Real Projective Space Carlos Henrique Silva Alcantara

E-mail: carlos.henalcant@gmail.com

This text is an exercise of manifold theory and we are going show $\mathbb{R}P^n$ is a topological manifold, that is, it is topological space with Hausdorff and second-countable topological properties and it is also locally euclidean.

Definition 1. First definition of Projective Space. For some natural $n \ge 1$, let $\mathbb{R}P^n \coloneqq \{V \subset \mathbb{R}^{n+1} : V \text{ vector space, } \dim(V) = 1\}$. We introduce a topology on $\mathbb{R}P^n$ as follow: define $\pi : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}P^n, \pi(x) = \operatorname{span}\{x\}$, we say $U \subset \mathbb{R}P^n$ is open if $\pi^{-1}(U)$ is open in $\mathbb{R}^{n+1} \setminus \{0\}$, with induced topology of \mathbb{R}^{n+1} , in addition, denote τ subset of parts of $\mathbb{R}P^n$ such that it is the collection of open sets of $\mathbb{R}P^n$, it is easy to check $(\mathbb{R}P^n, \tau)$ is a topological space.

Definition 2. Second definition of Projective Space. For some natural $n \ge 1$, consider $\mathbb{S}^n := \{x \in \mathbb{R}^{n+1} : \|x\| = 1\}$, in \mathbb{S}^n we define $x \sim y$ iff x = y or A(x) = y, that is, if y is image of x by antipodal map $(A(x) = -x, x \in \mathbb{S}^n)$. Obviously \sim is a equivalent relation in \mathbb{S}^n , the map $q: \mathbb{S}^n \to \mathbb{S}^n / \sim, q(x) = [x] = \{-x, x\}$ is called of projection map, we set $\mathbb{S}^n / \sim := \mathbb{P}^n$, analogous to previous definition, we have U open in \mathbb{P}^n if $q^{-1}(U)$ is open in \mathbb{S}^n , it is equipped with induced topology of \mathbb{R}^{n+1} .

Proposition 1. The $\mathbb{R}P^n$ is homeomorphic to \mathbb{P}^n

Proof. Let $\varphi : \mathbb{P}^n \to \mathbb{R}P^n$, $\varphi(\{-x, x\}) = span\{-x, x\}$, we are going show φ is a homeomorphism between $\mathbb{R}P^n$ and \mathbb{P}^n .

Claim. φ is a bijection.

We have $\varphi(\{-x,x\}) = \varphi(\{-y,y\}) \iff \{\lambda x : \lambda \in \mathbb{R}\} = \{\mu y : \mu \in \mathbb{R}\}, \text{ if } t \in \{\lambda x : \lambda \in \mathbb{R}\} = \{\mu y : \mu \in \mathbb{R}\}, \text{ then } t = \lambda x = \mu y, \lambda, \mu \in \mathbb{R}, \text{ hence } \|t\| = |\lambda| = |\mu| \implies |\frac{\lambda}{\mu}| = 1, \text{ that is, } \lambda = \pm \mu, \text{ therefore } \{-x,x\} = \{-y,y\}, \text{ it shows } \varphi \text{ is injective. For surjection we have just consider } x \in r \cap \mathbb{S}^n, \text{ where } r \in \mathbb{R}P^n, \text{ then } \varphi(\{-x,x\}) = r.$

Claim. φ is an open map.

It is true $\pi|_{\mathbb{S}^n}$ is onto and continuous. Let $U \subset \mathbb{P}^n$ open, $\pi^{-1}|_{\mathbb{S}^n}(\varphi(U)) = (\varphi^{-1} \circ \pi|_{\mathbb{S}^n})^{-1}(U)$, where $\varphi^{-1}(\{\lambda x : \lambda \in \mathbb{R}\}) = \{\lambda x : \lambda \in \mathbb{R}\} \cap \mathbb{S}^n$, it is easy to see $\varphi^{-1} \circ \pi|_{\mathbb{S}^n} = q$, hence $\pi^{-1}|_{\mathbb{S}^n}(\varphi(U)) = (\varphi^{-1} \circ \pi|_{\mathbb{S}^n})^{-1}(U) = q^{-1}(U)$ is open, therefore $\varphi(U)$ is open.

By two previous claims we have φ homeomorphism.

Proposition 2. \mathbb{P}^n is Hausdorff.

Proof. Let $x, y \in \mathbb{S}^{n+1}$, $x \neq y$, clearly y or -y is in same hemisphere of x, so $\frac{\|x-y\|}{2} \leq 1$ or $\frac{\|x-(-y)\|}{2} \leq 1$, if $\epsilon < \frac{1}{2}min\{\|x-y\|, \|x+y\|\}$, we must have $B(\epsilon, x) \cap B(\epsilon, y) = \emptyset$, where $B(\cdot, \cdot)$ is a open ball, otherwise if $z \in B(\epsilon, x) \cap B(\epsilon, y)$ by triangle inequality $\|x-y\| \leq \|x-z\| + \|z-y\| < 2\epsilon < min\{\|x-y\|, \|x+y\|\} \leq \|x-y\|$, contradiction. Analogous we show $B(\epsilon, x) \cap -B(\epsilon, y) = \emptyset$.

Denote $U := B(\epsilon, x) \cap \mathbb{S}^n$ and $V := B(\epsilon, y) \cap \mathbb{S}^n$, by preceding statement we obtain $U \cap V = U \cap -V = -U \cap V = -U \cap -V = \emptyset$. The condition $U \cap -U = V \cap -V = \emptyset$ follow of $\epsilon < 1$, otherwise, we have $z \in \{\lambda x : \lambda \in \mathbb{R}\}$ and $z \in B(\epsilon, x) \cap -B(\epsilon, x)$, on the one hand ||z - x|| + ||z - (-x)|| = 2, on the other hand $||z - x||, ||z + x|| < \epsilon < 1 \implies ||z - x|| + ||z + x|| < 2$, contradiction. Follow U, V, -U, -V are pairwise disjoint.

Claim. q(U), q(V) are open in \mathbb{P}^n .

 $\begin{array}{l} x \in q^{-1}(q(U)) \implies q(x) \in q(U), \text{ but } q(x) = \{-x,x\} \text{ so } x \in U \text{ or } x \in -U, \text{ then } q^{-1}(q(U)) \subset -U \cup U, \text{ conversely } x \in -U \cup U \implies q(x) \in q(U) \implies x \in q^{-1}(q(U)), \text{ hence } -U \cup U \subset q^{-1}(q(U)), \text{ therefore } q^{-1}(q(U)) = -U \cup U \text{ open in } \mathbb{S}^n, \text{ analogous for } q(V). \end{array}$

Claim. $q(U) \cap q(V) = \emptyset$.

If there is $\{-x, x\} \in q(U) \cap q(V)$, then one of $U \cap V, -U \cap V, U \cap -V$ or $-U \cap V$ is non empty, contradiction.

By the previous affirmations, follow \mathbb{P}^n Hausdorff.

Definition 3. We say a topological space M is locally euclidean (of dimension n) if for every point $p \in M$, there is a open neighborhood U and a map $\varphi : U \to \mathbb{R}^n$ such that φ is homeomorphism.

Theorem 3. $\mathbb{R}P^n$ is locally euclidean.

Proof. Denote $V_i = \{x \in \mathbb{R}^{n+1} \setminus \{0\} : x_i \neq 0\}$ and $U_i = \pi(V_i)$.

Claim. $V_i = \pi^{-1}(\pi(V_i)).$

Clearly $V_i \subset \pi^{-1}(\pi(V_i))$, conversely $y \in \pi^{-1}(\pi(V_i)) \implies \pi(y) \in \pi(V_i)$, so exist $x \in V_i$ such that $\pi(y) = \pi(x)$, note $y \in \pi(y) = \{\mu y : \mu \in \mathbb{R}\} = \{\lambda x : \lambda \in \mathbb{R}\} = \pi(x)$, then $y = \lambda x$, hence $y_i = \lambda x_i$, if $\lambda = 0$, then y = 0, contraction, therefore $y_i \neq 0$ because $x \in V_i$, $y_i \neq 0 \implies y \in V_i$, that is, $V_i \subset \pi^{-1}(\pi(V_i))$ and follow the claim.

Claim. V_i is open.

Note that V_i is complement of pre-image by projection on *i*-coordinate of $\{0\}$ in $\mathbb{R}^{n+1}\setminus\{0\}$.

Claim. U_i is open in $\mathbb{R}P^n$.

Follow by $V_i = \pi^{-1}(\pi(V_i)) = \pi^{-1}(U_i), V_i$ open.

Define $\varphi_i: U_i \to \mathbb{R}^n, \, \varphi_i([x_1, \cdots, x_{n+1}]) = \left(\frac{x_1}{x_i}, \cdots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \cdots, \frac{x_{n+1}}{x_i}\right).$

Each φ_i is continuous.

It sufficient show continuity of $\varphi_i \circ \pi : V_i \to \mathbb{R}^n$, but it is

$$(x_1, \cdots, x_{n+1}) \mapsto \left(\frac{x_1}{x_i}, \cdots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \cdots, \frac{x_{n+1}}{x_i}\right)$$

clearly continuous.

Claim. $\psi : \mathbb{R}^n \to U_i, \ \psi(u_1, \cdots, u_n) = [u_1, \cdots, u_i, 1, u_{i+1}, \cdots, u_n]$ is φ_i^{-1} . First

$$(\varphi_i \circ \psi)(u_1, \cdots, u_n) = \varphi_i([u_1, \cdots, u_{i-1}, 1, u_{i+1}, \cdots, u_n]) = (u_1, \cdots, u_n)$$

reciprocally,

$$(\psi \circ \varphi_i)([x_1, \cdots, x_{n+1}]) = \psi\left(\frac{x_1}{x_i}, \cdots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \cdots, \frac{x_{n+1}}{x_i}\right)$$
$$= \left[\frac{x_1}{x_i}, \cdots, \frac{x_{i-1}}{x_i}, 1, \frac{x_{i+1}}{x_i}, \cdots, \frac{x_{n+1}}{x_i}\right]$$
$$= [x_1, \cdots, x_{n+1}].$$

Claim. φ_i^{-1} is continuous.

We have $\varphi_i^{-1}(u_1, \cdots, u_n) = (\pi \circ f_i)(u_1, \cdots, u_n)$, where $f_i : \mathbb{R}^n \to \mathbb{R}^{n+1}$, $f(u_1, \cdots, u_n) = (u_1, \cdots, u_i, 1, u_{i+1}, \cdots, u_n)$, from continuity of π and f follow φ_i^{-1} continuous.

If $v \in \mathbb{R}P^n$, then exist $x \in \mathbb{R}^{n+1}$ such that v = [x], $x \neq 0$, then exist $i \in \{1, \dots, n+1\}$ with $x_i \neq 0$, hence $v \in U_i$, therefore $\bigcup_{i=1}^{n+1} U_i = \mathbb{R}P^n$. Finally, for each point in $\mathbb{R}P^n$ we have a local homeomorphism with \mathbb{R}^n , that is, $\mathbb{R}P^n$ is locally euclidean.

Corollary 4. $\mathbb{R}P^n$ is second-countable.

Proof. Each U_i , $i \in \{1, \dots, n+1\}$, is second-countable (homeomorphic to \mathbb{R}^n), because $\mathbb{R}P^n = \bigcup_{i=1}^{n+1} U_i$, we have $\mathbb{R}P^n$ is second-countable.

Corollary 5. $\mathbb{R}P^n$ is a topological manifold of dimension n.

Proof. By Theorem 1 we have $\mathbb{R}P^n$ locally euclidean and second-countable, by Proposition 2 $\mathbb{R}P^n$ is Hausdorff, because \mathbb{P}^n is Hausdorff and they are homeomorphic.

References

[L] Lee, J., Introduction to Smooth Manifolds. Graduate Texts in Mathematics, Vol. 218, Springer, 2002.