
Real time digital audio processing with Arduino

André J. Bianchi Marcelo Queiroz
ajb@ime.usp.br mqz@ime.usp.br

Departament of Computer Science
Institute of Mathematics and Statistics

University of São Paulo

SMC 2013, July 30th - August 3rd

Real time digital signal processing

Digital audio signal processing includes:

I Acquiring samples.

I Processing.

I Outputting results.

Real time restriction:

I Block processing: N samples.

I Sampling frequency: R Hz.

I DSP cycle period: TDSP = N
R s.

Real time DSP with Arduino

http://interface.khm.de/index.php/lab/experiments/arduino-realtime-audio-processing/

Atmel AVR microcontroller (ATmega328P)

Microcontroller’s characteristics:

I CPU: ALU and registers (16 MHz - 8 bits).

I Memory: Flash (32 KB), SRAM (2 KB) e EEPROM (1 KB).
I Digital I/O ports:

I Audio input: analog to digital converter.
I Audio output: counters capable of doing PWM.

Arduino performance for real time digital audio processing

Questions:

I What is the maximum number of operations feasible in
real-time?

I Which implementation details make a difference?

I What is the quality of the resulting audio signal?

DSP algorithms implemented:

I Additive synthesis.

I Time-domain convolution.

I FFT.

Audio input: analog to digital converter

 44.1

 0

 100

 200

 300

 400

 500

 600

 2 4 8 16 32 64 128

F
re

q
u
e
n
c
y
 (

K
H

z
)

Prescaler value

Arduino ADC maximum conversion frequencies

Advertised ADC frequency
Measured ADC frequency

Pulse Width Modulation

8-bit counter→

original signal→

PWM output→

counter overflow
↓ ↓ ↓

0

1

0

1

Audio output: Pulse Width Modulation

8-bit counter frequencies for different prescaler values:

prescaler fincr (KHz) foverflow (Hz)

1 16000 62500
8 2000 7812

32 500 1953
64 250 976

128 125 488
256 62.5 244

1024 15.625 61

PWM overflow interrupt allow for periodically triggering:

I ADC conversion.

I Signal manipulation.

I PWM mechanism value set.

Additive synthesis

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
y
n
th

 t
im

e
 (

m
s
)

Number of oscilators

Additive Synthesis on Arduino (loop)

bl. size 32
bl. size 64

bl. size 128

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
y
n
th

 t
im

e
 (

m
s
)

Number of oscilators

Additive Synthesis on Arduino (inline)

bl. size 32
bl. size 64

bl. size 128

Additive synthesis
Example

I Example: sum of 200 Hz harmonics.

Time-domain convolution

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
y
n
th

 t
im

e
 (

m
s
)

Order of the filter

Time-domain convolution on Arduino (mult/div)

bl. size 32
rt per. 32

bl. size 64
rt per. 64

bl. size 128
rt per. 128

bl. size 256
rt per. 256

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
y
n
th

 t
im

e
 (

m
s
)

Order of the filter

Time-domain convolution on Arduino (bit-shifting)

bl. size 32
rt per. 32

bl. size 64
rt per. 64

bl. size 128
rt per. 128

bl. size 256
rt per. 256

Time-domain convolution
Example: moving average

 0

 1

 0 1 2 3

A
m

p
lit

u
d
e

Frequency

Moving Average Frequency Response

order 2
order 4

order 8
order 16

Fast Fourier Transform

FFT Basics and Case Study using Multi-Instrument Virtins Technology

1. Sampling and FFT

A signal in the time domain can be converted to its counterpart in the frequency domain by
means of Fourier Transform (FT). The signal must be sampled at discrete time by an A/D
converter before it can be analyzed by a computer. Discrete Fourier Transform (DFT) can be
used to convert the discrete signal (discrete in time) in the time domain to its counterpart
(discrete in frequency) in the frequency domain. DFT can be computed efficiently in
practice using a Fast Fourier Transform (FFT) algorithm, which is generally N/log(N)-1
times faster than DFT, where N is called DFT or FFT size, which is the number of data
points used in the computation. To achieve maximum efficiency of computation in FFT, N is
generally constrained to an integer power of two, e.g. 1024, 2048, 4096, 8192, etc..

ADC

DFT/FFT

t t f
fN/2 t0 tN-1 f0=0

x(t) x(t) |X(f)|

-fN/2

1) continuous signal in time domain 2) N points in time domain 3) N points in frequency domain
containing both negative and
positive frequency parts

f
f0=0 fN/2

4) N/2+1 points in amplitude/power spectrum

|X(f)|

The above figure illustrates the aforementioned process. An N-point time record [x(t0),
x(t1), …, x(tN-1)] will generate N points [X(-fN/2), …X(f0), …, X(fN/2)] in the frequency
domain containing both negative and positive frequency parts. The positive and negative
frequency parts can be combined to produce N/2+1 points [X(f0), X(f1)…, X(fN/2)] at real
frequencies in the amplitude/power spectrum. These points are located at frequencies: 0, f
1, …, f N/2, where f = fs/N, where fs is the sampling frequency. The highest frequency
measurable is fs/2 and is called Nyquist frequency.

An important principle in digital signal processing is the "Nyquist-Shannon Sampling
Theorem" which states that an analog signal that has been sampled can be perfectly
reconstructed from the samples if the sampling frequency is greater than twice the highest
frequency in the original signal.

There are three possible issues inherent in DFT or FFT, which may result in errors if no
proper precautions are taken. They are aliasing, leakage, and picket fence effect.

2. Aliasing
Aliasing occurs when a signal is sampled at less than twice of the highest frequency present
in the signal. It causes frequency components that are higher than half of the sampling
www.virtins.com D1002 3 Copyright © 2009 Virtins Technology

Fast Fourier Transform

 0

 50

 100

 150

 200

 250

 300

... 64 128 256 512

A
n
a
ly

s
is

 t
im

e
 (

m
s
)

Block size

FFT on Arduino (at 1953 Hz)

fft sin()
fft table

rt period

Maximum frequency for block size 256:

I Mean calculation time ≈ 428,15 µs per sample.

I Maximum frequency ≈ 2.335 Hz.

I PWM prescaler value 32 ⇒ R = 1.953 Hz.

Conclusions

I Many implementation details make a difference:
I Types used (byte, unsigned long, int, float, etc).
I Type of operations: integer (multiplication, division, sum) and

bitwise.
I Presence of loops.
I Use of variables and vectors.

I Families of algorithms can be found to make it feasible to use
the Arduino in real time audio processing.

Thank you for your attention!

Contact:

I Email: {ajb,mqz}@ime.usp.br
I This presentation: http://www.ime.usp.br/~ajb/

I CM at IME: http://compmus.ime.usp.br/

Attribution of figures taken from wikipedia:

I PWM: Zurecs (zureks@gmail.com).

I Additive synthesis: Chrisjonson.

I FFT: Virens.

ajb,mqz
@ime.usp.br
http://www.ime.usp.br/~ajb/
http://compmus.ime.usp.br/

