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This text is an exercise of manifold theory and we will show dim(M) = dim(TpM), that is, the
dimension of a differential manifolds (M,A), sometimes just M - topological manifolds with a
maximal atlas of compatible charts - is the same of tangent space, but what is tangent space?
In this text M is always a differential manifold.

Definition 1. Let p ∈M , define a set

Γp = {(U, f) : U open neighborhood of p and f : U → R smooth function}

in Γp set the relation: (U, f) ∼ (V, g) ⇐⇒ there is a open neighborhood W of p such that
f |W = g|W , we denote Gp := Γp\ ∼ and an element of Gp is called germ in p.
In each Gp we define three operations such that Gp is an algebra, that is, a vector space and a
ring, the operations are define as [(U, f)] + [(V, g)] = [(U ∩ V, f + g)], λ[(U, f)] = [(U, λf)] (for
vector space) and [(U, f)][(V, g)] = [(U ∩ V, fg)] (for ring), where the [·] is the class of (·, ·), it
is easy verify the well-definition of these operations and the axioms of vector space and ring.
When the domain U of some f is clear or not important we denote just [f ] for the class of f in
Gp.

Definition 2. A derivation at p ∈ M is a R-linear map v : Gp → R, such that the Leibniz’s
rule is satisfied:

v([f ][g]) = v([f ])g(p) + f(p)v([g])
the set of all derivation in p is called tangent space and denoted TpM . If we define sum and
product by scalar pointwise, that is, (v + λw)([f ]) = v[f ] + λw([f ]), then TpM is a real vector
space.

Remark. Now we will show dim(M) = dimRTpM . The sketch is first show an isomorphism
between TpM and a abstract, but useful, vector space, then show the dimension of this space is
finite and equal to dimM .

Definition 3. Let p ∈ M , define Fp := {X ∈ Gp : f(p) = 0,∀f ∈ X}, of course f(p) = 0 for

some f ∈ X so h(p) = 0 for all h ∈ X. In terms of Fp we define F 2
p := {

n∑
i=1

[fi][gi] : [fi], [gi] ∈

Fp and n is any positive integer}.

Remark. It easy to see Fp is an ideal and subspace of Gp, analogous for F 2
p , that is, F 2

p is an
ideal and a subspace of Fp, it makes sense in the vector space and ring context FP /F 2

p , i.e., this
set is both subspace and sub ring with induced operations.

Theorem 1. Let p ∈M , then
(
Fp/F

2
p

)∗
is isomorphic to TpM .

Proof. Set the function

ϕ :
(
Fp/F

2
p

)∗
−→ TpM

α 7−→ ϕ(α) : Gp −→ R
[f ] 7−→ ϕ(α)([f ]) = α(([f ]− [f(p)]) + F 2

p )

where f(p) : M → R, f(p)(q) = f(p), ∀q ∈ M and [·] + F 2
p is the class of [f ] in Fp/F

2
p .

Because ϕ, ϕ(α) are clearly R-linear, [f ] − [f(p)] = [(U, f)] − [(M,f(p))] = [(U, f − f(p))] and
(f − f(p))(p) = 0 we have ϕ well-defined if ϕ(α) is a derivation.
In fact it is, but we need of a trivial lemma before the checking.
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Lemma 2. Let f, g, h, t : X → R functions from set a X to R, then fg − ht = h(g − t) + (f −
h)t+ (f − h)(g − t)

Proof.

h(g − t) + (f − h)t+ (f − h)(g − t) = hg − ht+ ft− ht+ fg − ft− hg + ht

= (hg − hg) + (−ht+ ht) + (ft− ft) + (−ht+ fg)
= fg − ht

Now, let [f ], [g] ∈ Gp, then

ϕ(α)([f ][g]) = ϕ(α)([fg])
= α([fg]− [f(p)g(p)] + F 2

p )
= α([fg − f(p)g(p)] + F 2

p )

by the last lemma

ϕ(α)([fg]) = α([f(p)(g − g(p)) + (f − f(p))g(p) + (f − f(p))(g − g(p)) + F 2
p )

but (f − f(p))(g − g(p)) ∈ F 2
p , so

ϕ(α)([fg]) = α([f(p)(g − g(p)) + (f − f(p))g(p)] + F 2
p )

note that [f(p)][h] = f(p)[h], for all [h] in Gp, therefore

α([f(p)(g − g(p)) + (f − f(p))g(p)] + F 2
p ) = f(p)α([g − g(p)] + F 2

p ) + α([f − f(p)] + F 2
p )g(p)

that is, ϕ(α)([fg]) = ϕ(α)([f ])g(p) + f(p)ϕ(α)([g]).
Set the function

ψ : TpM −→
(
Fp/F

2
p

)∗
v 7−→ ψ(v) :

(
Fp/F

2
p

)
−→ R

[f ] + F 2
p 7−→ ψ(v)([f ] + F 2

p ) = v([f ])

we have ψ(v) well-defined, let is see, if [f ] and [g] satisfy [f ] +F 2
p = [g] +F 2

p , then [f ]− [g] is in
F 2
p , hence v([f ]− [g]) = 0 once v(X) = 0 for every X ∈ F 2

p by the Leibniz’s rule. Clearly ψ(v)
is R-linear, so ψ is well-defined too.
We complete the proof if we show ϕ = ψ−1. Checking,

(ψ ◦ ϕ)(α)([f ] + F 2
p ) = ψ(ϕ(α))([f ] + F 2

p )
= ϕ(α)([f ])
= α(([f ]− [f(p)]) + F 2

p ), [f ] ∈ Fp
= α([f ] + F 2

p )

On the other hand,

(ϕ ◦ ψ)(v)([f ]) = ϕ(ψ(v))([f ])
= ψ(v)(([f ]− [f(p)]) + F 2

p )
= v([f ])

Therefore ϕ = ψ−1.
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Lemma 3. For every smooth function f : Rn → R, we can write

f(x) = f(0) +∇f(0) · x+
n∑
i=1

n∑
j=1

xixi

∫ 1

0

∫ 1

0

∂2f

∂xi∂xj
(tsx)tdsdx.

Proof. Start with

f(x)− f(0) =
∫ 1

0
(f(tx))′dt =

∫ 1

0
∇f(tx) · xdt

then (1) f(x) = f(0) +
n∑
i=1

xi

∫ 1

0

∂f

∂xi
(tx)dt , denote gi(x) =

∫ 1

0

∂f

∂xi
dt, the same argument show

gi(x) = gi(0) +
n∑
j=1

xj

∫ 1

0

∫ 1

0

∂2f

∂xi∂xj
(stx)tdsdt

but gi(0) =
∫ 1

0

∂f

∂xi
(0)dt = ∂f

∂xi
(0) plugging in (1)

f(x) = f(0) +
n∑
i=1

xi

∫ 1

0

∂f

∂xi
(tx)dt

= f(0) +
n∑
i=1

xigi(x)

= f(0) +
n∑
i=1

xi(
∂f

∂xi
(0) +

n∑
j=1

xj

∫ 1

0

∫ 1

0

∂2f

∂xi∂xj
(tsx)tdsdt)

= f(0) +∇f(0) · x+
n∑
i=1

n∑
j=1

xixj
∂2f

∂xi∂xi
(tsx)tdsdt

Proposition 4. Let p ∈M , then Fp/F 2
p is a finite dimensional vector space and dim

(
Fp/F

2
p

)
=

dim(M).

Proof. Consider a chart (U, ξ) around p, we may assume ξ(U) = Rn and ξ(p) = 0. Denote
ξ(q) = (ui(q), · · · , un(q)), n = dim(M), ui : U → R coordinates functions, let X ∈ Gp, choose
f : W = int(W ) ⊂ U → R such that [f ] = X, by the previous lemma and the fact ξ(p) = 0 we
have

(f ◦ ξ−1)(ξ(q)) = f(ξ−1(ξ(p)) +∇(f ◦ ξ−1)(ξ(p)) · ξ(q)

+
n∑
i=1

n∑
j=1

ui(q)uj(q)
∫ 1

0

∫ 1

0

∂2(f ◦ ξ−1)
∂xi∂xj

(tsξ(q))tdsdt

= f(p) +
n∑
i=1

ui(q)
∂(f ◦ ξ−1)

∂xi
(ξ(p))+

+
n∑
i=1

n∑
j=1

ui(q)uj(q)
∫ 1

0

∫ 1

0

∂2(f ◦ ξ−1)
∂xi∂xj

(tsξ(q))tdsdt

Denote hi = ∂(f◦ξ−1)
∂xi

(ξ(p)) and gij(q) =
∫ 1

0
∫ 1

0
∂2(f◦ξ−1)
∂xi∂xj

(tsξ(q))tdsdt, then

f(q) = f(ξ−1(ξ(q))) = f(p) +
n∑
i=i

ui(q)hi +
n∑
i=1

n∑
j=1

ui(q)uj(q)gij(q)
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for each q ∈W . If [f ] ∈ F 2
p , we obtain

[f ] + F 2
p =

n∑
i=1

hi[ui] +
n∑
i=1

[ui][vi] + F 2
p

where vi(q) =
∑n
j=1 uj(q)gij(q), note that ξ(p) = 0 =⇒ uk(p) = 0,∀k, then each [ui] ∈ Fp, so

each uigij ∈ Fp, hence vi ∈ Fp, therefore
n∑
i=1

[ui][vj ] ∈ F 2
p , that is,

[f ] + F 2
p = hi[ui] + F 2

p

In other words, [f ] ∈ span{[u1] + F 2
p , · · · , [un] + F 2

p }.

Claim. {[u1] + F 2
p , · · · , [un] + F 2

p } is linearly independent.

Consider the derivation ∂
∂ui

([f ]) = ∂(f◦ξ−1)
∂xi

(ξ(p)), every element of [f ] agree with f in a open
neighborhood of p, so the value ∂

∂ui
([f ]) is well-defined. Now, suppose α1, · · · , αn ∈ R such that

α1[u1] + F 2
p + · · · + αn[un] + F 2

p ∈ F 2
p , then α1[u1] + · · ·αn[un] ∈ F 2

p , on one hand we have
∂
∂ui

(α1[u1] + · · ·αn[un]) = 0, because ∂
∂ui

is a derivation evaluated in an element of F 2
p , on the

other hand
∂

∂ui
(α1[u1] + · · ·αn[un]) =

∑
j=1

αjδij

since ∂
∂ui

([uj ]) = ∂(uj◦ξ−1)
∂xi

(ξ(q)) = ∂xj

∂xi
(ξ(q)) = δij , we conclude 0 =

∑
j=1 αjδij = αi, ∀i ∈

{1, · · · , n}, that is, {[u1] + F 2
p , · · · , [un] + F 2

p } is linearly independent. Follow (Fp/F 2
p ) finite

dimensional and dim(Fp/F 2
p ) = n = dim(M).

Corollary 5. dim(M) = dim(TpM).

Proof.

dim(M) = dim(Fp/F 2
p ), finite dimensional

= dim(Fp/F 2
p )∗, Theorem 1

= dim(TpM).

Corollary 6. In the previous context, p ∈M ,
{
∂

∂u1
, · · · , ∂

∂un

}
is base of TpM .

Proof. By the proof of Proposition 4 we have {[u1]+F 2
p , · · · , [un]+F 2

p }, as
∂

∂ui
([uj ]) = δij follow

ψ

(
∂

∂ui

)
([uj ] + F 2

p ) = δij , that is,

{
ψ

(
∂

∂u1

)
, · · · , ψ

(
∂

∂un

)}
is base of (Fp/F 2

p )∗

ϕ isomorphism, then{
ϕ

(
ψ

(
∂

∂u1

))
, · · · , ϕ

(
ψ

(
∂

∂un

))}
=
{
∂

∂u1
, · · · , ∂

∂un

}
is base of TpM .
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Definition 4. Let γ : I ⊂ R → M , I connected, we say γ is smooth at t ∈ int(I) if exist
(f ◦ γ)′(t) for every smooth function f defined in a neighborhood of γ(t). It value is denoted
γ̇(t). That is,

γ̇ : R −→ TM

t 7−→ γ̇(t) : Gγ(t) −→ R
[f ] 7−→ (f ◦ γ)′(t)

Proposition 7. For each p ∈ M and v ∈ TpM there is a smooth curve γ : R → M such that
γ(0) = p and γ̇(0) = v

Proof. Let (ϕ,U) chart around p such that ϕ(U) = Rn,
{

∂
∂u1

, · · · , ∂
∂un

}
is base of TpM , so

v =
n∑
i=1

αi
∂

∂ui
, for αi ∈ R, then define γ(t) = ϕ−1(ϕ(p) + t(α1, · · · , αn)), γ(0) = ϕ−1(ϕ(p)) = p.

Checking the γ̇(0) = v,

γ̇(0)([f ]) = (f ◦ γ)′(0)
= (f ◦ ϕ−1 ◦ α)′(0), where α(t) = ϕ(p) + t(α1, · · · , αn)
= ∇(f ◦ ϕ−1)(ϕ(p)) · (α1, · · · , αn)

=
n∑
i=1

∂

∂xi
(f ◦ ϕ−1)(ϕ(p))αi

=
n∑
i=1

αi
∂

∂ui
([f ])

= v([f ])

therefore γ̇(0) = v.
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