
Measuring the performance of
real-time Digital Signal Processing

using Pure Data and GPU
André J. Bianchi and Marcelo Queiroz

Computer Science Department - Institute of Mathematics and Statistics - University of São Paulo
{ajb,mqz}@ime.usp.br

1 Introduction

We study the computational performance of
Digital Signal Processing using Pure Data
(http://puredata.info) to outsource parallel compu-
tation to commodity GPU cards. Data roundtrip
time is analyzed by measuring memory transfer
times to/from GPU and comparing a pure FFT
kernel with a full Phase Vocoder analysis/syn-
thesis kernel for different DSP block sizes. This
makes it possible to establish the maximum DSP
block sizes for which each task is feasible in real-
time for different GPU card models.

In order to establish the feasibility of using a GPU-
aided environment with Pd on realtime perfor-
mances we perform the following measurements:

•Memory transfer time. Since a GPU only pro-
cesses data that reside on its own memory,
memory transfer can represent a bottleneck for
parallel applications that use GPU. Generally,
the fewer the amount of data transfers the bet-
ter.

•Kernel execution time. This is the total time
used by all instructions performed on the GPU,
after memory is transferred from the host and
before memory is transferred back to it.

•Full roundtrip time. This is the total time taken
to transfer data from host to device, operate on
that data, and then transfer it back to the host.
This is the single most important value to com-
pare with the DSP cycle period, in order to es-
tablish the feasibility of using the GPU in real-
time environments.

INPUT

Pd GPU cores

INPUT

OUTPUT

Host

R
o
u
n
d
tr

ip
 T

im
e

GPU

Host memory GPU memory

memcpy(dptr, hptr, n, hostToDevice)

Pd GPU cores

Host memory GPU memory

INPUT INPUT

Pd GPU cores

Host memory GPU memory

INPUT XXXXXX

run_kernel(dptr, n)

Pd GPU cores

Host memory GPU memory

INPUT OUTPUT

memcpy(hptr, dptr, n, deviceToHost)

Pd GPU cores

Host memory GPU memory

OUTPUTOUTPUT

H
o
s
t

to
 G

P
U

 t
ra

n
s
fe

r
ti

m
e

G
P
U

 t
o
 H

o
s
t

tr
a
n
s
fe

r
ti

m
e

K
e
rn

e
l
ti

m
e

Figure 1: Pd use of the GPU during one DSP cy-
cle. Gray blocks indicate the active parts on each
step.

2 Results

2.1 FFT: data transfer and roundtrip

The figure below shows the time taken to transfer
memory from host to device and back for different
block sizes, as well as the time taken to perform
one-way FFTs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

... 2
14

2
15

2
16

2
17

D
u
ra

ti
o
n
 (

m
s
)

Block size

FFT times - GTX 470

host to device
kernel time

device to host
roundtrip

2.2 Phase Vocoder parallel synthesis

The Phase Vocoder represents a signal as a set
of oscillators whose amplitudes and frequencies
vary with time. After the analysis and parameter
estimation, it is possible to reconstruct the signal
by summing the oscillators’ outputs to achieve ef-
fects such as independent modifications of pitch
and speed.

Five different implementations of the oscillator
calculation were compared, using different combi-
nations of 1024−point sine wave lookup table and
GPU’s built-in functions:

1. Table lookup with 4-point cubic interpolation.
2. Table lookup with 2-point linear interpolation.
3. Table lookup with truncated index.
4. Direct use of the built-in sine wave function.
5. Table lookup with (linearly interpolated) texture

fetching.

1

2

3

2
14

2
15

2
16

D
u
ra

ti
o
n
 (

s
)

Block size

PV synth kernel time - GTX 470

DSP block period
1. cubic interp
2. linear interp

3. truncated
4. builtin sine

5. texture interp
no calculation

Implementations (1), (2) and (3) grow proportion-
ally, according to the number of operations in-
volved: truncated table lookup is faster than lin-
ear interpolation, which is in turn faster than cubic
interpolation. The built-in sine wave implementa-
tion (4) achieves an intermediate result between
implementations (1) and (2). Texture fetching with
linear interpolation, also known as implementa-
tion (5) is somewhat faster than cubic interpola-
tion.

3 Conclusions

We could conclude that:

•Small implementation differences can have sig-
nificant results regarding kernel time consump-
tion on the GPU. Conscious choices have to be
made in order to use the GPU’s full potential for
larger block sizes.

• If we restrict the roundtrip to few memory trans-
fers in each direction, then there is no need to
bother with memory transfer time as its mag-
nitude is of the order of tenths of milliseconds
while DSP block periods are of the order of
several milliseconds even for the smaller block
sizes considered.

The maximum block sizes for the realtime use of
each oscillator implementation for each card we
benchmarked are summarized below:

model \ implementation 1 2 3 4 5

GTX 275 214 215 215 215 214

GTX 470 215 216 216 215 215

4 Get the code

The source code is available as
a git repository. You can clone
the repo either by decoding the
QR code on the left or by directly
cloning the URL below:

http://www.ime.usp.br/∼ajb/repo/rtpdgpu.git

References

[1] Charles Henry. GPU audio signals processing
in Pure Data, and PdCUDA an implementation
with the CUDA runtime API. In Pure Data Con-
vention, 2011.

[2] Lauri Savioja, Vesa Välimäki, and Julius O.
Smith. Audio signal processing using graph-
ics processing units. J. Audio Eng. Soc,
59(1/2):3–19, 2011.

[3] Nicolas Tsingos, Wenyu Jiang, and Ian
Williams. Using programmable graphics hard-
ware for acoustics and audio rendering. J. Au-
dio Eng. Soc, 59(9):628–646, 2011.

ICMC 2012, International Computer Music Conference, 9-14 September 2012, Ljubljana, Slovenia

