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André J. Bianchi and Marcelo Queiroz
Institute of Mathematics and Statistics - Computer Science Department,

University of São Paulo
{ajb,mqz}@ime.usp.br

1. Measuring device’s performance

Modern mobile phones are (time and space
bounded) Universal Turing Machines. Because of
their memory, CPU and battery limitations, it is in-
teresting to study their performance for real-time
Digital Signal Processing (DSP). By collecting
data about devices’ performance, we may be able
to provide feedback about resources consumption
as basis for (user or automated) decision making
related to the devices’ use for artistic or research
purposes.
Two strategies were devised to study Android-
powered devices’ performance:

•Measurement of the time taken to perform
common real-time DSP tasks (such as in-
put/output, FIR/IIR filtering and computing FFTs
of varying sizes). This enables to determine
the amount of (concurrent) computation time
the device has available to perform a DSP cycle
over a block of samples, and also the percent-
age of the DSP cycle that specific algorithms
occupy in different combinations of hardware
(device) and software (Android API).

• Stressing of the device as a means to esti-
mate the maximum amount of computation fea-
sible in each DSP cycle. We ran stress-tests for
different DSP block sizes using random FIR fil-
ters with an increasing number of coefficients,
and so could determine the maximum order of
filters that can be run on each device setup.

2. Benchmarking methods

To get a feel of what it is like to use Android de-
vices for real-time DSP, we have set up an en-
vironment to run arbitrary algorithms over an
audio stream divided into blocks of N samples,
allowing for the variation of algorithm parameters
during execution. The GUI allows for live use of
the processing facilities and also for automated
testing of DSP performance. Sound samples can
be obtained directly from the microphone or from
WAV files, and the DSP block size can be config-
ured to be N = 2i with 0 ≤ i ≤ 131.

Figure: The GUI
controlling a live
DSP process. The
user is able to
choose the DSP
block size, the audio
source (microphone
or predefined WAV
files) and the DSP
algorithm that will
be run. Also, slider
widgets can provide
explicit parame-
ter input, while
visual and numer-
ical statistics give
feedback about the
state of the system.

With the results of sample read and write times,
DSP algorithm execution times and DSP callback

periods, it is possible to have a picture of each de-
vice’s performance by comparing the time taken
to perform these various tasks with the theoretical
time available for DSP computation over a block of
N samples (NR s, if R is the sample rate in Hz).

2.1 Algorithm benchmarking
One useful metric is the DSP callback period,
which is the time required by a minimal set of DSP
operations to perform any desired algorithm. That
can be compared with the theoretical DSP cycle
period to determine feasibility of that set of DSP
operations.
To check if our DSP model (which is Java-
based, includes timekeeping code, converts sam-
ples back and forth between PWM and floating
point representation, relies on the API scheduling
and operates in the same priority level as common
applications) is indeed usable, we ran some sim-
ple DSP algorithms and took the mean times for
a series of DSP callback periods for different block
sizes.
The algorithms we implemented were:

• Loopback: actually an empty perform method
that returns immediately. This takes only the
time of a method call and is used to establish
the intrinsic overhead of the DSP model.

• Reverb: a two-coefficient IIR filter that outputs
y(n) = −gx(n) + x(n−m) + gy(n−m) [4].

• One-way FFT: A Java implementation of the
FFT (which takes O(n log n) steps, where n is
the block size)[2].

2.2 Stress tests
To determine how much (concurrent) DSP algo-
rithmic computation can actually be performed in-
side the callback routine while maintaining real-
time generation of output samples, we stress-
tested the devices using FIR filters with increas-
ing number of coefficients. By comparing the call-
back period for different sizes of filter with the theo-
retical DSP cycle period, we were able to estimate
the maximum number of coefficients for a filter
that can be applied to the input (using our DSP
model) while maintaining real-time feasibility.
Note that the general FIR filter equation indeed
gives us an upper bound on the number of arith-
metic operations that can be performed on a DSP
cycle: if y(n) =

∑K−1
i=0 αix(n − i), then the calcula-

tion of y(n) requires at least K multiplications, K
vector accesses and K − 1 additions.

3. What the results tell us

We ran our tests on a set of 11 different devices,
and results were emailed automatically after the
tests were finished.
The graphs obtained by running the algorithm
tests are useful for ranking devices with respect
to computational power, and for giving a pre-
cise account of the time slack available for ex-
tra computation on each algorithm. The results
for the FFT algorithm can be seen below on the
upper figures. As it takes O(n log n) time with re-
spect to input size, we can observe an upward tilt
in on some of the devices. It should be expected
that for larger block sizes real-time FFTs would be-
come infeasible on every device.
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On the lower figures above, we can see the results
for the stress tests for each device. One exam-
ple of an interesting result that we get by compar-
ing the graphs for both strategies of evaluation, is
that not always devices which perform filtering with
more coefficients than others can also perform the
FFT faster than others. Some examples of this are
the models that provide dual-core CPUs (tf101 and
xoom).

4. Discussion

By providing a systematic way to obtain perfor-
mance measures related to usual DSP tasks and
upper limits on FIR filters (which may be regarded
as a fairly general DSP model as far as computa-
tional complexity is concerned), we hope this work
to be useful for computer music researchers and
artists to obtain important information that can aid
the choice of hardware and software to use on
real-time applications and also the algorithmic.
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1This upper limit is configurable; N = 213 under a 44.1 KHz sampling rate produces a latency of 186 ms, which is very noticeable.
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