
 Seja d a capacidade residual de um
 caminho de aumento P
 Seja f' o fluxo obtido ao enviarmos d
 unidades de fluxo ao longo de P
 Comece nova iteração com f' no papel

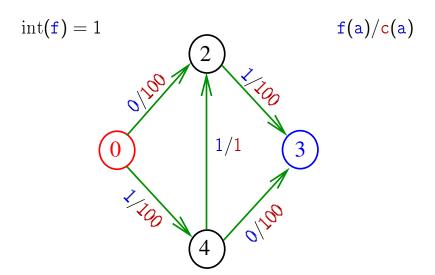
Relações invariantes

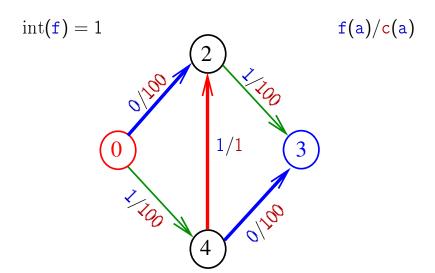
No início de cada iteração temos que:

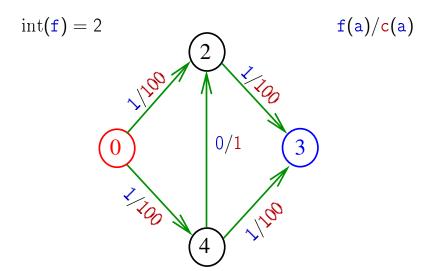
- (i0) **f** é inteiro;
- (i1) **f** é um fluxo;
- (i2) f respeita c

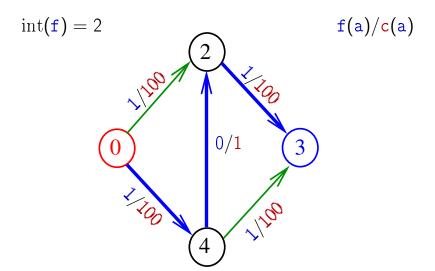


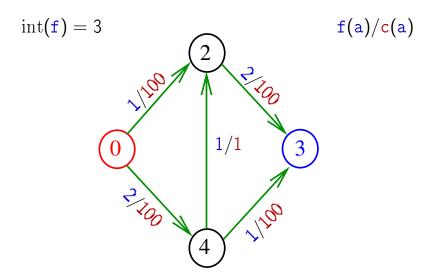


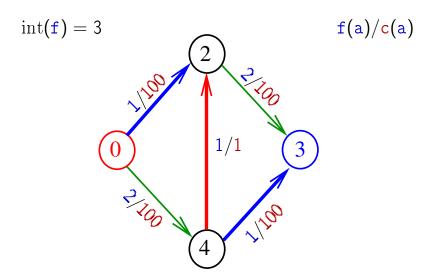


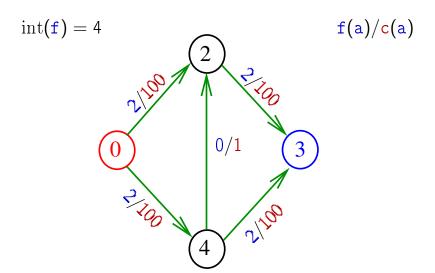


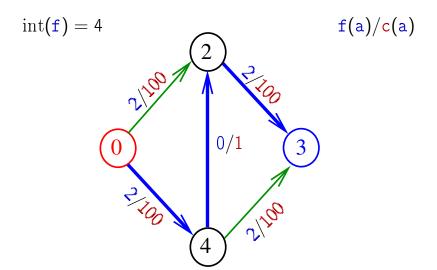


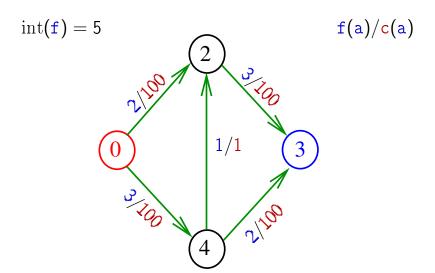


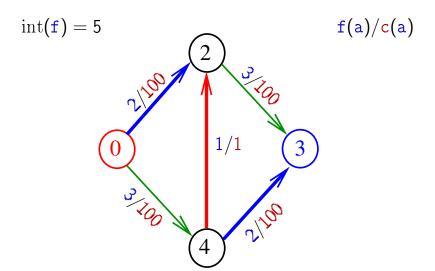


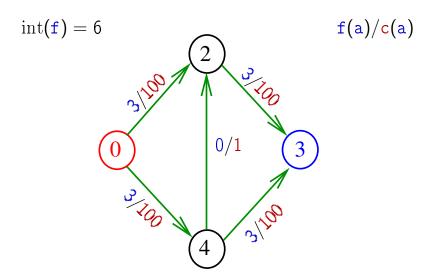


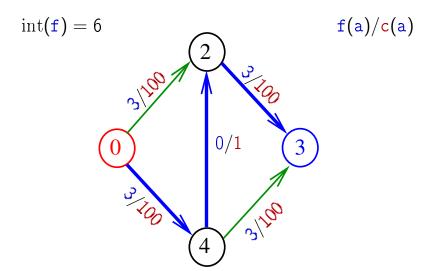


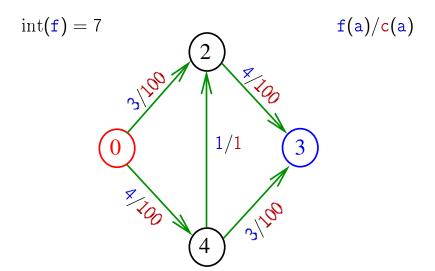


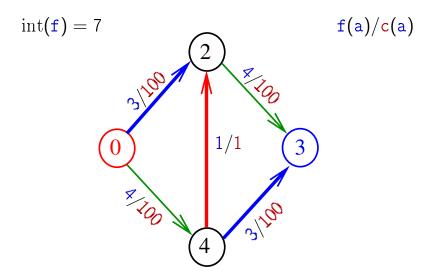


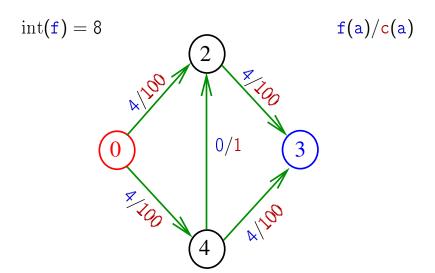




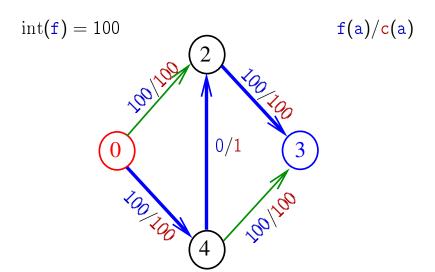








Fluxo máximo



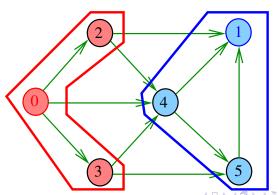
Conclusão

Se todos os arcos da rede têm capacidade menor que M então o número de caminhos de aumento necessário para atingir o fluxo máximo é menor que V × M, sendo V o número de vértices da rede.

Cortes

Um **corte** (= st-cut) é qualquer partição (S, T) do conjunto de vértices tal que s está em S e t está em T.

Exemplo:

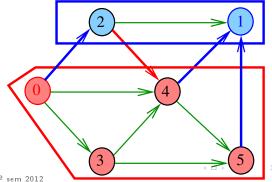


Arcos diretos e arcos reversos

Um arco direto de um corte (S,T) é qualquer arco que vai de S para T.

Um **arco reverso** do corte é qualquer arco que vai de T para S.

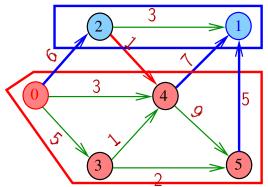
Exemplo: arcos azuis são diretos e vermelho é reverso



Capacidade de um corte

Numa rede capacitada, a capacidade de um corte (S,T) é a soma das capacidades dos arcos diretos do corte.

Exemplo: corte de capacidade 18

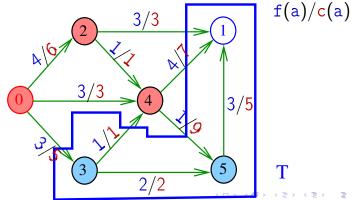


Lema da dualidade

Se f é um fluxo que respeita c e (S,T) é um corte então

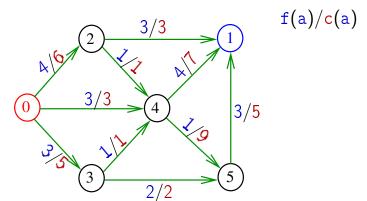
intensidade de $f \leq capacidade de (S,T)$.

Exemplo: $int(f) = 10 \le 24 = c(S, T)$.



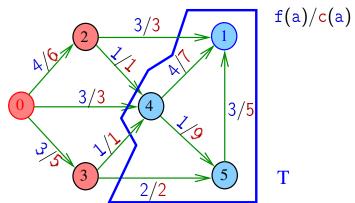
Conseqüência

Se f é um fluxo que respeita c e (S,T) é um corte tais que intensidade de f = capacidade de (S,T). então f é um fluxo de máximo e (S,T) é um corte de capacidade mínima.

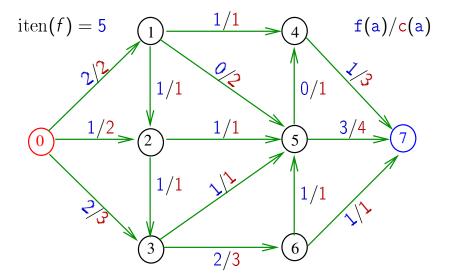


Conseqüência

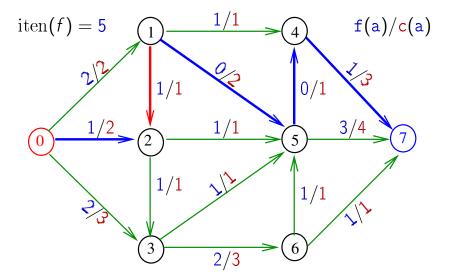
Se f é um fluxo que respeita c e (S,T) é um corte tais que intensidade de f = capacidade de (S,T). então f é um fluxo de máximo e (S,T) é um corte de capacidade mínima.



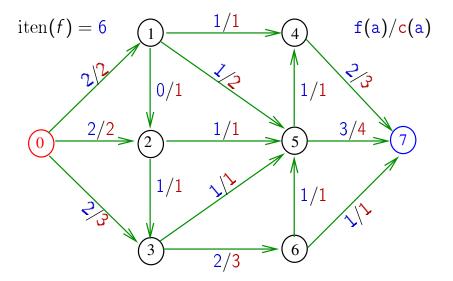
Fluxo é máximo?



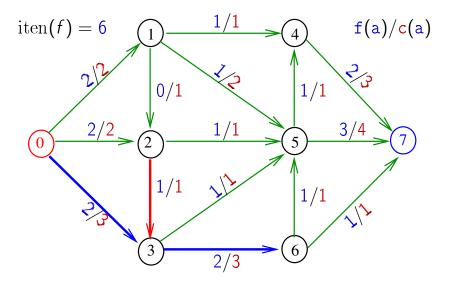
Caminho de aumento



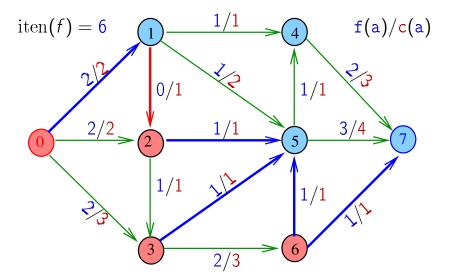
E agora? Fluxo é máximo?



Fluxo é máximo!



Fluxo é máximo!



Correção do método

Para mostrar que a correção do método dos caminhos de aumento basta mostrar que:

se não existe um caminho de aumento então o fluxo tem intensidade máxima.

Seja S o conjunto de todos os vértices que são término de um "caminho de aumento". Seja T o conjunto dos demais vértices do digrafo

É claro que **s** está em **S** e t está em T. Portanto, (**S**,T) é um corte.

Correção do método

Para mostrar que a correção do método dos caminhos de aumento basta mostrar que:

se não existe um caminho de aumento então o fluxo tem intensidade máxima.

Seja S o conjunto de todos os vértices que são término de um "caminho de aumento". Seja T o conjunto dos demais vértices do digrafo.

É claro que s está em S e t está em T. Portanto, (S,T) é um corte.

Todos os arcos diretos desse corte estão cheios Todos os arcos reversos estão vazios.

Portanto, o fluxo através desse corte é igual à capacidade do corte.

Logo, pelo lema da dualidade, nosso fluxo tem intensidade máxima.

Teorema do fluxo máximo e corte mínimo

O teorema foi demonstrado por Ford e Fulkerson e, independentemente, por Kotzig.

Para quaisquer dois vértices s e t em uma rede capacidade com função-capacidade c tem-se que

```
\max\{\inf(f): f \text{ \'e fluxo que respeita } c\}
= \min\{c(S,T): (S,T) \text{ \'e um corte}\}.
```

Teorema do fluxo máximo e corte mínimo

O teorema foi demonstrado por Ford e Fulkerson e, independentemente, por Kotzig.

Em qualquer rede capacitada, a intensidade de um fluxo máximo é igual à capacidade de um corte mínimo.