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EXPLICIT HEURISTIC TRAINING AS A VARIABLE 
IN PROBLEM-SOLVING PERFORMANCE 

ALAN H. SCHOENFELD 
Hamilton College 

Overview and Discussion of the Relevant Literature 

This paper describes, in some detail, the problem-solving processes of seven 
upper-division college students working a series of problems that could be 
solved by the application of one or more heuristics, or general problem- 
solving strategies. The primary purposes of the experiment were- 

(a) to study the impact of instruction in five heuristics on some students' 
performance on a series of problems comparable to, but not isomorphic 
to, the instructional problems; 

(b) to see if other students working the same problems (for the same total 
amount of time and seeing the same solutions), but not receiving the 
heuristics instruction, would use or intuit the strategies as a result of 
their problem-solving experience; and 

(c) to see, by comparing the two groups, if explicit instruction in heuristics 
"makes a difference"-both as measured by pretest-to-posttest gains 
and as indicated by an examination of problem-solving procedures. 

E. G. Begle (Note 1) wrote that "problem solving, in my opinion the most 
important outcome of mathematics education, at the upperclass under- 
graduate level, to the best of my knowledge, has not been seriously studied 
before." Thus the body of literature relevant to this study, and dealing with 
the process rather than the product of problem solving, discusses problem- 
solving tasks that are easier and call for less mathematical background than 
the tasks studied here. 

The groundwork for explorations in heuristics, of course, was established 
by Polya in How to Solve It (1945) and given a much more extended 
treatment in his Mathematical Discovery (1962, 1965). College-level text- 
books on problem solving (Rubenstein, 1975; Wickelgren, 1974), like Polya, 
described a variety of useful strategies but did not describe research in 
problem solving. Lipson (1972) studied senior mathematics majors enrolled 
in a course on heuristics, but the focus of the research was on carry-over 
effects of heuristics instruction on those students' students (her subjects 
were student teachers); the work does not bear directly on the material dis- 
cussed here. 

Lucas (1972) studied students' use of heuristics in calculus classes. The 
results, although suggestive (decreased study time, more checking for heu- 
ristics groups), were difficult to interpret clearly-a problem, unfortunately, 
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with much "real world" instruction. There are sufficiently many uncon- 
trolled (uncontrollable?) variables in such experimentation that, for prelimi- 
nary comparison of some instructional variables, the use of an artificial 
instructional environment may be appropriate. Thus this study strove to 
create a replicable and relatively controlled instructional setting, the better 
to study the impact of specific problem-solving variables. Goldberg's study 
(1975) may be the most relevant to the work described here. The students, 
nonmathematics majors taking a course in number theory, provided some 
evidence that explicit instruction in heuristics did enhance their ability to 
construct proofs. This study differs in a number of fundamental ways, 
perhaps the most salient differences being the degree of experimental control 
and the fact that the problems used here are more difficult than those she 
used and call for a much larger mathematical knowledge base on the part of 
the students (see the next section for a more detailed discussion). Smith's 
study (1973) focused on transfer and provided some evidence that transfer of 

general heuristics may be less than one would ideally hope for. These results, 
less optimistic in a sense than those in Wilson (1968) but compatible from 
different perspectives with arguments advanced by Schoenfeld (1979b) and 
Resnick (1979), suggest that, at least in short-term, small-scale experiments, 
we may want some substantial portion of test items to resemble (though not 
simply copy) instructional problems. 

Other studies of mathematical problem solving that are relevant for their 
focus either on problem-solving processes or on heuristics generally deal 
with precollege students. Kilpatrick (1978) gave a useful classification of 
problem-solving variables; Kantowski (1977) gave careful scrutiny to the 
problem-solving processes of eight ninth graders working on nonroutine 
geometry problems. Lucas (Note 2) took a detailed look at problem and 
solution space structure, something we will need to know more about to 
better explicate process in detail. Landa (1976) discussed explicit training in 
heuristics for geometry problems. 

The other body of relevant literature comes from artificial intelligence and 
cognitive science. Newell and Simon's Human Problem Solving (1972) pio- 
neered the techniques of close observation of the problem-solving process 
via protocol analysis and demonstrated the utility of that approach. In a 
survey article, Larkin (1979) speaks in general of the relation between 
psychological investigations of problem-solving mechanisms in the labora- 
tory and the potential applications of these results to the classroom. 

The Experiment: Rationale and Design 
The case has already been well made (Kilpatrick, Note 3; Newell & 

Simon, 1972) for conducting studies examining, in detail, the processes of 
students as they solve problems. These studies, as opposed to the large-scale 
statistical tests used for comparing instructional methods, are designed to 
clarify and elucidate the mechanisms used by problem solvers in approach- 
ing and working on problems. 
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The subjects were seven upper-division science and mathematics majors 
recruited as volunteers from upper-division courses in mathematics at the 
University of California, Berkeley. The students were told that they were to 
"work a bunch of specially chosen problems designed to improve your 
problem solving ability." Of the seven, four were randomly chosen for the 
experimental group. Two of these four were mathematics majors, as were 
two of the three control group students; their mathematical backgrounds 
were comparable. 

In order to obtain maximum information about the problem-solving 
processes of the students, each was treated individually. The students were 
trained to talk out loud as they solved problems. Then each took a pretest, 
consisting of the five problems given in Figure 1. They worked on each 
problem for 20 minutes, or until they were confident that they had solved it. 
This process was repeated in the posttest (Figure 2). Our analysis of test 
results will be two-fold: first, a comparison of test scores on the basis of 
"completely solved" and "almost completely solved" problems; second, a 
detailed look at the solution processes. 

Pretest 

1. Let a and b be given real numbers. Suppose that for all positive values 
of c the roots of the equation 

ax2 + bx + c = 0 

are both real positive numbers. Present an argument to show that 
a must equal zero. 

2. Ten people are seated around a table. The average income of these 
ten people is $10,000. Each person's income is the average of the 
incomes of the people sitting immediately to his left and right. What 
is the possible range of incomes for each person? (Incomes are given 
in whole dollar amounts.) 

3. Let n be a given whole number. Prove that if the number (2n - 1) 
is a prime, then n is also a prime number. 

4. You are given the real numbers a, b, c, and d, each of which lies 
between 0 and 1. Prove the inequality 

(1 - a)(1 - b)(1 - c)(1 - d) 1 - a - b - c - d 

5. What is the sum of the series 

+ + +... + 1 
12 23 34 n(n+ 1) 

Prove your answer if you can. 

Figure 1. 
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Between the pretest and the posttest, each of the students sat through five 
instruction sessions spread over a 2-week period, during which they worked 
on, and saw the solutions to, 20 problems (including the 5 pretest prob- 
lems). These problems, and the 5 posttest problems, were chosen from 
five classes of similar problems-similar in the sense that they could be 

Posttest 

1. Suppose p, q, r, and s are positive real numbers. Prove the inequality 

(P2 + 1)(2 + 1)(r2 + 1)(2 + 1) 16. 
pqrs 

2. For what values of "a" does the system of equations 
a) no solutions? 

x 

2 = 0 b) 1 solution? 

have c) 2 solutions? 
(x - a)2 + y2 1 d) 3 solutions? 

e) 4 solutions? 

3. Let S be a set which contains n elements. How many different subsets 
of S are there, including the null set? 

4. Prove that the product of any three consecutive whole numbers is 
divisible by six. 

5. Let A and B be two given whole numbers. The Greatest Common Divisor 
of A and B is defined to be the largest whole number C which is a 
factor of both A and B. For example, the G.C.D. of 12 and 39 is 
3, and the G.C.D. of 30 and 42 is 6. PROVE that the greatest common 
divisor of A and B is unique. 

Figure 2. 

solved by a particular problem-solving approach. There were, for example, 
5 problems amenable to an approach by mathematical induction (Figure 3). 

One of the questions to be asked in this experiment was the following: 
Having worked the 20 problems in practice sessions and having seen the 
4 problems that were solved by induction, would the control students 
think to use induction on the posttest problem that called for it? Or more 
generally, is explicit mention of a strategy important, or will students intuit 
it from their experience? This question applies to each of the problem- 
solving approaches treated in the experiment, of course. Let us now consider 
the experimental design in detail. 

The bulk of the instruction was carried out through written materials and 
tape recorded "lectures." In each instruction session the students were given 
a booklet with four practice problems and a tape recorder. They worked on 
each problem for up to 15 minutes, or until it was solved. When finished 
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they turned to the next page in the booklet, which presented a solution to 
the problem. They also turned on the tape recorder to listen to a solution 
parallel to, but not identical with, the written solution. (This allowed them 
to hear the solution, which often helps in comprehension.) If, after thinking 
about a problem solution for 10 minutes, a student had a question, he or she 
could ask the experimenter. When a question was asked that could be 
answered by the instructional materials, the student was referred to them. 
Other questions were generally limited to technical matters such as "the 
converse is not always true but the contrapositive is, right?" Colleagues of 
the experimenter listened to the instructional tapes for both the experimen- 
tal and the control groups and claimed there was no discernible difference in 
either enthusiasm or clarity of presentation, so that any difference in scores 
between the two groups should not be attributable to experimenter bias. 

In sum then, the students in both groups spent the same amount of time 
working the same practice problems and saw the same solutions. The 
differences in treatment between the two groups were as follows: 

1. The four heuristics students were told (on tape) at the beginning of 
their first practice sessions that the experiment would try to show how five 
specific strategies would help them to solve problems. They were then given 
the strategies (see Figure 4). The list was placed conspicuously in front of 
them during all practice sessions and during the posttest. At the first session 

Problems Amenable to an Inductive Approach 

1. (pretest) What is the sum of the series 

1 1 1 1 
+ + +... + 9 12 2-3 3-4 n3(n + 1) 

Prove your answer if you can. 
2. You are given n points in the plane, none of which lie on a straight line. 

How many straight lines can you draw, if each straight line must pass 
through two of the n points? 

3. Let x be any odd integer. Show that x2 leaves a remainder of 1 when 
divided by 8. 

4. Determine a formula for the product 
(1- 

1 
(1- 

1 

Prove it if you can. 
5. (posttest) Let S be a set which contains n elements. How many different 

subsets of S are there, including the null set? 

Figure 3. 
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The Five Problem-Solving Strategies 

1. Draw a diagram if at all possible. 
Even if you finally solve the problem by algebraic or other means, a 

diagram can help give you a "feel" for the problem. It may suggest 
ideas or plausible answers. You may even solve a problem graphically 

2. If there is an integer parameter, look for an inductive argument. 
Is there an "n" or other parameter in the problem which takes on 

integer values? If you need to find a formula for f(n), you might try 
one of these: 

A) Calculate f(1), f(2), f(3), f(4), f(5); list them in order, and see if 
there's a pattern. If there is, you might verify it by induction. 

B) See what happens as you pass from n objects to n + 1. 
If you can tell how to pass from f(n) to f(n + 1), you may build 

up f(n) inductively. 
3. Consider arguing by contradiction or contrapositive. 

Contrapositive: Instead of proving the statement "If X is true then 
Y is true," you can prove the equivalent statement "If Yis false then 
X must be false." 
Contradiction: Assume, for the sake of argument, that the statement 

you would like to prove is false. Using this assumption, go on to 

prove either that one of the given conditions in the problem is false, 
that something you know to be true is false, or that what you wish 
to prove is true. If you can do any of these, you have proved what 

you want. 
Both of these techniques are especially useful when you find it 
difficult to begin a direct argument because you have little to work 
with. If negating a statement gives you something solid to 

manipulate, this may be the technique to use. 

4. Consider a similar problem with fewer variables. 

If the problem has a large number of variables and is too con- 

fusing to deal with comfortably, construct and solve a similar 

problem with fewer variables. You may then be able to 

A) Adapt the method of solution to the more complex problem. 
B) Take the result of the simpler problem and build up from there. 

5. Try to establish subgoals. 
Can you obtain part of the answer, and perhaps go on from there? 
Can you decompose the problem so that a number of easier results 
can be combined to give the total result you want? 

Figure 4. 
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they listened to a 10-minute tape describing the strategies. The control 
students were simply welcomed to the experiment (on tape) and told how to 
use the materials. 

2. Although the solutions to each problem seen by both groups were 
identical, the students in the heuristics group saw in addition an overlay to 
each solution that indicated where the strategy had been used. The differ- 
ences between the two presentations can be seen in Figure 5. There the 
complete solution is given for one of the induction problems. The entirety 
of Figure 5 was seen by the experimental group. Only the right-hand side of 
the page, consisting of the solution, was seen by the nonheuristics group. 

The tape recordings heard by each group recapitulated the solutions as 
seen on the page. The nonheuristics group listened to a tape that said "Let's 
calculate a few of the sums and see what happens. The first term is 1/2; .. ." 
The heuristics group heard "Notice that there is an n in the problem 
statement. When we see an integer parameter, we should calculate the values 
and see what happens. . . ." Recall that colleagues had listened to all of the 
tapes and determined that there was no difference in clarity, level of exposi- 
tion, or enthusiasm of presentation between the tapes that the two groups of 
students heard. 

3. The order of the problems was different. In each session the heuristics 
group practiced one particular strategy. For the nonheuristics group the 
order of the problems was scrambled, to see if the control students would 
intuit the strategies from a more random ordering of the problems. 

4. Finally, there was one slight difference in the posttest. At 5-minute 
intervals the control students were told "You've been working for five 
minutes now. You may be on the right track; you may not. But stop, take a 
deep breath, look over your work. Then decide whether you want to 
continue in that direction." The strategy group heard "and look over the list 
of strategies" after "look over your work." The reasons for this are dis- 
cussed in the next section. 

Results 

In the first section we indicated the three main questions to be analyzed. 
We shall begin with the third, a comparison of the performances of the 
two groups of students. The evidence marshaled here will serve as the 
foundation for our analysis of the first two questions. The bulk of our 
discussion will be, as suggested earlier, a treatment of the students' pro- 
tocols, or transcripts of their thinking aloud. Surprisingly, however, this 
experiment with only seven people does provide the fuel for a statistical 
analysis. We begin with a discussion of two gross measures of problem- 
solving improvement. Since the problem-solving abilities of the students can 
vary substantially at the onset of an experiment, the appropriate measure of 
the instructional materials' effect is the difference in scores from pretest to 
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What is the sum of the series 

1 1 1 1 
s= - + + + ..+ + 1 -2 2 3 +3 4 (n)(n + 1) 

Prove your answer if you can. 

Notice the integer parameter ... Solution 

Let's examine a few of the sums. 

The first term is 1/2. 
The sum of the first two terms is 

1/2 + 1/6 = 2/3. 
Calculate the values for The sum of the first three terms is 

n = 1/2, 23,3/4, .4/5. 2/3 + 1/12 = 3/4. 
The sum of the first four terms is 

3/4 + 1/20 = 4/5. 

We can be pretty certain at this 

point that the sum of the first 
Guess the formula from the pattern n terms is (n/n + 1). As usual, 

we verify a formula like this by 
induction. 
"For n = 1, the sum of the first 
n terms is 1/2, which checks. 

Suppose the sum of the first 
k terms is (k/k + 1); that is, 

1 1 1 k 
1-2 2-3 + (k)(k + 1) k + 1 

Verify the formula by induction 
% Then the sum of the first 

(k + 1) terms is 

1 1 
+ + 

I 

1-2 2-3 

+ + 
(k)(k + 1) (k + 1)(k + 2) 

k 1 
k + 1 (k + 1)(k + 2) 

k2+2k+ 1 (k+ 1)2 

(k + 1)(k + 2) (k + 1)(k + 2) 

k+l 
k+2 

which is the desired formula for 
n=k+ 1. 

This completes the argument. 

Figure 5. A sample solution, with heuristic overlay. 



Table 1 
Number of Completely Solved and Almost Completely Solved Problems 

Pretest Posttest 

Nonheuristic S, 2 (1)a 2 (2) 
S2 1 (1) 2 (1) 
S3 2 (0) 1 (0) 

Heuristic S4 2 (1) 5 (0) 
S, o (0) 2 (0) 
Se 2 (0) 4 (1) 
S, o (0) 2 (0) 

"a Number of almost completely solved problems are indicated in the parentheses. 

posttest. Table 1 provides the number of test problems completely solved by 
each of the students. 

At a qualitative level, we note that all the students in the heuristics group 
improved from pretest to posttest, whereas only one in the nonheuristics 
group did. In fact, the average net gain for the nonheuristics group is 0, and 
for the heuristics group it is more than 2. More importantly, all four of the 
students who received heuristics training outscored all three who did not. 
The probability of this happening randomly is 1/35, so the differences in 
the students' performance are statistically significant at p < .05. 

A second gross measure of success can be seen by looking at the "almost 
completely solved" problems. The problem-solving process was cut off at 20 
minutes on each problem; we can ask if it is clear that with another 5 to 10 
minutes, a solution would have been obtained. Table 1 also provides the 
data for this measure. 

Were the differences obtained really due to the heuristics? Certainly the 
experimental design was such that they should be. The statistics are silent on 
that question, however. We turn to the protocols of the solutions themselves. 
We will examine how all seven students worked on posttest Problem 1. 

"Suppose p, q, r, and s are positive real numbers. Prove the inequality 

(p2 + l)(q2 + 1)(r2 + 1)(s2 + 1) 16." 

pqrs 

The problem is most easily dispatched by employing the fourth strategy 
on the list in Figure 4, "consider a similar problem with fewer variables." 
Noting that the left-hand side of the inequality is the product of four terms 
of the form (x2 + 1)/x, one need only prove the one-variable inequality 
(x2 + 1)/x 2 2, substitute p, q, r, and s for x, and multiply the four result- 
ing inequalities. 

None of the three students in the nonheuristics group solved the problem, 
although one should have and got an "almost." S2 and S3 both jumped into 
messy algebraic computations and persisted, through the third 5-minute 
warning, in trying to show by some sort of clever factorization that 

(p + 1)(q2 + 1)(r2 + 1)(s2 + 1) - 16pqrs 2 0. 
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With less than 5 minutes left, S2 decided to set p = q and r = s, but was 
unable to do anything with that; S, was interested to see that substituting the 
value I for p, q, r, and s led to the minimum value of 16, and ran out of time. 
Neither of them was anywhere near a solution. 

St, on the other hand, tried to solve the problem exactly as described in 
the solution above. Within a few seconds of reading the statement of the 
problem, she said "OK, I've got to show that (p2 + 1)/p is always greater 
than or equal to 2." Then for some reason she got sidetracked: She noticed 
that it equals 2 when p is 1, and, after noting that the value of (p2 + 1)/p 
increased for the next few integer values of p, tried to prove the result by 
induction! At the third 5-minute warning she gave this up and made a sketch 
of the graph of p + l/p, which was accurate, but not analytically justified. 
She finished this at 20 minutes and said yes when asked if she were satisfied 
with the solution. When asked "What if we weren't satisfied?" she said, "I 
guess I could always find the minimum of (p + l/p) by calculus." That got 
her an "almost." At that point she was complimented on the design of her 
solution. Her response was "I noticed that whenever a practice problem had 
lots of variables in it, you tried to do the one- or two-variable problem. 
So I tried to do that here." More about this in a short while. 

The performance of the heuristics group was substantially different. S, 
read the problem statement, said "that's a fewer variable problem," and 
tried to analyze the two-variable problem (p2 + l)(q2 + 1)/pq > 4. After 
about 8 minutes she said "What about the one-variable problem?" and 
solved it in another 4 minutes. 

Unlike S4, S, relied consciously on the list of strategies at the very 
beginning. After reading the problem statement, he turned to the list and 
checked them off one by one: "Let's see, I don't think I can really draw a 
diagram for this one, and there isn't an integer parameter so I can't do an 
inductions, and let's see, what would the contrapositive be? No, that doesn't 
make sense; OK, how about fewer variables? Yeah. Let me see if the one- 
variable problem makes any sense...." He solved the problem by the first 
warning. 

S,, much like S2 and S,, jumped right into a complicated algebraic morass. 
She was happily calculating away at the 5-minute warning. Only then did 
she stop, look at the strategies, choose the appropriate one, and after a few 
minutes on the two-variable problem, solve it correctly. 

S, first tried to disprove the problem statement by showing that the 
product must be less than 16, and took about 8 minutes to realize that his 
logic was flawed. After that he wrote out the left-hand side of the inequality 
as the product of four similar factors, and decided to explore the nature of 
(p2 + 1)/p by plugging in a few values of p, and then seeing what happened 
as p grew infinitely large. He was nowhere near a solution when he ran out 
of time. 

Thus a detailed look at the students' solutions to the test problems 
supports the results suggested by the statistics: Conscious application of the 
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problem-solving strategy does make a difference. Only one of the three 
control students solved the problem, and she did so by intuiting and apply- 
ing the strategy the others had been taught; yet three of four in the experi- 
mental group solved it. The picture is still complicated, however; we have 
more to look at. 

First, we return to question (a) in the first section. What was the impact of 
the instruction on students' posttest performance? There are two com- 
ponents to this question. They are as follows: 

(1) Can the students transfer their training from practice problems to 
posttest problems? 

(2) Will they do so in unconstrained circumstances? 

What we have seen indicates that some of the strategies are relatively easy 
for the students to learn and apply and that clear evidence of success, 
relative to question (1), is obtainable in the short term. The protocols we 
have just examined show, for example, that three of the four experimental 
students learned to use the fewer-variables strategy correctly. None of them 
had used this strategy on pretest Problem 4. For this strategy, then, the 
effect is large. We have similar results for the induction problems (Figure 3) 
where all four of the experimental group but none of the controls solved the 
posttest problem. The cue of the integer parameter n allowed students who 
recognized it to make progress; those who did not see it made none. The 
results were similar for the diagram problems (#1 on the pretest, #2 on the 
posttest); those who made use of the strategy had an easier time with the 
problem. 

For the other two strategies, however, the results were inconclusive. 
Posttest Problem 5 disturbed some of the students, who either saw nothing 
to prove or got jumbled in the mechanics of a proof by contradiction; there 
was comparable performance for both groups. More instruction, or perhaps 
a different posttest problem, might have given different results. 

With hindsight, we see clearly that the instruction for subgoals, tested on 
pretest Problem 2 and posttest Problem 4, was inadequate. The strategy 
itself is very complex; subgoals is, in fact, merely a convenient label for a 
whole class of related but different skills (Schoenfeld, Note 4). The attempt 
to look for transfer of this skill on the basis of five practice problems was at 
best naive. We see then, that there is a good deal more work to be done in 
selecting and teaching the strategies, even to obtain results in an experimen- 
tal setting. 

Let us now turn to (2) above. Unfortunately, the fact that a student 
knows how to use a strategy is no guarantee whatsoever that the student will 
indeed use it. Recall, for example, the performance of S6 on posttest Prob- 
lem 1. Even though she was taking part in an experiment designed to teach 
the five strategies, had the list of strategies in front of her at all times, and 
was fully competent (as her protocols show) at using the fewer-variables 
strategy, she ignored it completely when given posttest Problem 1. Only at 
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the 5-minute warning did she stop to consider that it might be worthwhile to 
use the strategy. 

This kind of behavior occurred more than once during the posttest. S,, for 
example, had immediately begun solving the two simultaneous equations in 
posttest Problem 2 and was deeply involved in an incorrect solution when 
asked to take a deep breath and reconsider. That was enough; with an "Oh, 
sure: draw a diagram" she went on to solve the problem easily. 

The implications of this kind of behavior are serious, for they point to 
major difficulties in taking work like this experiment from the laboratory to 
the classroom. The students in this experiment were (relatively) decent 
problem solvers with ingrained behavior patterns that had served them 
(relatively) well for many years; it would be naive to expect practice sessions 
on 20 problems to effect substantial changes in their behavior. For a more 
extended discussion of this, see Schoenfeld (1979a). 

Finally, we turn to question (b) of Section 1. Having seen four problem 
solutions by induction, four solutions aided by the use of diagrams, four 
solutions by contradiction, four solved by fewer variables, and four by 
subgoals, would the control students intuit and use the strategies on prob- 
lems similar to those that they had studied? As a rule, no. There were 
exceptions, such as S,'s performance on the fewer-variables problems. On 
pretest Problem 4, which asked students to show that for 0 < a, b, c, 
d ? 1, 

(1 - a)(1 - b)(1 - c)(1 - d) 1 - a - b - c- d, 

she had multiplied out the terms on the left-hand side and spent 20 minutes 
in algebraic manipulations-showing no signs of awareness of the fewer- 
variables heuristic. As her comment after the posttest indicated, she had 
correctly intuited the strategy and learned to apply it, from the practice 
problems. 

In contrast to S1, however, S, and S, failed to make the connection-and 
in all honesty, it does not seem a terribly hard one to make, given the nature 
of the experimental environment. Even more dramatic, we have the stu- 
dents' performance on the induction problems. In many ways the posttest 
problem is very much like Problem 2 (see Figure 3) and one might well 
expect some transfer. There was none; not one of the control students tried 
to discover a pattern by making calculations for small integer values of n. 
This lack of transfer was not due to lack of memory; after the experiment 
was over these same students quoted some of the problems nearly verbatim 
when we discussed what the purpose of the experiment had been. 

In sum, then, the results of this experiment point to the following: 

1. Even in the enriched environment of the experiment, the degree to 
which students intuited the heuristics appropriate for the posttest was 
minimal. Real-life mathematical problem-solving experiences are not nearly 
as well ordered as they were in this experiment; the likelihood of students' 
picking up the strategies from their experience is small. (Recall that the 
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students were upper-division science and mathematics majors; they showed 
little evidence of using heuristic approaches to the problems on the pretest.) 
Thus, if we expect students to learn to use such strategies, we should label 
them explicitly and explicate their use in much the same way we would teach 
any other mathematical strategies or techniques. We would not rely on 
implicit instruction for the quadratic formula; can we expect it to work for 
subgoals? 

2. That students can master a particular problem-solving technique is no 
guarantee that they will use it. Were it not for the 5-minute warning in the 
experimental format, a number of the posttest problems solved by the heuris- 
tics group would have gone unsolved. Even after a more extended training 
period, students will not instinctively reach for the strategies that experts 
may find natural; they must be taught not only how to use the strategies, but 
when. Little is known about this particular aspect of problem solving, either 
on the part of experts or on the part of students; much research remains to 
be done. 

3. When problem-solving strategies are identified and taught, and when 
students think to use them, the impact on the students' problem-solving 
performance is substantial. 

Where Do We Go from Here? 

There are two major ways in which the experiment described in this paper 
can be varied to yield additional information about problem solving. They 
are as follows: 

1. to keep the experimental format largely intact, while varying the 
heuristics being studied. 

2. to "loosen" the format, to approximate real-world conditions. 

Let us discuss (1) first. The five heuristics given in Figure 4 are not neces- 
sarily the most important, or the most difficult to teach of the strategies that 
might have been chosen for this experiment. They range from very straight- 
forward (induction) to rather nebulous (subgoals). As we saw in Section 3, 
the students' posttest performance reflects this. Much more training in sub- 
goals is necessary before instruction in the strategy will have demonstrable 
impact on students. The experimental environment, which allows for a de- 
tailed examination of the students' problem-solving processes before and 
after instruction in the strategies, is a useful vehicle for determining how 
much instruction, even under ideal circumstances, students will need before 
learning to use this or other strategies. It also provides detailed information 
about what they learn, and what they do not. A revised version of this 
experiment might contain seven or eight subgoals problems, or a subclass of 
such problems, or more detailed instructions on how to use the strategy. 

In its present form the experiment can be used to study any of the large 
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number of heuristic problem-solving approaches that have been identified in 
the literature. By systematically varying the strategies to be studied and the 
amount of training provided in them, we can begin to accumulate a large 
body of information about them. That information has been lacking to date 
and would prove extremely useful. 

After we have learned more about the use of the heuristics through this 
kind of experiment, we can still exploit it to examine (in microcosm) various 
selection mechanisms. Can we find various cues that strongly suggest that 
particular strategies are appropriate for particular (as yet undefined) types 
of problems? The integer parameter is one such cue, easily identified; per- 
haps there are others. We may wish to include such cues in our instruction. 
The protocols of the posttests will provide clear evidence of whether the 
students have used them effectively or not. 

In this version of the experiment the teaching was done via tape record- 
ings, so that the instruction process could be checked for teacher bias. As 
much as possible, the goal was to avoid the chance that the difference in 
performance between experimental and control groups could be attributable 
to enthusiasm or bias on the part of the experimenter in favor of the 
heuristics group. Once the point is granted that instruction in the heuristic 
strategies does have an impact, instruction via tape recordings will no longer 
be necessary and the experimental format can be changed; the instruction 
might be given by a teacher to small groups of students, say half a dozen at a 
time. It might be rerun until, under these still ideal conditions, the students 
reliably learn the strategies. The instruction might then be moved to a 
regular classroom setting. With large numbers of students (comparatively), 
more reliable statistical validation of the experiment than that offered here 
should be attainable. Statistical analysis should not be the only research 
method, however. Since the circumstances would be different, it would 
again be valuable to record (some) pretests and posttests. This would 
provide information about the changes in instruction that might be neces- 
sary to adapt to the new environment. When this experiment is first brought 
to the classroom, it would probably be appropriate to continue the use of 
the 5-minute warning during testing; the case has yet to be made that 
heuristics can make a difference in classroom instruction. Later on one 
could see how the use of cues or other training in selection mechanisms 
might make the warning unnecessary. 

We are still a long way from success. If we can succeed in identifying truly 
useful problem-solving strategies (and here we have done well); if we can 
understand and exploit the mechanisms by which experts call these strate- 
gies into play; and if we can create efficient means by which this knowledge 
can be passed on to our students, the potential rewards are great indeed. The 
obstacles are many, the field vast. This experiment shows that, under appro- 
priate circumstances, explicit instruction in general problem-solving strate- 
gies (heuristics) does have an impact on students' problem-solving perform- 
ance. The rest will, with luck and work, come with time. 
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