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This text is an exercise of manifold theory and we will show dim(M) = dim(T,M), that is, the
dimension of a differential manifolds (M, .A), sometimes just M - topological manifolds with a
maximal atlas of compatible charts - is the same of tangent space, but what is tangent space?

In this text M is always a differential manifold.
Definition 1. Let p € M, define a set
I') ={(U, f) : U open neighborhood of p and f : U — R smooth function}

in I', set the relation: (U, f) ~ (V,g) <= there is a open neighborhood W of p such that
flw = glw, we denote G, :==T'))\ ~ and an element of G, is called germ in p.

In each G, we define three operations such that G, is an algebra, that is, a vector space and a
ring, the operations are define as [(U, )]+ [(V,9)] = (U NV, f+ g)], AU, f)] = [(U,Af)] (for
vector space) and [(U, f)][(V,g)] = [(UNYV, fg)] (for ring), where the [-] is the class of (-,-), it
is easy verify the well-definition of these operations and the axioms of vector space and ring.
When the domain U of some f is clear or not important we denote just [f] for the class of f in
Gp.

Definition 2. A derivation at p € M is a R-linear map v : G, — R, such that the Leibniz’s
rule is satisfied:

o([f]lg]) = v([fDg() + f(p)v([g])

the set of all derivation in p is called tangent space and denoted T, M. If we define sum and
product by scalar pointwise, that is, (v + Aw)([f]) = v[f] + Aw([f]), then T, M is a real vector
space.

Remark. Now we will show dim(M) = dimgrT,M. The sketch is first show an isomorphism
between T}, M and a abstract, but useful, vector space, then show the dimension of this space is
finite and equal to dimM.

Definition 3. Let p € M, define F, == {X € G : f(p) = 0,Vf € X}, of course f(p) = 0 for

some f € X so h(p) =0 for all h € X. In terms of F, we define F} := {Z[fl] lg:] = [fil,gi] €
i=1

F,, and n is any positive integer}.

Remark. It easy to see F), is an ideal and subspace of G, analogous for Fﬁ, that is, sz is an

ideal and a subspace of F,, it makes sense in the vector space and ring context Fp/ Fg, i.e., this

set is both subspace and sub ring with induced operations.

Theorem 1. Let p € M, then (Fp/FI?)* is isomorphic to T, M .
Proof. Set the function
o (Fp/F2) — T,M
ar— (o) : Gp — R
[f] = () ([f]) = a(([f] = [f () + F)

where f(p) : M — R, f(p)(q) = f(p), Vg € M and [] + F7 is the class of [f] in F,/F;.
Because ¢, ¢(a) are clearly R-linear, [f] —[f(p)] = [(U, f)] = [(M, f(p))] = [(U, f = f(p))] and

(f — f())(p) = 0 we have ¢ well-defined if ¢(«) is a derivation.

In fact it is, but we need of a trivial lemma before the checking.



Lemma 2. Let f,g,h,t: X — R functions from set a X to R, then fg —ht =h(g—t)+ (f —
h)t+(f—h)(g—1)

Proof.

hg—1t)+(f—=h)t+(f—h)(g—t)=hg—ht+ ft —ht+ fg— ft —hg+ ht
= (hg — hg) + (—=ht + ht) + (ft — ft) + (—ht + fg)
=fg—Nht

Now, let [f], [9] € G}, then

a([f(p)(g — g)) + (f = )W) + F7) = f(p)edlg — g)] + F) + allf = f®)] + F7)g(p)

that is, p(a)([fg]) = (@) ([FDg(p) + f(p)p(@)((g])-

Set the function

¢ T,M — (Fy/F2)
v— P(v) : (FP/FI?) — R
]+ Fp — o(o)([f] + Fy) = o([f])

we have ¢ (v) well-defined, let is see, if [f] and [g] satisfy [f] + F;? = [g] + F}7, then [f] —[g] is in
Fg, hence v([f] — [g]) = 0 once v(X) = 0 for every X € Fp2 by the Leibniz’s rule. Clearly v (v)
is R-linear, so 1 is well-defined too.

We complete the proof if we show ¢ = )=, Checking,
(¥ 0 @) ()([f] + F) = v(e(a)([f] + F;)

On the other hand,

Therefore o = 1p~1.



Lemma 3. For every smooth function f:R"™ — R, we can write

f(z) = f(0) +V£(0) 55‘*‘22«%%/ / 855,83[;3 (tsx)tdsdz.

i=1j=1

Proof. Start with ) )
f(:n)—f(o):/o (f(tx))’dt:/o Vf(tx) - wdt

then (1) f

xz

Lo
(x) = / / dt, the same argument show
0o Ox;

n 1 1 82f
0)+ / / tx)tdsdt
) ]z_:l T o Jo dw0m; (stx)tds

1 o7 _ o (0) plugging in (1)

- 83:2

but ¢;(0) =
ut g;(0) s

:]”(0)4-233[:Z —i—Z / /

2

= f(0)+Vf(0) =+ Z Z T 88 éfx (tsz)tdsdt

i=1j=1

t td dt
9.0 m] (tsz)tdsdt)

O
Proposition 4. Letp € M, then Fp/F]? is a finite dimensional vector space and dim (Fp/F5> =
dim(M).

Proof. Consider a chart (U,§) around p, we may assume {(U) = R™ and £(p) = 0. Denote
&(q) = (ui(q), - ,un(q)), n = dim(M), u; : U — R coordinates functions, let X € G), choose
f:W =int(W) C U — R such that [f] = X, by the previous lemma and the fact £(p) = 0 we
have

(o €7)(E) = FE €D + V(S o ) (Ew)) -€la)
#300 wtau) [ [ O etaudsar

i=1j=1 0 Jo

182
—l—ZZuz // af;ai] €(q))tdsdt

Denote h; = 8(%};—1) (&(p)) and g45(q fo 01 82(5535:;) (ts&(q))tdsdt, then
Fl) = FEE@) = fp) + D_uilghi + Y D> wila)ui(9)gi5(a)
i=i i=1j=1
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for each g € W. If [f] € FpQ, we obtain

—|—F2 Zh ;) Zul][vi]+F§

i=1
where v;(q) = >°7_; u;j(q)gij(q), note that {(p) =0 == wux(p) = 0, Vk, then each [u;] € F}, so

n
each w;g;; € Fp, hence v; € F,, therefore Z[uz][v]] € Fp2, that is,
i=1

[f]+ F2 = hilus] + F;

In other words, [f] € span{[u1] + F7, -+, [un] + F2}.
Claim. {[u1] + F72,- -, [un] + F7} is linearly independent.

Consider the derivation 6%2,([ ) = 5)(@"751)(5 (p)), every element of [f] agree with f in a open
neighborhood of p, so the value a%i([f]) is well-defined. Now, suppose a1, -+ ,a, € R such that
al[ul] + F2 4+ aplug] + F7 € Fg then a[u1] + -+ anfup] € F2, on one hand we have
au (cqfur] + - - apfuy]) = 0, because 8— is a derivation evaluated in an element of 2, on the
other hand

o]+ anfua)) = Y- gl

since a%i([uj]) = %ﬁ(f(q)) = %({(q)) = 6ij, we conclude 0 = 37, a;dij = «y, Vi €
{1,---,n}, that is, {[w1] + Fy,--- ,[un] + F;} is linearly independent. Follow (F,/F?) finite
dimensional and dim(F,/F?) = n = dim(M). O

Corollary 5. dim(M) = dim(T,M).
Proof.

dim(M) = dim(Fp/sz), finite dimensional
= dim(F,/F})*, Theorem 1

= dim(T,M).
O
0 0 .
Corollary 6. In the previous context, p € M, A is base of T, M.
1 Un,
Proof. By the proof of Proposition 4 we have {[u1]+F7, -, [un]+F3}, as =— 0 ([u;]) = d;; follow

ou;
9 2 )
¥ 87u, ([us] + Fp) = 0;5, that is,

0 0 . 2\ *
{¢ (8'[“)’ 7’11Z)<8un>} is base of (Fp/Fp)
p isomorphism, then

(el () v )y = o oom)

is base of T, M. ]



Definition 4. Let v : I C R — M, I connected, we say 7 is smooth at t € int(I) if exist
(f o7)'(t) for every smooth function f defined in a neighborhood of ~(¢). It value is denoted
4(t). That is,
Y:R—TM
t— 'y(t) : G*y(t) — R
| = (o) (®)

Proposition 7. For each p € M and v € T,M there is a smooth curve v : R — M such that
7(0) = p and ¥(0) = v

Proof. Let (¢,U) chart around p such that o(U) = R", {i %} is base of T,M, so

2
")

v=2) aiz—, fora; €R, then define (t) = ¢~ (o(p) + Hon, -, an)), 7(0) = ¢~ (¢(p) = p-
Z ™ B,

1=
Checking the 4(0) = v,

— (f0)(0)
= (fop " 0a)(0), where a(t) = p(p) + t(ar, - , o)
= V(o)) - (ar,- - o)

70)([f1)

=2 5 (Fee™)(pm)a
=1 Li
“ 0
=S aig, (1)
=v([f])
therefore ¥(0) = v.
O
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