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This text is an exercise of manifold theory and we are going show RPn is a topological manifold,
that is, it is topological space with Hausdorff and second-countable topological properties and
it is also locally euclidean.

Definition 1. First definition of Projective Space. For some natural n ≥ 1, let RPn := {V ⊂
Rn+1 : V vector space, dim(V ) = 1}. We introduce a topology on RPn as follow: define
π : Rn+1\{0} → RPn, π(x) = span{x}, we say U ⊂ RPn is open if π−1(U) is open in Rn+1\{0},
with induced topology of Rn+1, in addition, denote τ subset of parts of RPn such that it is the
collection of open sets of RPn, it is easy to check (RPn, τ) is a topological space.

Definition 2. Second definition of Projective Space. For some natural n ≥ 1, consider Sn :=
{x ∈ Rn+1 : ‖x‖ = 1}, in Sn we define x ∼ y iff x = y or A(x) = y, that is, if y is image of
x by antipodal map (A(x) = −x, x ∈ Sn). Obviously ∼ is a equivalent relation in Sn, the map
q : Sn → Sn/ ∼, q(x) = [x] = {−x, x} is called of projection map, we set Sn/ ∼:= Pn, analogous
to previous definition, we have U open in Pn if q−1(U) is open in Sn, it is equipped with induced
topology of Rn+1.

Proposition 1. The RPn is homeomorphic to Pn

Proof. Let ϕ : Pn → RPn, ϕ({−x, x}) = span{−x, x}, we are going show ϕ is a homeomorphism
between RPn and Pn.

Claim. ϕ is a bijection.

We have ϕ({−x, x}) = ϕ({−y, y}) ⇐⇒ {λx : λ ∈ R} = {µy : µ ∈ R}, if t ∈ {λx : λ ∈
R} = {µy : µ ∈ R}, then t = λx = µy, λ, µ ∈ R, hence ‖t‖ = |λ| = |µ| =⇒ |λµ | = 1, that
is, λ = ±µ, therefore {−x, x} = {−y, y}, it shows ϕ is injective. For surjection we have just
consider x ∈ r ∩ Sn, where r ∈ RPn, then ϕ({−x, x}) = r.

Claim. ϕ is an open map.

It is true π|Sn is onto and continuous. Let U ⊂ Pn open, π−1|Sn(ϕ(U)) = (ϕ−1 ◦ π|Sn)−1(U),
where ϕ−1({λx : λ ∈ R}) = {λx : λ ∈ R} ∩ Sn, it is easy to see ϕ−1 ◦ π|Sn = q, hence
π−1|Sn(ϕ(U)) = (ϕ−1 ◦ π|Sn)−1(U) = q−1(U) is open, therefore ϕ(U) is open.

By two previous claims we have ϕ homeomorphism.

Proposition 2. Pn is Hausdorff.

Proof. Let x, y ∈ Sn+1, x 6= y, clearly y or −y is in same hemisphere of x, so ‖x−y‖2 ≤ 1 or
‖x−(−y)‖

2 ≤ 1, if ε < 1
2min{‖x− y‖, ‖x+ y‖}, we must have B(ε, x)∩B(ε, y) = ∅, where B(·, ·) is

a open ball, otherwise if z ∈ B(ε, x)∩B(ε, y) by triangle inequality ‖x−y‖ ≤ ‖x−z‖+‖z−y‖ <
2ε < min{‖x−y‖, ‖x+y‖} ≤ ‖x−y‖, contradiction. Analogous we show B(ε, x)∩−B(ε, y) = ∅.

Denote U := B(ε, x) ∩ Sn and V := B(ε, y) ∩ Sn, by preceding statement we obtain U ∩ V =
U ∩ −V = −U ∩ V = −U ∩ −V = ∅. The condition U ∩ −U = V ∩ −V = ∅ follow of
ε < 1, otherwise, we have z ∈ {λx : λ ∈ R} and z ∈ B(ε, x) ∩ −B(ε, x), on the one hand
‖z−x‖+‖z− (−x)‖ = 2, on the other hand ‖z−x‖, ‖z+x‖ < ε < 1 =⇒ ‖z−x‖+‖z+x‖ < 2,
contradiction. Follow U, V,−U,−V are pairwise disjoint.
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Claim. q(U), q(V ) are open in Pn.

x ∈ q−1(q(U)) =⇒ q(x) ∈ q(U), but q(x) = {−x, x} so x ∈ U or x ∈ −U , then q−1(q(U)) ⊂
−U ∪ U , conversely x ∈ −U ∪ U =⇒ q(x) ∈ q(U) =⇒ x ∈ q−1(q(U)), hence −U ∪ U ⊂
q−1(q(U)), therefore q−1(q(U)) = −U ∪ U open in Sn, analogous for q(V ).

Claim. q(U) ∩ q(V ) = ∅.

If there is {−x, x} ∈ q(U) ∩ q(V ), then one of U ∩ V,−U ∩ V,U ∩−V or −U ∩ V is non empty,
contradiction.

By the previous affirmations, follow Pn Hausdorff.

Definition 3. We say a topological space M is locally euclidean (of dimension n) if for ev-
ery point p ∈ M , there is a open neighborhood U and a map ϕ : U → Rn such that ϕ is
homeomorphism.

Theorem 3. RPn is locally euclidean.

Proof. Denote Vi = {x ∈ Rn+1\{0} : xi 6= 0} and Ui = π(Vi).

Claim. Vi = π−1(π(Vi)).

Clearly Vi ⊂ π−1(π(Vi)), conversely y ∈ π−1(π(Vi)) =⇒ π(y) ∈ π(Vi), so exist x ∈ Vi such that
π(y) = π(x), note y ∈ π(y) = {µy : µ ∈ R} = {λx : λ ∈ R} = π(x), then y = λx, hence yi = λxi,
if λ = 0, then y = 0, contraction, therefore yi 6= 0 because x ∈ Vi, yi 6= 0 =⇒ y ∈ Vi, that is,
Vi ⊂ π−1(π(Vi)) and follow the claim.

Claim. Vi is open.

Note that Vi is complement of pre-image by projection on i−coordinate of {0} in Rn+1\{0}.

Claim. Ui is open in RPn.

Follow by Vi = π−1(π(Vi)) = π−1(Ui), Vi open.

Define ϕi : Ui → Rn, ϕi([x1, · · · , xn+1]) =
(
x1
xi
, · · · , xi−1

xi
,
xi+1
xi

, · · · , xn+1
xi

)
.

Each ϕi is continuous.

It sufficient show continuity of ϕi ◦ π : Vi → Rn, but it is

(x1, · · · , xn+1) 7→
(
x1
xi
, · · · , xi−1

xi
,
xi+1
xi

, · · · , xn+1
xi

)
clearly continuous.

Claim. ψ : Rn → Ui, ψ(u1, · · · , un) = [u1, · · · , ui, 1, ui+1, · · · , un] is ϕ−1
i .

First
(ϕi ◦ ψ)(u1, · · · , un) = ϕi([u1, · · · , ui−1, 1, ui+1, · · · , un]) = (u1, · · · , un)

reciprocally,

(ψ ◦ ϕi)([x1, · · · , xn+1]) = ψ

(
x1
xi
, · · · , xi−1

xi
,
xi+1
xi

, · · · , xn+1
xi

)
=
[
x1
xi
, · · · , xi−1

xi
, 1, xi+1

xi
, · · · , xn+1

xi

]
= [x1, · · · , xn+1].

Claim. ϕ−1
i is continuous.
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We have ϕ−1
i (u1, · · · , un) = (π ◦ fi)(u1, · · · , un), where fi : Rn → Rn+1, f(u1, · · · , un) =

(u1, · · · , ui, 1, ui+1, · · · , un), from continuity of π and f follow ϕ−1
i continuous.

If v ∈ RPn, then exist x ∈ Rn+1 such that v = [x], x 6= 0, then exist i ∈ {1, · · · , n + 1} with
xi 6= 0, hence v ∈ Ui, therefore

⋃n+1
i=1 Ui = RPn. Finally, for each point in RPn we have a local

homeomorphism with Rn, that is, RPn is locally euclidean.

Corollary 4. RPn is second-countable.

Proof. Each Ui, i ∈ {1, · · · , n+ 1}, is second-countable (homeomorphic to Rn), because RPn =⋃n+1
i=1 Ui, we have RPn is second-countable.

Corollary 5. RPn is a topological manifold of dimension n.

Proof. By Theorem 1 we have RPn locally euclidean and second-countable, by Proposition 2
RPn is Hausdorff, because Pn is Hausdorff and they are homeomorphic.
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